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Abstract

Introduction

Infection causes a vast burden of disease, with significant mortality, morbidity and costs to

health-care systems. However, identifying the pathogen causative infection can be chal-

lenging, resulting in high use of broad-spectrum antibiotics, much of which may be inappro-

priate. Novel metagenomic methods have potential to rapidly identify pathogens, however

their clinical utility for many infections is currently unclear. Outcome from infection is also

impacted by the effectiveness of immune responses, which can be impaired by age, co-mor-

bidity and the infection itself. The aims of this study are twofold:

1. To compare diversity of organisms identified and time-to-result using metagenomic meth-

ods versus traditional culture -based techniques, to explore the potential clinical role of

metagenomic approaches to pathogen identification in a range of infections.

2. To characterise the ex vivo function of immune cells from patients with acute infection,

exploring host and pathogen-specific factors which may affect immune function and overall

outcomes.
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Methods

This is a prospective observational study of patients with acute infection. Patients with

symptoms suggestive of an acute infection will be recruited, and blood and bodily fluid rele-

vant to the site of infection collected (for example, sputum and naso-oropharyngeal swabs

for respiratory tract infections, or urine for a suspected urinary tract infection). Metagenomic

analysis of samples will be compared to traditional microbiology, alongside the antimicrobi-

als received. Blood and respiratory samples such as bronchoalveolar lavage will be used to

isolate immune cells and interrogate immune cell function. Where possible, similar samples

will be collected from matched participants without a suspected infection to determine the

impact of infection on both microbiome and immune cell function.

Introduction

Acute infection is responsible for a vast and increasing burden on healthcare systems with hos-

pitalisations in England and Wales due to infections increasing more than 412% in the past 20

years [1]. Furthermore, hospitalizations due to infection are predicted to double by 2040 as a

result of our ageing population [2].

The World Health Organisation estimate there are more than eleven million deaths from

sepsis alone each year [3]. Many patients who survive infection experience significant short

and long-term impacts, including increased functional impairment in activities of daily living,

mild-moderate cognitive impairment and substantial depressive symptoms [4]. Readmission

to hospital after a severe infection is common [5] and these patients experience an increased

mortality for at least five years beyond hospital discharge [6]. Despite this, treatments for

many infectious diseases in acute care pathways have not changed for decades.

Infections, their causes and treatments

There is strong evidence that early, appropriate treatment with anti-microbial therapies reduce

the mortality, complications and recovery time from infections [7]. However, it is still chal-

lenging to identify if a patient has an infection, and what type of organism may be causing it.

In over half of the cases of hospitalised infections, the causal bacteria, virus or fungus is not

identified, resulting in empirical use of broad-spectrum antibiotics based on the most likely

causative pathogens and local patterns of antimicrobial resistance (AMR) [8]. The Centers for

Disease Control and Prevention (CDC) in the USA estimate that up to 50% of all antibiotics

prescribed for people are either not needed or are inappropriate [9].

AMR is an increasing global concern and inappropriate antibiotic use has been highlighted

as a key driver [10]. For individual patients, adverse drug events (ADE) from antibiotics are

common, affecting approximately 20% of hospitalised patients who receive antibiotics [11].

However, withholding antibiotics while awaiting definitive test results is also a risk for patients.

A recent study of GP records in the UK suggested that practices with the lowest prescribing

rates of antibiotics were associated with a higher rate of hospitalised infections [12].

Ideally, microbiology laboratories would quickly and accurately identify whether a bacteria,

virus, fungus or protozoa is causing an infection and provide information about the AMR pat-

terns of the pathogen, so the correct antimicrobial (or indeed no antimicrobial) is given. How-

ever, current techniques often contribute to significant delay between sample collection and

report read out, termed laboratory turnaround time (LTAT), with an average LTAT of three
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days being reported for culture-based approaches in an inpatient population [13]. While some

of this delay will be due to common factors such as the efficiency of clinical teams and hospital

systems, the time taken for traditional microbial culture is also a significant component. Other

assays such as antigen-based testing can provide quicker results but require selective testing

and are not available for all pathogens.

Modern genomic and molecular-based methods have the potential to rapidly identify not

only the exact type of pathogen, but also genetic mutations which might affect virulence [14]

and antibiotic resistance [15, 16]. The pathogen-agnostic nature of metagenomic next-genera-

tion sequencing (mNGS) can also allow for the detection of rare or emerging pathogens

[17, 18]. However, how best to interpret the clinical significance of positive results is uncertain

given organisms identified may represent colonisation rather than infection [16]. It is also cur-

rently unclear whether these cutting-edge techniques can be applied across all common infec-

tions in hospitals or community settings and be embedded into a clinical service.

Even with appropriate antimicrobials, a patient must mount an effective immune response

to the invading pathogen. However, factors including age and certain co-morbidities can ren-

der this complex system ineffective and even damaging to the host, as demonstrated with neu-

trophil function in age, frailty and some non-communicable diseases [19–21].

Profound and prolonged neutrophil dysfunction has also been described in response to

severe infection. In older adults with infection the accuracy of neutrophil migration and target-

ing of bacteria is impaired for at least 6 weeks in survivors [22]. The mechanisms by which

these altered immune responses occur is yet to be fully characterised. Identifying these may

enable the development of treatments that improve immune cell functions, thereby improving

patient outcomes. More work is needed to increase our understanding of the potential mecha-

nisms of blunted immune responses, including whether different pathogens impact immune

function differently.

Rationale

Interventions that increase the early identification of infections, enable the right antibiotic to

be prescribed where needed, reduce reliance on broad spectrum antibiotics and improve how

the immune system fights infections could have significant impact upon survival, patient qual-

ity of life, complications from infections, NHS costs (including readmissions) and AMR

patterns.

Our overarching aim is to improve outcomes from infections and associated poor immune

responses, through state-of-the-art real-time diagnostics of pathogens, a better understanding

of infection-pathogen/host interactions which inhibit the immune system and by identifying

novel ways to improve the immune response. This exploratory study forms the first steps

towards this aim, seeking to assess whether it is possible to improve the identification of likely

causative pathogens during infections using metagenomic assessment of potentially infected

bodily fluids. Further, this study will assess whether there are changes in immune cell function

(with a focus on innate immunity) during infections in general, and whether specific infections

or just the severity of any infection are associated with an exaggerated state of immune

dysfunction.

Builds on previous work

• Causative pathogens are currently not identified in over half of patients hospitalised with

infection

• Up to 50% of antibiotic prescriptions are estimated to be inappropriate
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• Metagenomic next generation sequencing techniques can identify organisms with high

sensitivity

• Severe infection is known to cause prolonged immune dysfunction in survivors

Differs from previous work

• Combination of microbiological and clinical data together with immune cell function in one

study, allowing for analysis into the interplay of these factors.

Broad scope investigating all acute infection. This will allow for differences depending on

infection source to be explored.

Study hypotheses and outcomes

1. Real-time, genomics-informed diagnosis of pathogens and antimicrobial sensitivities can

improve the rates of pathogen identification, and may lead to reduced reliance on broad-

spectrum antibiotics.

2. Molecular and immunological interactions between pathogen and host modulate the

immune response. Understanding these pathways may identify novel therapeutic targets.

Specific outcome measures are identified in Table 1, below.

Methods

Study design

This is an observational, experimental medicine study using samples taken from human par-

ticipants recruited from hospital and community settings. Patients will initially be recruited

from four hospital sites in Birmingham, UK, with recruitment starting in October 2023 until

October 2027.

Age and co-morbidity matched controls without infection will also be recruited. Full inclu-

sion and exclusion criteria are listed in Table 2 below. After discussion with pregnant women

and their partners, pregnant women will be included in this study as there is evidence of

poorer outcomes from infection in pregnant women [23]. Here, samples will only be collected

where they are minimally invasive (for example a blood test) or non-invasive (for example, a

skin swab or urine sample).

Participant recruitment

Potential participants will be screened for by the members of the direct care team following an

admission or medical consultation for a presumed infection. Informed consent will be sought

from all participants where they have capacity.

Table 1. Primary and secondary outcomes.

Co-primary

outcomes:

Proportion of patients in whom a pathogen is identified.

Neutrophil chemotaxis in patients with acute infection.

Secondary

outcomes:

Turn-around times for microbiological results

Genotypic resistance profiles of identified organisms, and comparison to antimicrobials

given.

Other neutrophil functional and signalling parameters including neutrophil phagocytosis,

neutrophil extracellular trap formation, neutrophil phenotype and transcriptomics.

30 day, 90 day and 1 year mortality

https://doi.org/10.1371/journal.pone.0298425.t001
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In time, we wish to establish if rapid microbial genomics could be used in the community

to improve antibiotic stewardship for GP practices. Therefore, although initially we will recruit

all patients from hospitals, during this programme of work we will work with long-term care

facilities, community health centres and GPs to test how quickly we can process samples from

the community. All studies processes would remain the same. The additional participating

sites will be included by non-substantial amendment at the appropriate time.

Controls for the study will be recruited from the “Birmingham 1000 Elders” database or

from healthy volunteers recruited through adverts. The 1000 Elders cohort is a group of older

adults who have voluntarily agreed to be contacted to participate in research studies at the Uni-

versity of Birmingham. At the time of recruitment, they will have no active signs of infection

or inflammation, with clinical observations within the normal physiological range. Controls

will also include people admitted to hospital where an infection is not suspected. Many acute

illnesses are associated with inflammation which could alter immune cell function. This group

will help us understand if changes seen to immune cell function are due to the inflammation

or the presence of the pathogen.

Patients lacking capacity. Some patients who would be suitable for the study may not

have capacity to consent at the time of recruitment due to altered level of consciousness or

heavy sedation facilitating invasive ventilation. It was felt important to include these patients

to ensure innovation benefits this particularly underserved group. In cases where capacity is

lacking, the patient’s relative, friend or partner will be approached in the first instance as a per-

sonal consultee to seek to establish consent. In the event that there is no identifiable relative,

friend or partner available, a doctor (Consultant) from the patient’s direct care team who is

unconnected to the study will be asked to be the patient’s Professional Consultee. If and when

the patient regains capacity, retrospective consent will be sought during their hospital admis-

sion. If the patient does not wish to take part in the study, they will have the choice as to

whether collected data and samples are used or destroyed.

The study team would be careful to avoid distress and would not take samples from people

unless they were cooperative with sample collection.

Table 2. Inclusion and exclusion criteria.

Infection Cohort

Inclusion Criteria Exclusion criteria

Age�18 years

• Patient with a confirmed or suspected diagnosis of

infection (any organ or cause) which has either

� Triggered an acute care contact (admission to

hospital or community healthcare review).

�Occurred during a hospital admission

Consent is gained within 48 hours of

clinical diagnosis of infection

Patient declines consent

Personal Consultee, when available, does not provide

consent

Professional Consultee, if used, does not provide consent

Patient treatment to be palliative in nature

Patient does not meet the inclusion criteria

Patient already enrolled in an interventional research study

of a novel / unlicensed drug / therapy (patients enrolled in

interventional studies examining the clinical application or

therapeutic effects of widely accepted, “standard”

treatments are not excluded)

Control Cohort

Inclusion Criteria Exclusion criteria

Age and morbidity matched control with either:

• No self-reported infective episodes in past 3

months

OR

• In hospital with no suspicion of or confirmed

infection

As above

https://doi.org/10.1371/journal.pone.0298425.t002
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Sample size

Power calculations have been based on co-primary outcomes of the proportion of patients

with infection in whom a pathogen is identified, and extent of neutrophil chemotaxis.

Power calculations were based on community acquired pneumonia (CAP) and urinary

tract infection, as two common acute presentations. In patients with CAP, a recent systematic

review of aetiology suggested an organism is identified by standard methods (sputum and

blood culture) in 40% of cases. This improved to 49.8% where viral PCR is also performed

[24]. In studies of severe pneumonia, metagenomic next-generation sequencing (mNGS)

improved microbiological yield from 45.8% to 80.4% [25]. Assuming a more conservative

improvement, with an odds ratio of 1.25, this would require a sample of 194 patients for a

power of 80%.

In urinary tract infection, a systematic review has found mNGS improves microbiological

diagnosis when urine is collected from 61.7% to 90.5% [26]. Again, at a conservative estimate

for effect with an OR of 1.25, this would require a sample of 108 patients to give a power of

80%.

Previous exploratory work within our lab has suggested neutrophils from older patients

with CAP have 62% reduction in chemotaxis compared to age matched controls, with a SD

0.079 for CAP and 0.135 for controls, and a resulting sample size of 8 CAP patients and 8 con-

trols. While this impact may be less notable among a cohort that includes younger adults, we

would still expect the sample sizes outlined above to be more than adequate.

Allowing for study withdrawal rates of 10% we will therefore look to recruit a total sample

of minimum 340 patients with infection, (230 with pneumonia, and 120 with UTI) and 100

age and co-morbidity matched controls without infection.

Sample collection

All participants will have blood taken. Other samples will be taken depending on the suspected

source of infection (see Table 3). Where samples are non-invasive (such as a spontaneous spu-

tum sample, urine sample, faecal sample, saliva sample, skin swab) or minimally invasive (a

blood test, a throat or nose swab), these will be taken as research investigations, and will not be

part of routine clinical care.

Where sample collection is invasive (bronchoalveolar lavage or cerebral spinal fluid), sam-

ples will only be collected as part of routine care. Here, research samples would only be col-

lected after clinical samples had been taken, with the agreement of the patient or personal/

professional consultee.

Table 3. Samples to be collected.

Suspected source of infection Sample name Proposed volume for collection

All Blood Up to 50 mL

Respiratory Sputum Up to 300 mg

Saliva Up to 5 ml

Bronchoalveolar lavage fluid Up to 60 ml

Tracheal aspirates via endotracheal tube Up to 30 ml

Urinary tract Urine (MSU or CSU if catheterised patient). Up to 10 ml

Cerebral/ spinal Cerebrospinal fluid Up to 3 ml

Gastrointestinal Faeces Up to 300 mg

Skin/ mucous membrane Swab Sterile moist cotton bud tip

Skin Tape strip Sterile tape strips

https://doi.org/10.1371/journal.pone.0298425.t003
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Sample transport and storage. Samples will be transferred immediately after collection

by a member of the research team in sealed containers labelled with the patient’s study code

and date of collection. Samples will be stored in a coded format in alarmed -80˚C freezers. A

key, linking stored samples to clinical information will be maintained by the chief investigator,

protected by specific log ins and auditable in terms of access. Where the type of suspected

infection requires it, samples will be processed within a CL3 laboratory environment, in keep-

ing with UK law on sample processing.

Sample analysis

Pathogen and AMR identification through genetic analysis. It is important to note that

genetic studies will only be performed on the pathogens and not on the host cells. DNA

sequencing approaches may also incidentally sequence human DNA material present in sam-

ples. This will not be targeted by the methodology and sequences generated that map to the

human genome will be removed by filtering and permanently deleted.

Whole genome sequencing will be performed on infected samples by using the Oxford

Nanopore GridIon platform (Nanopore Technologies, Oxford, UK).
Species identification will be provided by the MicrobesNG’s analysis pipeline (MicrobesNG,

Birmingham UK), which uses Kraken [27]. Species will be further confirmed and sequence

type designations conferred using mlst (version 2.15; Seeman T, https://github.com/tseemann/

mlst) [28], and species-specific phylogenies, showing all members of the same species cluster-

ing together. We will assemble pathogen genomes using Trycycler [29] and annotate using

Prokka [30].

AMR genes will be detected using ABRicate (version 8.7) [31]; using the National Center

for Biotechnology Information (NCBI) AMRFinderPlus database [32]. Phylogenies will be ini-

tially reconstructed using Mashtree (version 2) [33], and visually inspected for clusters and

AMR genes of importance using Phandango [34]. Isolates of the same species and sequence

type or isolates appearing to cluster together on visual inspection of a phylogenetic tree will be

assessed using Snippy (v 4.3.6) [35] on standard settings, using annotated assemblies as refer-

ences to allow inference on SNP location and amino acid change.

Annotated assemblies of clustered isolates will be inspected in Artemis [36], and searches

performed using the Basic Local Alignment Search Tool (BLAST) on the National Center for

Biotechnology Information database [37] to elucidate the genes in which SNPs are observed.

Immune cell isolation. Whole blood will be processed using discontinuous Percoll den-

sity gradients as described previously [38]. This will result in separate layers of neutrophils,

monocytes and plasma. Monocyte-Derived-Macrophages (MDMs) will be generated from

monocytes after adherence, followed by culture in 2ng/ml GM-CSF for 12 days to generate

MDM as described previously [39]. Typically, isolation by this method will yield a neutrophil

population of>97% purity, >95% viability, and a monocyte population >95% purity, >95%

viability. Total yield of cells and baseline viability are anticipated to vary based on severity of

participant illness.

Plasma and serum samples will be collected from each participant, and aliqotedaliq into

pre-labelled 1mL tubes for storage at -80˚C. These samples will be used to assess soluble mark-

ers of inflammation by immunoassay, in pooled plasma experiments to induce dysfunction in

neutrophils from healthy controls. Peripheral blood mononuclear cells will be stored in liquid

nitrogen for further phenotypic analysis.

Immune cell function. Isolated neutrophils and MDMs generated from patient mono-

cytes will be used to characterise cellular phenotype and effector functions. Due to variable cell

yield form patient samples not all assays will be performed for each participant.
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The bioenergetics of the isolated neutrophils [40] and MDMs will be investigated by Sea-

horse XF analyser (Agilent Technologies, UK). Lysates of isolated and permeabilised immune

cells will be prepared and stored at -80˚C for use in PCR and Western Blot analysis.

Neutrophil and MDM phenotype and function will be assessed as appropriate to cell

type; Phenotype: flow cytometry; Migration: insall chamber and transwell assay [40]; Phago-

cytosis: labelled heat-inactivated Streptococcus pneumoniae, Haemophilus influenzae, and

Escherichia coli (opsonised and unopsonised) [38]; Reactive oxygen species: CellRox assay;

Neutrophil extracellular traps (NETosis): sytox green and Western blot, probing for citrulli-

nated Histone 3.

Transcriptomic and proteomic profiling. Total protein and RNA will be extracted from

neutrophils and MDMs by trizol extraction. RNA quality will be measured using the Agilent

2200 Tapestation (Agilent Technologies, UK). The polyA+ mRNA fractionation will be iso-

lated and cDNA libraries prepared using the QuantSeq 3‘mRNA-Seq Library Prep Kit (Lexo-

gen, Austria). Samples will then be subjected to 75bp, paired-end sequencing using Illumina

2500 sequencing machine (Illumina Inc. San Diego, Ca, USA). Paired end reads will be aligned

to the human reference genome (hg38) using STAR [41] and differential gene expression will

be determined using DESeq2 [42].

Proteomic analysis will be carried out using advanced Liquid chromatography–high resolu-

tion mass spectrometry (LC-HRMS) techniques to examine changes in host immune cell func-

tion compared to matched, non-infected controls. Differentially represented proteins will be

identified from the resulting HRMS data (fold change > 1.5 and< 0.66).

Data from both transcriptomics and proteomics analysis will be integrated for pathway analysis.

Data sharing of pathogens to UK-HAS. The UK Health Security Agency (UK-HSA) has

a programme to track AMR and changes to the genetic signals of pathogens (including bacte-

ria and viruses) known as MScape. The UK-HSA are asking laboratories performing genetic

studies on pathogens to share data of the pathogen only (with no clinical or demographic data

shared about the host). To contribute to this effort, we will send genetic codes of pathogens to

UK-HSA but will not share data about the participants with UK-HSA.

Data sharing of pathogens to patients and care teams. Throughout this study, results

from the novel, pathogen-genetics approach will be compared to the current gold standard

results from NHS laboratories. We will compare the microbes identified and the time taken to

identify the microbes using both the novel and gold standard approach. In applying novel

diagnostic techniques, it is possible that we will identify pathogens that were previously

unidentified by standard clinical care. The techniques used are not validated for clinical diag-

nostic testing or reporting and do not produce clinically actionable results.

All results will be discussed with the clinical microbiology team at University Hospitals Bir-

mingham NHS Foundation Trust and the microbiology team will decide whether further tests

are needed and communicate this to the direct care team. If clinically important organisms are

identified (eg HIV or viral hepatitis), the clinical team will perform current gold standard tests

to confirm the diagnosis and then initiate appropriate care.

If high consequence infectious diseases (HCID) as defined by UK-HSA are identified [43],

we will inform both the clinical care team and UK-HSA. Of note, the participant will be made

aware of this and consent to this approach as part of study participation.

Data management

Data collected will include demographics (including date of birth, weight, height, ethnicity,

and admission diagnosis), physiological indices (including heart rate, blood pressure, respira-

tory rate, temperature and oxygen saturations), results of relevant radiological investigations,
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microbiological investigations and haematological and biochemical measurements, collected

as part of routine clinical care.

To assess longer term outcomes including death, readmission to hospital or recurrent sus-

pected infections, shared primary and secondary care patient notes will be reviewed at 1

month, 3 months and 1 year.

Pseudonymised data from the study will be held on a bespoke database. The database will

be stored securely on a password-protected computer at the University of Birmingham, on

servers that are backed up daily.

Data generated as part of multiomic analysis will be uploaded in an appropriate database

(such as European Genome-phenome Archive) to allow controlled access.

Statistical analysis

Appropriate statistical analysis will be performed with R v4.2 (The R Foundation, Austria) and

GraphPad Prism V9.0 or later (Dotmatics, USA). Chi-squared test (for categorical data), inde-

pendent sample T-tests, or non-parametric equivalents will be used as appropriate, to test for

statistical significance of observed differences between groups. Odds ratios will be calculated,

and multiple regression analysis will assess the impact of patient demography, co-morbidities

or pathogen on patient outcomes.

Patient and public involvement

Patient and members of the public were involved in the study design and will support the

dissemination of results. Patients and their carers prioritised three areas of focus; faster

diagnostics to better target antibiotics, better tools to identify those at risk of deterioration

during infections, and new approaches to treat infection which harness the body’s immune

system.

Moving forward, study delivery will include the development of a patient/public involve-

ment group with demographics that reflects the diversity of Birmingham. Through workshops,

we will explore perceptions of rapid, genomics informed treatment, and co-create lay

resources explaining antibiotic stewardship using rapid diagnostics. We will assess the impact

of our patient and public involvement using the Public Involvement Impact Assessment

Framework (PiiAF) [44].
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