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Lightweight SOFC stacks are currently being developed especially 

for automotive applications such as APU and for portable devices. 

Within the EU funded project MMLCR=SOFC the Jülich 

lightweight so-called CS-design was improved concerning better 

suitability for glass sealing, reduced manufacturing effort and 

increased power. Based on modelling in combination with 

manufacturing experience, test results, and post-test analysis 

substantial changes of the previous CS-design were made. The 

manufacturing of single parts, particularly due to the improved 

design of sheet metal interconnects, as well as the assembling 

processes are suitable for low-cost mass manufacturing. The novel 

decal concept of glass-ceramic sealant screen printed on foil in 

order to produce green tapes is used for joining the stack layers 

offering an enormous potential for cost savings in industrial 

assembly process. First stack tests with the new CS
V
–design 

showed a comparable electrochemical performance to the previous 

CS
IV

 design having at the same time a better thermo-mechanical 

behavior. 

 

 

Introduction 

 

Lightweight SOFC stacks are currently being developed for stationary applications such 

as residential CHP units, for automotive applications such as APU and for portable 

devices. They allow electrical efficiencies of up to 60%, high fuel flexibility, being able 

to operate on syngas from Diesel reforming as well as on LPG, methane or hydrogen, and 

they are promising low costs due to greatly reduced amounts of steel interconnect 

material and cheap manufacturing processes. 

 

The requirements for thermal cycling in lightweight stacks are high, since start-up 

times for vehicles of most kinds (road and rail vehicles, even aircraft and ships) are short 

compared to those for stationary power generation. The same applies to portable devices 

which are expected to be operational within very short time intervals. But also for 

stationary applications rapid start-up will be an advantage since the SOFC system can be 



operated more closely in accordance with the electrical and thermal loads of the customer. 

It is therefore essential that lightweight stacks have excellent thermo-mechanical 

properties. This requires a specific stack design that compensates mechanical stresses 

from temperature gradients in space and time. Simultaneously the cost pressure on 

mobile and portable applications is high. It is therefore important to manufacture stacks 

to high quality standards and implement as many automated precision assembly 

processes as possible in an approach of parallel improvement of quality and lowering of 

manufacturing cost. 

 

 

Development of light weight design SOFC 

 

First Designs 

 

The light weight design from JUELICH, called CS design, had to be improved to 

become more stable under thermomechanical stress, taking into account results from the 

former tests [1]. Tests with the first stacks of the next generation CS
II
 design revealed that 

the contact area on the cathode side is quite small because of the sinoidal shaped channel 

structure, which is the optimum for the forming of plates. Tests using hydroforming 

instead of classical stamping showed that it is possible to manufacture channel structures 

with a more flat surface. This was implemented in the CS
IV

 design (see Fig. 1).  

 

 
Figure 1.  Improvements from Design CS

II
 to CS

IV
: Improved contact with flat channel 

structure in CS
IV

 design.  

 

 

To improve the mechanical robustness several swages (L and U-seam) were 

implemented in CS
III

 design. This should make the cassette stiffer and reduce the stress in 

the glass sealing. Assembly trials and first stack tests revealed that this design was among 

others much too sensitive to manufacturing tolerances. Therefore only the U-seam was 

implemented into the CS
IV

 design (see Fig. 2), which promised higher robustness without 

showing all the problems of CS
III

. 

 



 
Figure 2.  Design CS

IV
 with swage (or U-seam), to improve the mechanical robustness 

during thermal cycling. 

 

 

This CS
IV

 design was used for first stacks to be manufactured within the current EC-

project and Borit was manufacturing tools and parts based on the design shown in Figures 

3 and 4. 

 

 
Figure 3.  Design CS

IV
: Cassette after laser welding– tray side. 

 

 

These stacks showed good electrical performance but the thermo-mechanical 

behavior was still not good enough. Also during manufacturing several problems 

occurred because of the small distances between the various manifold openings and 

between cell sealing area and manifold. A feature implemented in design CSIV which 

was thought to improve the mechanical robustness – the U-seam as shown in Figure 2 - 

created a lot of problems during manufacturing and assembly, because the allowed 

tolerances to avoid short circuit are very small. Therefore FEM calculations were done 

which revealed that there is no improvement of the mechanical robustness by this U-seam. 

 



 
Figure 4.  Design CS

IV
: Cassette – frame side. 

 

 

Improved Design 

 

Based on these experiences a further improved design was envisaged, mainly addressing 

the thermomechanical robustness and ease of assembly. Based on testing and modelling 

results [2, 3, 4, 5] with the JUELICH standard design for stationary applications (so-

called F-design) the increase of the sealing area, especially in the manifold array, and the 

distance between critical locations in the manifold area have been identified as important 

features. This was applied to the new cassette design, called CS
V
. While increasing the 

distance between the feedthroughs automatically the cell area has to be increased too. 

This results in an increase of the width of the cell from 140 to 180 mm which gives an 

additional 5 mm between the feedthroughs. An additional issue is the quite small distance 

from the air feedthroughs to the cell. In this area high temperature gradients create high 

deformation and so high thermomechanical stress [6]. Therefore the air feedthroughs are 

shifted towards the outer rim. To keep a reasonable ratio between total area and cell area 

also the length of the cell is increased from 79 to 100 mm. The drawing of the CS
V
 

cassette is shown in Fig. 5. 

 

 
Figure 5.  Draft drawing of cassette of design CS

V 
indicating the critical positions which 

have been enlarged. 



Based on this drawing the fluid-dynamic layout concerning in plane flow distribution 

and from plane to plane flow distribution was performed. To do this first of all the stack 

parameters had to be determined. 

 

The used operation parameters (for example for a truck APU) are: 

 Stack power: 3000 W 

 Current density cell: 0.5 A/cm² 

 Cell voltage: 0.8 V 

 

Based on a cell area of 137 cm², the number of cells per stack results to 55. The stack 

will be operated with a mixture of hydrogen and nitrogen of 1:1, which represents the gas 

coming from a diesel reforming process, and with inlet and outlet temperatures of 600 

respectively 800 °C. Based on this stack lay-out data, the gas flow parameters are: 

 Air flow per layer: 7.1 g/min (excess air factor = 4.8) 

 Fuel flow per layer: 0.92 g/min (fuel utilization uF = 70%) 

 

Having defined the flow parameters the fluid volume has to be designed. Based on 

the drawing in Fig. 5 first the cathode side was realized as shown in Fig. 6. The 

calculation of the pressure drop of a single air channel results to 9 mbar. The total 

pressure drop in the cassette, including internal flow distribution and manifold, results to 

28 mbar. 

 

 
Figure 6.  Design CS

V
: Fluid volume of the cathode side. 

 

 

Having determined the flow resistance of the single layers of the cathode side the 

calculation of the flow distribution to the single layers in a 55 layer stack was performed. 

First of all a simplification of the stack geometry has to be done to limit the mesh size 

and so the calculation time. The simplified model of a stack with 55 layers with the 

resulting pressure distribution with non-optimized geometry is shown in Fig. 7.  

 



 
Figure 7.  Design CS

V
: Simplified model of a stack with 55 layers (non-optimized). 

 

 

Using the manifold geometries of the first design (see Fig. 4) the flow to the various 

layers of the stack varies by +10% to -6% (see Fig. 8). By increasing the outlet manifold 

diameters by about 20% the distribution varies by +4% to -2% (see Fig. 8) which is 

below the set limit of ±5%. 

 

 
Figure 8.  Design CS

V
: Flow distribution of the cathode side of a stack with 55 layers. 

 

 

A comparable calculation war performed for the anode side. Because of the much 

lower mass flow and the lower gas density here the pressure drop in one layer results to 

only 2.5 mbar. Using again the manifold geometries of figure 4 the flow to the 55 layers 

of the stack varies by +19% to -9% (see Fig. 9). By increasing the outlet manifold 



diameters by about 30% the distribution is very much improved and varies now by +5% 

to -2% (see Fig. 9) which is below the set limit of ±5%.  

 

 
Figure 9.  Design CS

V
: Flow distribution of the anode side of a stack with 55 layers. 

 

The design CS
V
 generated from the above described calculations and simulations was 

further optimized under manufacturing aspects in several iteration steps with Borit’s 

Hydrogate
™

 forming process. 

 

The final cell and stack dimensions of the new CS
V
 design are given in the table 

below. 

 

 

 

 

Manufacturing 

 

The single repeating units (SRU’s) of the stack, the trays and the frames have been 

manufactured by Borit’s Hydrogate
™

 process, which is based on continuous 

hydroforming. Utilizing hydrostatic pressure, Hydrogate
™

 is able to produce challenging 

geometries with low residual stress resulting in very flat plates. As a single step process, 

Hydrogate
™

 offers repeatable quality, extreme flexibility, low tooling costs and high 

productivity [7]. Details of the process are shown in Figures 10, 11 and 12. 

 

TABLE I.  Final CS
V
 cell and stack dimensions. 

Part Dimension 

Cell dimensions 180 mm x 100 mm 

Cell area 180 cm² 

Cell thickness 380 µm ± 20µm 

Cathode dimensions 160 mm x 80 mm 

Cathode area 128 cm² 

Stack foot print 209 mm x 195 mm 



 
Figure 10.  Advantages of the Hydrogate

™
 process of Borit [7]. 

 

 

 
Figure 11.  Hydrogate

™
 Process Principle by Borit [7]. 

 

 

The manufacturing process is set-up suitable for mass production and cost 

effectiveness by minimizing manufacturing and handling processes. 

 

 
Figure 12.  Manufacturing process of SRU’s metal sheet parts, tray and frame. 

 

 

Crofer 22 H is used as material for the SRU’s with 0.3 mm thickness. The high-

chromium ferritic steel, which was specially designed for SOFC interconnect applications, 

was mainly optimized with respect to low oxidation rates, high electrical conductivity of 

the surface oxide scales, low Cr evaporation and suitable workability [8, 9]. These 

properties were obtained by defining very low concentrations for minor alloying 

additions such as silicon and aluminum commonly present in the steel. The material 

showed excellent behavior during the hydroforming process. Non visual defects i.e. 

cracks have been observed so far. 

 



 
Figure 13.  SRU part (tray) in CS

V
 design manufactured by Borit. 

 

 

Assembly and Sealing 

 

With the aim of developing processes suitable for industrial production, 

Forschungszentrum Jülich is working on two application processes of the glass ceramic 

sealant besides the standard application directly to the stack parts by a dispenser. A first 

alternative application process is screen printing of the glass ceramic sealant directly to 

the stack parts. A second method, developed by Forschungszentrum Jülich, is a type of 

net-shape gasket where the glass-ceramic sealant is applied and dried on a foil (Fig. 14). 

The dried sealant is removed from the foil and placed on the stack parts. Its essential 

advantages are first the decoupling of the sealant manufacturing from stack 

manufacturing and secondly the sealant on foil is storable. Thus the concept of the sealant 

on foil provides an enormous manufacturing flexibility [9, 10]. 

 

 
Figure 14.  Left side: Glass ceramic sealant on foil. Right side: sealant on cassette. 

 

 

Composites prepared from a glass matrix based on the BaO-CaO-SiO2 system and 

YSZ fibers as a filler additive [12] are used as sealing material.  

While the first development steps were mainly focused on adapting thermal 

expansion and chemical stability, a sufficient mechanical strength of the sealants was 

shown to be the major critical task in the recent years [5]. The temperature gradients 



occurring during stack operation can be critical for the joints, which need to withstand the 

resulting thermal stresses. The composite material with YSZ fibers showed the best 

results with respect to mechanical strength [13, 14]. A high reproducibility of gas-tight 

sealings was demonstrated over the past year in several SOFC stacks using the glass-

ceramic composite sealant H with 13 wt.-% YSZ fibers in combination with the 

interconnect materials. 

So far, in all CS
V
 stacks sealants on foil have been used for joining the cassettes. The 

three stacks tested until now showed a very good tightness during and after operation (see 

the test results below). 

 

 

Testing of CS
V
 stacks 

 

The functionalities of the optimized components and design variations were tested first 

with a two-layer short stack (stack number: CS
V
02-01). The joining process was carried 

out in a furnace at 850 °C, with a clamping weight of 75 kg. After cell reduction at 

800 °C by increasing the hydrogen concentration stepwise, the stack performance was 

characterized by voltage-current (U-j curve) measurements at furnace temperatures of 

700 °C, 750 °C and 800 °C. No stationary operation was carried out with stack CS
V
02-01 

due to its relatively poor performance. The stack was cooled down after characterization 

for post-test analysis, where it turned out that the screen printed glass sealant tapes were 

too thick which resulted in a bad electrical contact between cell and interconnect. All 

other components worked properly. Therefore, the second CS
V
 stack was assembled 

directly with five layers (stack number: CS
V
05-01), with optimized glass thickness. 

Joining process and characterization procedure were the same as with CS
V
02-01.  

 

The open circuit voltages (OCVs) measured under dry hydrogen can to a certain 

extent indicate the gas tightness of the stack. The OCVs of both CS
V
 stacks after 

reduction are shown in Figure 15. The OCVs were measured at 800 °C with a mixture of 

H2 and Ar (H2: Ar=1:1). The worst cell voltage was 1.181 V, which still corresponds to a 

steam content of only 0.28%. The good gas tightness was also confirmed by a leakage 

test at room temperature after the stack was dismounted from the test bench. 

 

 
Figure 15.  OCVs of both CS

V
 stacks, measured at 800 °C with dry gas mixture of H2 and 

Ar (H2: Ar=1:1). 



 

 

The U-j curves of stack CS
V
05-01 measured with 10% humidified gas mixture (H2: 

Ar=1:1) at three temperatures are shown in Figure 16. The average area specific 

resistances at each temperature were calculated with the cell voltages at 0.5 Acm
-2

, and 

the Arrhenius plots of the two CS
V
 stacks were compared with one of the best CS

IV
 

stacks (CS
IV

04-05), as shown in Figure 17. After optimization in thickness of the screen 

printed glass tapes, the second CS
V
 stack (CS

V
05-01) showed comparable or slightly 

better performance than CS
IV

04-05, indicating that the newly developed CS
V
–design 

stacks with enlarged cassette and active cell areas can be well produced and assembled 

under the current manufacturing standard. 

 

 
Figure 16.  U-j curves of stack CS

V
05-01, measured at furnace temperatures of 800 °C, 

750 °C and 700 °C with 10% humidified gas mixture (H2: Ar=1:1). 

 

 

 
Figure 17. Arrhenius plots of the two CS

V
 stacks and one CS

IV
 stack 

 



 

Further tests will be focused on production reproducibility, thermomechanical 

stability and long-term stability, also with stacks with an increased number of layers. 

 

 

Summary and Outlook 

 

The new light weight SOFC design CS
V
 addresses an improved design solution. It is 

designed to reduce the high thermical gradients in cassettes and to optimize the fluid 

dynamic in the cassettes and the whole stack. Furthermore the design is improved 

regarding the manufacturing and the assembly processes. At the same time the 

performance of the new CS
V
 design has shown comparable or even slightly better 

performance than the previous design, indicating that the newly developed design with 

enlarged cassette and active cell area can be well produced and assembled under the 

current manufacturing standards. Summarizing, the new developed CS
V
 design is able to 

meet the challenges regarding the requirements for (mechanical) robustness and the 

manufacturing costs of light weight SOFCs. 

 

The next steps will be tests to prove the thermomechanical robustness by extensive 

thermal cycling and tests to prove long term stability. Furthermore bigger stacks will be 

build up with 30 and 60 layers. The design will be further optimized. Ideas for further 

improvements are already available. One improvement will be the replacement of the 

inlays, currently made by several parts by only one, reducing further manufacturing costs 

and material consumption. 
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