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Thermal Integration of SOFC and Plate Heat Exchanger Desorber 
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b School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK 

 
 
 

A Plate Heat Exchanger (PHE) desorber is thermally integrated 
with an SOFC stack via a specially designed tube in tube heat 
exchanger with internal fins in which thermal oil is heated to the 
required desorber temperature and then serves as the coupling fluid 
in the PHE desorber. A modelling approach has been adopted 
where the PHE desorber is solved for heat and mass transfer using 
MATLAB & EES and the tube in tube heat exchanger with 
internal fins has been modelled and optimized using COMSOL 
multiphysics. The results show that the PHE desorber is able to 
produce the required quantity of refrigerant needed for a 1 kW 
cooling load. The use of PHEs as desorbers not only gives a high 
heat transfer surface area but also leads to considerable reduction 
in desorber volume when compared to conventional falling film 
desorbers. 
 
 

Introduction 
 
SOFCs are a potential candidate for use as Auxiliary Power Units (APU’s) on board 
heavy duty trucks. Heat from the SOFC exhaust is generally used either for cabin heating 
or for recuperative heat exchanger and even after that there is still a considerable amount 
of high quality heat available. Not using the heat from an SOFC stack is tantamount to 
using only half the available useful energy from the fuel. 
 
The ongoing research work focusses on the design and development of a compact Vapour 
Absorption Refrigeration System (VARS) unit driven by heat from an SOFC stack for a 
refrigerated truck application. A thermally driven compact refrigeration unit offers the 
following advantages over an electrically driven refrigeration unit: 
 

i) The refrigeration unit is decoupled from the main diesel engine which in turn 
reduces the load on the main diesel engine. Considerable diesel savings can be 
achieved when compared to the conventional case. 

ii) Ensures quieter operation of the refrigeration unit thereby removing any 
restrictions on truck delivery times which in turn means trucks could make 
deliveries at any time of the day. 

iii) Since the heat from the SOFC is used, the electricity generated is available for 
other purposes. This enables design of hybrid configurations for refrigerated 
trucks.  

iv) The refrigeration unit is being driven by free thermal energy which would 
otherwise be dissipated to the environment. 



 
 
In a 
repla
syste
very
PHE
can 
 
With
integ
to c
App
and 
 
 

 
     T
in F
 
 

 
The 
exch
temp
tran
solu

VARS, the
acement fo
em. Since t

y compact sy
Es are very 
be packaged

hin the bro
gration of a
ater to a 1 

propriate de
smaller coo

The architec
igure 1. 

Figure 1: S

hot cathod
hanger with
perature. Th
sfers its he

ution and ge

e desorber a
or the electr
the intended
ystem in ord
compact he
d in a small

oader fram
a PHE desor
kW cooling
sign maps h

oling loads. 

cture for the

System arch

de exhaust 
h internal fi
he hot ther

eat to the N
eneration of

and the abso
rically driv
d applicatio
der for the V
eat exchang
l volume and

mework, thi
rber with an
g load and 
have been d

System d

ermal integra

hitecture for

from the S
fins where t
rmal oil is
NH3-H2O so
f vapour an

orber are the
en compres

on is for tru
VARS to co
gers with hi
d have been

s report pr
n SOFC stac
the perform
drawn base

design & ar

ation of an 

r thermal int

SOFC stack
the thermal
then passe

olution. Thi
nd weak solu

e most cruci
ssor of the 
ucks, it is ab
ompete with
igh heat tran
n proposed f

resents resu
ck. The who

mance of the
d on the re

rchitecture

SOFC stack

tegration of 

is passed 
 oil is heat

ed through 
is results in
ution at the

ial compone
VC (Vapo

bsolutely es
h the conven
nsfer surfac
for use as de

ults obtaine
ole system h
e desorber i
esults obtain

k and PHE d

f SOFC & PH

through a t
ted to the r
the PHE d

n flow boil
e outlet of t

ents as they 
our Compre
ssential to h
ntional VC s
ce area and 
esorbers in V

ed from th
has been des
is then eval
ned, to suit 

desorber is s

HE desorbe

tube in tub
required de
desorber wh
ling of NH
the PHE de

act as 
ession) 
have a 
system.  
hence 

VARS.  

hermal 
signed 
luated. 
larger 

shown 

 
er 

e heat 
esorber 
here it 

H3-H2O 
esorber 



which are then separated in a vapour separator. The generated vapour at high pressure is 
then passed on to the condenser (not shown in Figure 1). 
 
 
SOFC cathode exhaust flow rate 
 
     The cathode exhaust flow rate from an SOFC stack is dependent on the fuel utilization 
factor. Higher fuel utilization factors will lead to lower cathode exhaust flow rates and 
vice versa (1). The variation of cathode exhaust flow rate with fuel utilization factor from 
a 1 kW & 5 kW SOFC stack is shown in Figure 2. This data is important for modelling 
the tube in tube heat exchanger with fins. 
 
 

 
Figure 2: Variation of cathode exhaust flow rate with fuel utilization factor 

. 
 
 

Modelling & Optimization of tube in tube heat exchanger 
 
     The tube in tube heat exchanger plays a crucial part in the whole system. The 
performance of this heat exchanger during steady state operation is critical in ensuring 
the thermal oil gets heated to the required temperature needed at the desorber. After 
carrying out optimization studies, the final geometrical dimensions for the heat exchanger 
were fixed and steady state simulations performed to check the heating of the thermal oil 
in the heat exchanger.  
 
 
Physics employed & governing equations 
 
     COMSOL multi-physics was employed to study the performance of the heat 
exchanger. The different physics employed in various domains of the geometry and the 
corresponding equations are as follows: 
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Heat transfer in solids – Stainless steel tube 
Heat transfer in fluids – Thermal oil & Air 
Laminar flow   – Thermal oil & Air 
 
Air is modelled as compressible flow and oil as incompressible flow.  
 
Energy Equation 
 

 ρC u. T 	 . k T Q                                                            [1]                   
 
Heat transfer in fluids 
 

ρC u. T 	 . k T Q 	Q 	W                                            [2] 
 
Navier Stokes Equation for compressible flow 
 

ρ u. u 	 . pl 	μ u u μ . u l F                                  [3] 

 
Navier stokes equation for incompressible flow 
 

 ρ u. u 	 . pl 	μ u u F                                  [4] 
 
Continuity Equation                          
 

. ρu 0                                                              [5] 
 
 
Where,  
ρ = density (kg/m3),  
C  = specific heat capacity (J/kg K),  
T = temperature (1), u = velocity of the respective fluid (m/s), 
p = pressure (1),  
μ = dynamic viscosity of the fluid (Pa.s) 
 
It is desirable to use a thermal oil that has got a higher degradation temperature because 
constant heating and cooling of the oil will cause it to degrade. The thermal oil used for 
modelling is Paratherm HR which has got a higher degradation tolerance of around 644 
K. The properties of Paratherm HR can be found from (2) and were fed as temperature 
dependent equations in COMSOL multi-physics. 
 
 
Geometry of the heat exchanger 
 
     The optimized geometry of the heat exchanger is shown in Figure 3 & 4 respectively. 
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     The equations employed for each segment, to determine the temperature distribution 
along the plate are given in [6] to [8] 
 

Q m , ∗ 	C , ∗ T1 T2                                                [6] 
 

Q m , ∗ 	C , ∗ T4 T3                                           [7] 
 

Q U ∗ A ∗ LMTD                                                      [8] 
 

The overall heat transfer coefficient for each segment is calculated from Equation [9] 
 

                                                               [9] 

 
Where, 
 
Q  = Heat transferred per segment (1),  
m , = mass flow rate of oil in the channel,  
m ,  = mass flow rate of solution in the channel,  
C ,  = specific heat capacity of oil (J/kg K),  
C ,  = specific heat capacity of solution (J/kg K),  
A  = Heat transfer area of each segment (m2), 
 
For the thermal oil, only the single phase heat transfer coefficient was used whereas for 
the NH3-H2O solution both single phase and two phase heat transfer coefficient was used, 
depending on when the flow changed to two phase. 
 

h , 	 Nu ∗ 	k /D                                                          [10] 
 
Where, 
 
i = thermal oil or NH3-H2O solution 
  
h ,  = single phase heat transfer coefficient (W/m2K),  
Nu  = Local Nusselt number,  
k  = thermal conductivity of fluid (W/m2K), 
D  = hydraulic diameter of channel (1) 
 
There are numerous correlations available in literature for calculating the heat transfer 
coefficient in a plate heat exchanger however the most widely suggested correlation is 
that of Muley & Manglik (3) and this is used in the present modelling studies. 
 

Nu 0.44 ∗
.
∗ 	Re . ∗ 	Pr ∗ 	

.
                        [11] 

 
The above equation is valid for 30o  β  60o and 30  Re  400 
 



Nu 0.2668 0.006967 ∗ 	β 7.244 ∗	10 ∗ 	β ∗ 20.7803 50.9372 ∗ 	ϕ

41.1585 ∗ 	ϕ 10.1507 ∗	ϕ ∗	Re ∗ 	Pr 	∗ 	
.

                            [12] 

 
The exponent of Re, p is given by 
 

p 0.728 0.0543	 sin
∗	 ∗	

3.7 	                                      [13] 

 
The above equation is valid for 30o  β  60o and Re  1000 
 
In equations [11] and [12], the different variables mentioned are as follows: 
 
β = corrugation angle of the plate wrt vertical, 
μ = temperature dependent dynamic viscosity of the fluid (Pa.s),  
μ  = temperature dependent dynamic viscosity of the fluid at the wall (Pa.s),  
ϕ = Area enlargement factor, which takes into account the amplitude of the corrugation 
and the pitch of corrugation. 
 
For the two phase heat transfer coefficient, the correlation suggested by Taboas et al (4) 
is used. This correlation is used because it was arrived at after relating it with 
experiments carried out on NH3-H2O desorption in PHE by the same research group. 
 

h 5 ∗ Bo . ∗ 	h                                                          [14] 
 
Bo is the boiling number which is incorporated to take care of two phase flow and is 
given by 
 

Bo q	/	 m ∗	H 	                                                        [15] 
 
Where, 
 
q = heat flux (W/m2),  m  = solution mass flux (kg/m2s), Hfg = enthalpy of 
vapourization (J/kg) 
                                                                      
The above relations for Nusselt number ensure that the fluid flow is coupled to the 
geometric dimensions of the plate heat exchanger. 
 
For mass flow & vapour distribution: 
 
Once the temperature profile of both the fluids along the plate is calculated the mass flow 
rate of the weak solution along with the vapour can be calculated. The equations 
employed are as follows: 
  

m , 	m , 	m , 	m ,                          [16] 
 

m , ∗ χ , 	m , ∗ χ , 	m , ∗ χ , 	m , ∗ χ ,                              
[17] 



Where, 
 
m ,  =  mass flow rate of the solution into the segment (kg/s) 
m ,  =  mass flow rate of the solution from the segment (kg/s) 
m ,  =  mass flow rate of vapour into the segment (kg/s) 
m ,  =  mass flow rate of vapour out of the segment (kg/s) 
χ ,  =  NH3 mass fraction of solution into the segment  
χ ,  =  NH3 mass fraction of solution from the segment  
χ ,  =  NH3 mass fraction of vapour into the segment 
χ ,  = NH3 mass fraction of vapour from the segment 
 
 
Initial PHE geometry 
 
Since only four research groups have worked on the experimental aspects of PHE 
desorber (5-8), the geometry from one of the groups (7) is selected for initial modelling. 
The dimensions of the selected geometry are given in Table II. 
 
 
Table II: Dimensions of PHE desorber used in modelling 

Parameters Dimension 
 

Height of plate 519 mm 
Width of plate 175 mm 

Thickness of plate 0.4 mm 
Hydraulic diameter 3.9 mm 
Corrugation type Chevron 
Corrugation angle 58.5o from vertical 

Amplitude of corrugation  2.4 mm 
Pitch of corrugation 9.85 mm 

Surface area of plate (H x W) 0.091 m2 
Number of plates 20 

 
 

Results & Discussion  
 

Heating of thermal oil in heat exchanger 
 
     Steady state simulations in the heat exchanger revealed that the thermal oil gets heated 
by 32 K in one pass through the heat exchanger. This temperature rise is sufficient 
enough because this is precisely the amount of temperature drop that the oil goes through 
in the PHE desorber as will be discussed in the next section. 
 
Figure 7 shows the meshed geometry of the heat exchanger. As can be seen the meshing 
is quite dense around the critical areas (air flow path & oil flow path) and hence gives 
accurate results. Figure 8 shows a graphical representation of the heating of the thermal 
oil in the heat exchanger and Figure 9 shows the variation of average outlet temperature 
of the thermal oil with mass flow rate of thermal oil. 



 

 
Figure 7: Meshed geometry of the tube in tube heat exchanger 

 
 
 

 
Figure 8: Graphical representation of heating of thermal oil & fluid flow 

 



 
Figure 9: Variation of average outlet temperature of thermal oil with mass flow rate  

 
The main idea is to use a simple heat exchanger so as not to make the system complicated 
but at the same time have the functionality and performance required of it. Adding fins to 
on the inside of the heat exchanger improves the heat transfer. 
 
 
Mass flow rate & quality of vapour from PHE desorber 
 
     The temperature variation along the height of the plate is shown in Figure 10. The 
NH3-H2O solution enters the PHE desorber at a temperature of 110oC and reaches the 
boiling point within a short distance (as indicated in the Figure 10). This is the point 
where the solution reaches bubble point temperature and the first vapour bubble starts to 
form. Hence till this point, the heat transfer from the thermal oil to the solution is 
categorized as sensible heat transfer and beyond this point it is categorized as latent heat 
transfer. As seen from Figure 10, the thermal oil loses about 40 K when transferring heat 
to the NH3-H2O solution. 
 
Figures 11 & 12 show the heat flux and heat transfer coefficient variation along the 
height of the plate. The overall heat transfer coefficient is dominated by the heat transfer 
coefficient of the thermal oil. 
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Figure 10: Temperature profile along height of plate 

 

 
Figure 11: Heat flux profile along the height of the plate 
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Figure 12: Heat transfer coefficient along height of plate  

 
Figures 13 & 14 show the concentration and mass flow rate from one of the channels in 
the PHE desorber. The amount of vapour generated from each channel is about 0.3 g/s, 
leading to a total refrigerant production of 2.7 g/s from the PHE desorber of dimensions 
given in Table II. The amount of vapour needed for a 1 kW cooling load is about 1 g/s as 
found from the ‘0D’ model performed on the VARS [Ref, own modelling studies]. Hence 
the PHE desorber is able to produce sufficient quantity of vapour. 
 
 

 
Figure 13: Concentration profile of vapour and solution along the height of the plate 
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Figure 14: Mass flow rate of weak solution and vapour along height of plate 

 
 
Sensitivity analysis to assess PHE desorber performance 
 
     There are a number of factors that could affect the performance of the PHE desorber 
and it is vital to capture and study these effects. Performing a sensitivity analysis helps in 
optimizing the dimensions of the PHE desorber. Table III categorizes the effect that 
different parameters have on the mass flow rate and NH3 concentration generated from a 
PHE desorber. 
  
Table III: Effect of different parameters on PHE desorber performance  

 Strong effect Medium effect No effect 
    

Number of plates    
Height of plate    
Width of plate    

Inlet temperature of oil    
Corrugation angle of plate    

Pitch of corrugation    
Mass flow rate of strong 

solution 
   

Mass flow rate of thermal oil    
 
As seen from Table III, the number of plates used in the heat exchanger has a profound 
effect on the mass flow rate and NH3 concentration besides the operating parameters of 
the respective fluids.. The effect is shown in Figure 15. The optimum number of plates is 
around 10 after which there is no drastic effect both on vapour generation and NH3 

concentration. 
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Figure 15: Variation of total mass flow rate and NH3 mass fraction of vapour with 

number of plates 
 
 

Sizing of plate heat exchanger  
 

     Based on the above results the plate heat exchanger can be sized to meet the required 
cooling load of 1 kW. The dimensions of the PHE desorber to suit a 1 kW cooling load 
are outlined in Table IV. 
 
 
Table IV: Dimension of PHE desorber to suit 1 kW cooling load 

Number of plates 10 
Height of plate 300 mm 
Width of plate 50mm 

Corrugation angle 60o 
Pitch of corrugation 5 mm 

 
The other dimensions of the PHE can be the same as the one mentioned in Table II.  

 
 

Design maps for different cooling loads 
 

     Figures 16, 17 & 18 show the design maps for using SOFC stacks on board 
refrigerated trucks and the corresponding mass flow rate of thermal oil needed at the PHE 
desorber. 
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