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The vibronic coupling Hamiltonian is a standard model used to describe the potential energy surfaces of
systems in which non-adiabatic coupling is a key feature. This includes Jahn–Teller and Renner–Teller
systems. The model approximates diabatic potential energy functions as polynomials expanded about
a point of high symmetry. One must ensure the model Hamiltonian belongs to the totally symmetric irre-
ducible representation of this point group. Here, a simple approach is presented to generate functions
that form a basis for totally symmetric irreducible representations of non-Abelian groups and apply it
to D1h (2D) and O (3D). For the O group, the use of a well known basis-generating operator is also
required. The functions generated for D1h are then used to construct a ten state, four coordinate model
of acetylene. The calculated absorption spectrum is compared to the experimental spectrum to serve as a
validation of the approach.
Crown Copyright � 2015 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction property of having slowly varying potential energy [14], thereby
For decades, vibronic coupling models [1–4] have served as
bridges connecting nuclear dynamics studies with the static stud-
ies of electronic structure calculations [5]. The vibronic coupling
model is a simple polynomial expansion of diabatic potential
energy surfaces and couplings. The expansion coefficients are cho-
sen so that the eigenvalues of the potential operator map on to the
adiabatic potential surfaces. This diabatisation by ansatz circum-
vents many of the problems of describing non-adiabatic systems.
It is also the inspiration for a diabatisation scheme that is used in
modern, direct-dynamic methods that include non-adiabatic
effects [6]. For a model Hamiltonian to correctly approximate the
eigenvectors of the true Hamiltonian it has to span the totally sym-
metric irreducible representation (IrRep) of the point groups the
molecule belongs to, at the appropriate symmetric geometries
[7]. In recent times, many articles have demonstrated the advan-
tages of using symmetry when constructing analytic model poten-
tials [8–12], most often in the context of permutation-inversion
groups [13].

Vibronic coupling Hamiltonians predominantly use a Taylor
expansion of the nuclear coordinates that suitably represent the
(quasi)-diabatic electronic potential operator elements around
the point of high symmetry. Quasi-diabatic states conserve the
requiring few, low-order polynomial terms to converge its Taylor
series in some pertinent region of interest.

Generally, electronic excited states at point-symmetric nuclear
configurations will form a bases for an IrRep of the point group the
molecule belongs to. By choosing coordinates that also form a basis
for IrReps, symmetry allows us to determine whether a given
monomial term is allowed in some element or whether monomials
across different elements share coefficients. A textbook example
are the linear terms in the E� e Jahn–Teller diabatic model
describing E degenerate states with a branching space along e
degenerate modes. The symmetry of this system dictates that the
linear coupling and gradient should share the same coefficient, cor-
rectly resulting in the well-known ‘‘mexican hat” adiabatic poten-
tial. When constructing such models, one must always ensure such
relationships are maintained, since these ensure the symmetry of
the system is kept. It is therefore most convenient to work with
a symmetry-adapted basis of matrices which obey the desired
symmetry considerations. This is especially relevant in the case
of non-Abelian groups, since it is there we find situations like the
one just described.

In this paper, we present approaches for generating such dia-
batic matrices that form bases for totally symmetric IrReps, start-
ing from functions representing electronic states and nuclear
coordinates which transform as known IrReps of the group for
which the matrix representations for the operations are known.
We generate matrices for the O and D1h point groups and provide
all the polynomial expansions representing nuclear coordinates
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http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.chemphys.2015.07.034
http://creativecommons.org/licenses/by/4.0/
mailto:g.a.worth@bham.ac.uk
http://www.stchem.bham.ac.uk/worthgrp/
http://dx.doi.org/10.1016/j.chemphys.2015.07.034
http://www.sciencedirect.com/science/journal/03010104
http://www.elsevier.com/locate/chemphys


126 C. Robertson, G.A. Worth / Chemical Physics 460 (2015) 125–134
(up to fourth and sixth order respectively) and states for many of
the IrReps of each group.

Molecules that belong to either of these groups will exhibit
Jahn–Teller and Renner–Teller effects respectively and are archety-
pal examples of the breakdown of the Born–Oppenheimer approx-
imation. The Jahn–Teller (JT) effect occurs when a molecule in a
high-symmetry configuration has degenerate electronic states.
Vibronic coupling between these states along degenerate nuclear
coordinates form a conical intersection at the high symmetry
point, stabilising the system away from it and thus lowering the
symmetry of the system. The Renner–Teller (RT) effect is a special
case that happens in linear molecules. Due to symmetry consider-
ations a glancing intersection rather than a conical intersection is
formed [4].

Cederbaum et al. were the first to study the form of vibronic
Hamiltonian of linear systems for interacting degenerate and
non-degenerate electronic states to different orders and their
effects on resulting spectra [1,15]. To generate the D1h Hamilto-
nian, we followed a similar approach to Viel and Eisfeld [16],
who generated matrices up to sixth order for E� e Jahn–Teller
Hamiltonians. They used them to fit to the 2E0 anharmonic surfaces
along twofold e0 stretches of NO3 obtained from ab initio MR-SDCI
calculations. They compared results of several diabatic potential
models, one of which includes extra ad hoc functions that do not
obey the C3 requirements. They warn over the use of such ad hoc
functions, showing they can result in wavefunctions with different
expectation values, population transfer and autocorrelation values
to those models obeying the C3 requirements. That work was fol-
lowed by the generation of bases properly describing pseudo
Jahn–Teller (pJT) coupling between E degenerate states to nonde-
generate A states [11]. They tested them on the pJT coupling
between the ground state 2A00

2 and exited 2E0 states along the two-
fold e bending mode surfaces of cation NH3

+ obtained from ab initio
MRCI calculations. A large decrease in fitting error was obtained as
higher order terms were included.

For the O group, although the form of the 3D Jahn–Teller Hamil-
tonian had been known since the first half of last century [17] and
later for all IrReps of the group [18], it has been only recently that
Opalka and Domcke used invariance theory to generate higher-
order expansions as bases for the E and T2 IrReps [12,19]. Here
we used a basis generating operator, devised by Wigner, Lowdin
and Shapiro, amongst others [20] to generate Hamiltonians for
degenerate states and coordinates of A1; E and T1 symmetry. This
is a well known method for generating symmetry-adapted func-
tions and only briefly presented here.

1.1. Basis generating operator

A given function from a set of nv orthonormal basis functions
f v1 ; f

v
2 , f

v
3 ; . . . ; f

v
nv spanning the space of IrRep v in a group with k

classes, under a given transformation operation OR corresponding
to the symmetry operator R of the group, must satisfy:

ORf
v
q ¼

Xnv
p¼1

Dv
pqðRÞf vp q ¼ 1;2; . . .nv ; v ¼ 1;2; . . . k ð1Þ

where Dv
pqðRÞ is the matrix representation of the transformation

operation operator OR on IrRep v. Operating further on the above
expression by the sum of all operations OR of some arbitrary IrRep
l of the group

P
RD

l
ij ðRÞ we get:

X
R

Dl
ij ðRÞ � ORf

v
q ¼

Xnv
p¼1

X
R

Dl
ij ðRÞ � Dv

pqðRÞf vp

¼ ðg=nlÞdvldjqf vi ð2Þ
owing to the great orthogonality theorem:X
R

Dl
ij ðRÞDv

pqðRÞ� ¼ ðg=nlÞdvldipdjq ð3Þ

where g is the order of the group. In other words, operating withP
RD

l
ij ðRÞ � OR on a basis function f vq will generate another basis func-

tion f vi of the same IrRep or else annihilate the function (if v – l).
A second operator can be constructed by choosing i ¼ j and

summing over j:

Xnl
i

X
R

Dl
ii ðRÞ � OR ¼

X
R

vlðRÞ � OR ¼ Pl ð4Þ

This operator Pl has the property of annihilating any function
that does not belong to the lth IrRep space, or else project out
any function which does. With both these operators it is therefore
possible, starting with an arbitrary function within the lth space
(called a generator of expansion), to generate the complete set of
orthonormal functions belonging to this IrRep. To generate the
totally symmetric IrReps of the group, it is therefore only necessary
to utilise the latter operator.

To generate all polynomials described here we used the open-
source mathematics software SAGE [21].

2. Generating symmetry-adapted basis

2.1. D1h Renner–Teller symmetry-adapted basis

There are an infinite number of possible gerade/ungerade En

IrReps indexed by n where a ¼ p
n ;a being the angle of the Ca rota-

tion required to interchange any two real basis functions forming a
twofold degenerate representation of this group.

The dominant contribution of the first few singlet excited states
of organic molecules tend to be from functions with low orbital
angular momentum. For linear organic molecules we therefore
expect that the low singlet states, being formed from p and r func-
tions built of l ¼ 2p functions would result in electronic states
forming a basis for low n representations. Similarly, it is rare to find
a full orthonormal set of coordinates with high n index number for
small molecules (for example, normal coordinates do not exceedP
symmetry [7]).

Given these considerations, we will restrict the construction of
symmetry-adapted bases of matrices by solely using functions that
form a basis for Rþ=�;Pu=g and Du=g IrReps (An and En for n ¼ 1;2) to
represent diabatic states and only Pu=g functions to represent
nuclear coordinates.

The resulting matrices were used to construct a 10-state 4-
dimensional diabatic model in the subspace of Pu=g coordinates
exhibiting Renner–Teller coupling. Theoretical absorption spectra
were calculated which compare well to experimental one, validat-
ing the use of the bases generated (Section 3).

Herzig and Altmann have published the most comprehensive
book of point group tables to date [22]. One can use spherical har-
monic functions as a basis to form a representation of any point
group. They provide the matrix representations of the Pg=u and
Du=g IrReps for all the operations of the group, in the complex sym-
metrised spherical harmonic basis:

Pu :¼ ðPþ
u ;P

�
u Þ ¼ hY1

1;Y
�1
1 j

Pg :¼ ðPþ
g ;P

�
g Þ ¼ hY1

2;�Y�1
2 j

Dg :¼ ðDþ
g ;D

�
g Þ ¼ hY2

2;Y
�2
2 j

Du :¼ ðDþ
u ;D

�
u Þ ¼ hY2

3;�Y�2
3 j

ð5Þ

where Ym
l are the ortho-normalised spherical harmonics using the

Condon–Shortley phase convention [22] (the D1h tables can be
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found in Herzig and Altmann and are reprinted in Appendix A). The
effect of operating on singly degenerate IrReps (Rþ=�) can be
obtained from character tables. The corresponding real Cartesian
basis functions forming the same representation are related by
(ignoring common factors):

P x
u � x ¼ �ðY1

1 � Y�1
1 Þ D x

g � x2 � y2 ¼ ðY2
2 þ Y�2

2 Þ
P y

u � y ¼ ðY1
1 þ Y�1

1 Þi D y
g � 2xy ¼ �ðY2

2 � Y�2
2 Þi

P x
g � zx ¼ �ðY1

2 � Y�1
2 Þ D x

u � zðx2 � y2Þ ¼ ðY2
3 þ Y�2

3 Þ
P y

g � yz ¼ ðY1
2 þ Y�1

2 Þi D y
u � 2xyz ¼ �ðY2

3 � Y�2
3 Þi

ð6Þ

where Px=y
u=g and Dx=y

g=u are a shorthand notation for the real, Cartesian
basis functions. For a real R� representation, one must multiply by a
complex factor i. One advantage of working in the complex repre-
sentation is immediately apparent from the tables: every operation
reduces to a permutation operation multiplied by a factor (termed
generalised permutation). Another is that the basis functions for
each IrRep are complex conjugates of one another (ungerade IrReps
are also multiplied by a factor of �1), from which we can deduce
that the on-diagonal Hamiltonian elements are equal and real and
that some elements in the upper-triangular elements are complex
conjugates of one another. For example:

@ Pþ
g j Ĥ j Dþ

u

D E
@QPþ

u

¼
@ P�

g j Ĥ j D�
u

D E
@QP�

u

0
@

1
A

�

ð7Þ

The above relation implies that the Taylor coefficients of such
Hamiltonian elements are related. If we know one term to form
part of an invariant expression, we can infer the other term must
also form part of that invariant expression. Fig. 1 shows the rela-
tionship between elements of states of symmetries pertinent to
this discussion.

Concretely, for a term such as

j Pþ
g iðQR�

u
Þn � ðQPþ

u
ÞmhDþ

u j ð8Þ
to form a basis for some IrRep of the group it must be part of the
combination

Ppg ;duðQm
Pu
;Qn

R�
u
Þ ¼ j Pþ

g iðQR�
u
Þn � ðQPþ

u
ÞmhDþ

u j �
j P�

g iðQR�
u
Þn � ðQP�

u
ÞmhD�

u j ð9Þ
since there are some operations in the group that will permute the
degenerate basis functions. Operating with any arbitrary operation
of the point group:
Fig. 1. The relationship between elements of the diabatic potential matrix in the
complex representation given in Eq. (5). The coloured blocks link the related
elements: blue for equal and real pairs along the diagonal, and red for off-diagonal
complex conjugate pairs. Analogous relationships are shared between the other u/g,
± IrReps. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this article.)
ÔRP
pg ;du ðQm

Pu
;Qn

R�
u
Þ ¼KRðPþ

g ; ðR�
u Þn; ðPþ

u Þ
m
; ðDþ

u Þ
�Þ jPþ

g iðQR�
u
Þn � ðQPþ

u
ÞmhDþ

u j
�KRðP�

g ;ðR�
u Þn; ðP�

u Þm;ðD�
u Þ�Þ jP�

g iðQR�
u
Þn � ðQP�

u
ÞmhD�

u j
ð10Þ

where KR are the product of factors obtained from the matrix
elements of operationR for each IrRepmaking up the first and second
terms in the expression above. If each term in the above expression
results in KR ¼ þ1 under all operations, we can form a totally sym-
metric term by summing both terms. Additionally, for operations
whose representation gives an anti-diagonalmatrix (rv and C0

2), both

terms leading toKR ¼ —1 can also imply a totally symmetric term, so
long as the expression in Eq. (9) is a difference rather than sum of
terms permuted by the symmetry operation. Notice that the on/off-
diagonal elements of the representation of the operations given in
the D1h tables are complex conjugates. Since in general the factors
KR are complex conjugates of each other, it cannot be that one term
gives +1 while the other does not. It follows that it is only necessary
to test eitherKR in order to test for invariance. A similar approachwas
devised by Eisfeld and Viel [11,16] for Jahn–Teller systems.

Using the projection operator formalism would have been
another possible approach (and is used in the following sub-sec-
tion). It would, however, lead to the generation of many unimpor-
tant terms, as is show in Section 2.2 for the O case. It is also
unneccessary as starting with one term in the expression, it is
straightforward to see how the operator would construct the
totally symmetric bases by operating with rv ð/Þ and adding both
terms (times the appropriate eigenvalue factor).

For the example in Eq. (9), for n ¼ 0;m ¼ 1, operating with
Sþ1ðwÞ on the first term we would indeed get:

KSþ1ðwÞðPþ
g ; ðR�

u Þ0; ðPþ
u Þ

1
; ðDþ

u Þ
�Þ

¼ �e�iw � ð�1Þ0 � e�iw � ð�e�2iwÞ� ¼ 1 ð11Þ
as well as for any other operation in the group, making the above
term, when combined with the second term, a totally-symmetric
IrRep. Note that the symmetry of the electronic states is being taken
into account when doing this and so strictly speaking the Hamilto-
nian element and not the polynomial is totally-symmetric.

Finally, to obtain real polynomials and states for the model dia-
batic potential one is required to transform to a real basis:

Pþ
g

P�
g

 !
¼

ffiffiffi
2

p

2
�1 �i

�1 þi

� � P x
g

P y
g

 !

Pþ
u

P�
u

 !
¼

ffiffiffi
2

p

2
�1 �i

þ1 �i

� �
P x

u

P y
u

 ! ð12Þ

Dþ
g

D�
g

 !
¼

ffiffiffi
2

p

2
þ1 þi

þ1 �i

� � D x
g

D y
g

 !

Dþ
u

D�
u

 !
¼

ffiffiffi
2

p

2
þ1 þi

�1 þi

� �
D x

u

D y
u

 ! ð13Þ

So the above example would yield:

�1 �1 0 0
i �i 0 0
0 0 1 �1
0 0 �i �i

0
BBB@

1
CCCA

0 0 QPþ
u

0
0 0 0 QP�

u

ðQPþ
u
Þ� 0 0 0

0 ðQP�
u
Þ� 0 0

0
BBBB@

1
CCCCA

�1 �i 0 0
�1 þi 0 0
0 0 þ1 þi

0 0 �1 þi

0
BBB@

1
CCCA ¼

0 0 �QP x
u

�QPy
u

0 0 QP y
u

�QP x
u

�QP x
u

QPy
u

0 0
�QPy

u
�QP x

u
0 0

0
BBB@

1
CCCA

ð14Þ
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This particular example shows the form linear coupling takes
between states of P and D symmetry, termed pseudo Jahn–Teller
coupling. First and second order polynomial elements generated
in this way are provided in Appendix A and Supplementary infor-
mation lists them up to sixth order. One can easily generate poly-
nomials of higher order.

2.2. O (3D) Jahn–Teller symmetry-adapted basis

The strategy described above breaks down for the case of 3-
dimensional non-Abelian groups, where the operations of the
group become harder to disentangle. In the available representa-
tion [22], the operations are also generalised permutation (mono-
mial) matrices. But because of the threefold degeneracy of T1, the
possible number of terms that make up the invariant expression
increase (unlike D1h with a predictable number of 2 terms). Here
we take recourse to the projection operator. Although it should
be mentioned that other, more general techniques have been
devised to generate T2 related polynomials [12].

The complex matrix representations for the O group was
obtained from Herzig and Altmann. They use the following repre-
sentation in the symmetrised spherical harmonic basis (formatrices
see reference [22] or for their real representation in Appendix B):

T1 :¼ ðT1þ; T1z; T1�Þ ¼ 1ffiffiffi
2

p ðY1
1 þ Y�1

1 Þ;Y0
1;

1ffiffiffi
2

p ðY1
1 � Y�1

1 Þ
� ����

E :¼ ðEþ; E�Þ ¼ 1ffiffiffi
2

p Y0
2 �

iffiffiffi
2

p ðY2
2 þ Y�2

2 Þ; 1ffiffiffi
2

p Y0
2 þ

iffiffiffi
2

p ðY2
2 þ Y�2

2 Þ
� ����

ð15Þ
which relate to the cartesian tensor basis (ignoring common fac-
tors) as:

Ty � y ¼ ðY1
1 þ Y�1

1 Þi
Tz � z ¼

ffiffiffi
2

p
Y0

1

Tx � x ¼ �ðY1
1 � Y�1

1 Þ

Ea � 2z2 � x2 � y2 ¼ Y0
2

Eb �
ffiffiffi
6

p
ðx2 � y2Þ ¼ Y2

2 þ Y�2
2

ð16Þ

so that the transformation matrices to the real representation are
given by:

Tþ
Tz

T�

0
B@

1
CA ¼ 1ffiffiffi

2
p

�i 0 0
0 1 0
0 0 �1

0
B@

1
CA

Ty

Tz

Tx

0
B@

1
CA

Eþ
E�

� �
¼ 1ffiffiffi

2
p 1 �i

1 þi

� �
Ea

Eb

� � ð17Þ

where Ea=b and Ty=x=z are shorthands for the appropriate Cartesian
tensors given in Eq. (16). The projection operator is expensive to
construct since it involves summing all polynomials generated by
operating with all 24 operators on a single generating function.
For IrReps T1; E and A1 (6 functions) testing all possible terms such

as jA1iQi
b � Q j

c � Qk
dhEj would mean that we could construct up to, say

fourth order �14,500 combinations. It is therefore desirable to find
a more efficient way of discriminating terms without immediate
recourse to the projection operator. We decrease this number dras-
tically if we can work in a representation which reduces some oper-
ation to a multiplicative factor and test the trial terms for invariance
with respect to that operation.

For the E IrRep, the representation available gives us a similar
situation to the D1h group, where most operations are in a diagonal
or anti-diagonal representation. For T1, we could achieve a similar
result by switching to the representation of the eigenfunctions of
some operator of the group whose eigenvalues are preferably dis-
tinct. Under the chosen representation, we can immediately evalu-
ate trial terms for invariance to that operation, in a similar manner
to that described for the D1h group. To clarify, consider T1 under
the representation of the eigenvectors of Cþ
31, which belongs to

the class of operators with eigenvalues �e
þip
3 ;�e

�ip
3 ;1

� �
. The eigen-

vectors in the basis of real functions are given by:

Tkþ
Tk�
T0

0
B@

1
CA ¼ 1ffiffiffi

3
p

1 e
þip
3 e

�ip
3

1 e
�ip
3 e

þip
3

�1 1 1

0
B@

1
CA

Tx

Ty

Tz

0
B@

1
CA ð18Þ

Under this new representation we have basis vectors which are
complex conjugates of each other, and so we again find that many
elements share relationships like those given in Fig. 1 for IrReps
of D1h but for T1; E and A1.

The effect of operating with Cþ
31 on any a trial term, such as

j Tþ
kþiðQT0 Þ1hE� j þ j Tþ

k�iðQT0 Þ1hEþ j

will simply be to multiply out the product of eigenvalues of the dif-
ferent terms forming the element (note that E is already diagonal in
the available representation for Cþ

31). Concretely, the first term in
the combination above, when acted upon with Cþ

31 indeed gives

KCþ
31 ðTþ

kþ; ðQT0 Þ1; ðE�Þ�Þ ¼ �eð ip3 Þ
	 
 � ð1Þ1 � eð �2ip

3 Þ	 
� ¼ 1, and so must
the second term. This way, the number of trial terms (also termed
generator of the expansion) that need to be acted on by the projec-
tion operator can be trimmed into a constellation that satisfy these
more stringent conditions. This representation allowed us to cut
down by more than a factor of eight the number of times we needed
to construct PA1 , from 14,280 to 1710 trial terms. Having collected
those trial generators that are invariant with respect to the Cþ

31

operation, we rotate them back to the real basis representation hav-
ing used Eq. (18) for T1.

The real representation of matrix operations OR for T1 are also
generalised permutation matrices, facilitating the construction of
PA1 (provided in Appendix B). We then operated on the trial gener-
ators with PA1 ¼PROR to project out the full A1 expression. Finally,
one can rotate to the real representation for E, using the second
equation in (17). First order polynomial elements generated in this
way are provided in Appendix B for states and coordinates of
{A1; E; T1} symmetry. In contrast to the T2 	 t2 Jahn–Teller Hamilto-
nian [12,18], degeneracy is not lifted to first order in t1, but instead
occurs along modes of e symmetry. Supplementary information
lists all matrices up to fourth order. For practical reasons, only
three dimensional complex polynomials were tested to generate
them. This guarantees all three dimensional terms possible.
3. Test case: vibronic model using symmetry-adapted bases for
D‘h; the absorption spectrum of acetylene

We demonstrate how these polynomials can be used to fit a dia-
batic potential model to EOM-CCSD/aug-cc-pVTZ energies for the
first ten singlet states of acetylene (Molpro [23] was used to obtain
the ab initio energies). Details for the construction of vibronic cou-
pling Hamiltonian and their use in dynamics calculations and cal-
culation of spectra can be found elsewhere [3,4]. The states
considered are coupled by Renner–Teller and pseudo Jahn–Teller
coupling along Pg and Pu curvilinear coordinates. To correctly
describe the first three singlet states (Rþ

u and Du) inside this 4D
subspace, it was necessary to include coupling terms to the next
three higher lying doubly degenerate states (Pu;Pg and Dg). Since
the resulting model has the direct product expansion form
required for the MCTDH algorithm [24], we subsequently used it
to calculate the 4D absorption spectrum. Comparison to the exper-
imental spectrum served as a validation of the basis functions pre-
sented in Section 2.1. We have also expanded this model to include
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all internal degrees of freedom to study the vibrationally mediated
photodissociation of acetylene [25].

3.1. Model system

Mass-scaling the cartesian coordinates relative to the reference
geometry: ðxi � xi0Þ ! 1ffiffiffiffi

mi
p ~xi and diagonalising the Hessian gives us

seven internal normal modes, four of which belong to degenerate
Pg and Pu IrReps and which describe trans and cis displacements.
By rotating the same-plane components ofPg andPu normalmodes
we obtain a set of coordinates approximately describing the carte-
sian displacements of the hydrogen atoms away from their equilib-
rium geometry (termed here as ‘quasi-cartesian’ coordinates):

Qay

Qby

� �
¼ 1ffiffiffi

2
p 1 �1

1 1

� �
qcy

qty

 !
ð19Þ

where Qay is the quasi-cartesian y-coordinate of H-atom ‘a’ (simi-
larly for Qby) qcy and qty refer to the cis and trans normal coordinates
along the yz-plane. The xz-plane coordinates, and the symmetric and
antisymmetric stretches (z-axis) are treated in a similar manner. We
termed them ‘quasi’ since the positions of other atoms change
slightly so as to fix the centre of mass and to maintain the linear
space of rotations and translations outside the coordinate space.

Since we are using mass-scaled coordinates, the KE operator is
invariant with respect to rotations. From there we performed a
spherical polar transformation of each quasi-cartesian axis describ-
ing the position of a Hydrogen atom to obtain two sets of
quasi-spherical polar coordinates:

Qax ¼ Ra � cosðhaÞ
Qay ¼ Ra � sinðhaÞ � sinð/aÞ
Qaz ¼ Ra � sinðhaÞ � cosð/aÞ � Q z

0

ð20Þ

and correspondingly for H-atom ‘b’. The ground state minimum is
linear and thus lies at ha 
 p

2 ;/a 
 p;Ra 
 Q z
0 and similarly for H-

atom ‘b’. These coordinates form representations for the C2v group.
The kinetic energy expression for these coordinates result in a pair

of radial and orbital angular momentum operators, L̂, in (quasi)
spherical coordinates for the H atoms a/b:

2 � T̂ ¼ 1
i

@

@Ri

� �2

þ L̂2i
R2
i

; i ¼ a; b ð21Þ
Fig. 2. The steps taken to obtain curvilinear coordinates starting from normal coordinate
in brackets refer to the equations in text.
where a radial linear term Ri has been factored into the radial part
of the wavefunction, URðRiÞ � Ri �UðRiÞ, to simplify the expression
[26]. Finally, one can rotate coordinates /a and /b in the inverse
manner to Eq. (19):

H x
t

H x
c

 !
¼ 1ffiffiffi

2
p 1 1

�1 1

� �
hb
ha

� �
ð22Þ

where H x
t and H x

c correspond to trans and cis angular motion along
the zx-plane. With the same treatment for the zy-plane coordinates,
fH x

t ;H
y
t g and fH x

c ;H
y
c g form a basis for Pu and Pg IrReps

respectively. Notice they resemble the original normal coordinates,
spanning the same D1h IrReps, but with an angular character at
large displacements. Fig. 2 displays a schematically the steps
described above. Although fH x

t ;H
y
t g and fH x

c ;H
y
c g enabled us to

use the invariant matrices generated by the method described in
Section 2.1, we subsequently rotated the resulting fitted model
(following section) to fh;/g coordinates, since they leave the KE
operator in the simple form given in Eq. (21). We note that as the
model is based on normal mode coordinates the Coriolis coupling
between rotations and vibrations is not accounted for.

3.2. Fitting model parameters to adiabatic energies

Given the high symmetry of the coordinates there are many
cuts one can generate with resulting identical potential energy.
For example, H x

t þH y
c results in the same energy as H y

t þH x
c ;

related by a C2 rotation they are physically indistinguishable. We
explored the surface along all possible 2 dimensional diagonal
and anti-diagonal vector cuts for the four D1h coordinates
(Fig. 2). We then rotated to the C2v symmetry curvilinear coordi-
nates fh;/g (obtained from transformation (20) and before apply-
ing Eq. (22)) and similarly explored all possible 2 dimensional cuts.
We found ten distinct cuts for which the first 10 singlet state EOM-
CCSD/aug-cc-pVTZ energies are shown in Fig. 3; they are labelled
in the fh;/g, C2v coordinates since these are used in the final model
(following section). A sparse four dimensional grid with 6 energy
points per coordinate was also calculate (these ignore the potential
energy symmetry considerations just mentioned).

Diabatic model parameters for the aforementioned energy
points were obtained by fitting 78 invariant matrices in this sub-
space of Renner–Teller coordinate, 10-state landscape with strong
coupling terms. A genetic algorithm tailored for the optimisation of
s, both spanning D1h IrReps. Only coordinates in a single plane are shown. Numbers



Fig. 3. Adiabatic potential surfaces from a 10-state model that uses curvilinear coordinates compared to EOM-CCSD/aug-cc-pVTZ calculations (points). Energy in eV,
coordinates in radians. S0 is not shown in plots. Each slide shows a physically distinct vector generated by exploring diagonal and anti-diagonal vectors of D1h and C2v
coordinates. From left to right: first row: (ha), (ha þ hb), (ha þ hb þ /a � /b), (ha � hb) second row: (2ha � hb � /a), (ha þ /a), (ha þ /a þ /b), (ha þ /b) third row:
(�ha þ hb � /a þ /b), (hb þ /b), dihedral path between minima in 4D, {h;/} sub-space: S1, S2.

Table 1
Coefficients of first and second order polynomials of the invariant matrices fitted to EOM-CCSD/aug-cc-pVTZ ab initio energies in the 10-state, 4D Renner–Teller coordinates space
of acetylene: H x

c ¼ ha þ hb (cis, Pu) and H x
t ¼ ha � hb (trans, Pg) and similarly for zy-plane (/) coordinates. k are linear inter-state coupling constants, c and l the quadratic intra

and inter-state coupling constants respectively. The sub-script denotes the symmetries of the coordinates involved in that polynomial term. The sup-script refers to the matrix
basis used as indexed and provided in Appendix A. Note that some matrices like 2.5 and 2.6 span inter and intra-state elements. Where no index has been provided, it refers to
quadratic terms that are identical for degenerate coordinates.P�

u Du
Q

g
Q

y DgP�
u cPu

¼ þ2:111 – – – –
cPg

¼ þ0:536

Du l2:4
Pu

¼ þ0:228 cPu
¼ þ0:399 – – –

l2:4
Pg

¼ þ1:016 cPg
¼ þ0:625

Q
g k1:2Pu

¼ þ1:583 k1:2Pu
¼ þ1:143 c2:5Pu

¼ þ1:124 – –

c2:5Pg
¼ þ0:647

cPg
¼ þ1:401Q

u k1:2Pu
¼ þ1:765 k1:3Pg

¼ �1:140 l2:6
Pu;g

¼ þ0:346 c2:5Pu
¼ þ0:185 –

c2:5Pg
¼ þ0:708

cPg
¼ þ1:119

Dg l2:7
Pu;g

¼ �0:248 l2:3
Pu;g

¼ þ1:123 k1:3Pg
¼ �0:456 k1:3Pu

¼ �0:510 cPu
¼ þ0:248

cPg
¼ þ0:367
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these problems was used and will be described elsewhere [27].
This includes up to four dimensional, fourth order polynomials to
fit the surfaces shown in Fig. 3. Where appropriate, any fourth
order terms with negative coefficients where omitted in order to
ensure a bounded potential. All states and modes are coupled by
inclusion of all first and second order terms, and the values of these
coefficients are provided in Table 1. Only a few third and fourth
order terms were included, as the increasing number of parameters
pushed the limits of the optimisation algorithm. Fewer terms were
used to fit S0 – no coupling was assumed to occur between S0 and
any excited state (fit not shown in Fig. 3). Against the suggestion
that the model might be over-parametrised, an 8 state model with
terms up to the same order was attempted but yielded no satisfac-
tory fitting.

The S1–S2 crossing mentioned in the literature [28] can be seen
in the top row, third sub-figure in Fig. 3 at an out-of-plane geom-



Fig. 4. Vector cuts showing diagonal, intra-state elements (eV) of the diabatic model along both Renner–Teller curvilinear coordinates (radians); left:H x
c ¼ ha þ hb (cis); right:

H x
t ¼ ha � hb (trans). Inter-state elements are also shown in the top-right sub-figures. Strict diabatic intra-state elements should not exhibit any stablization away from the

linear geometry.
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etry (ha þ hb þ /a � /b). The last two bottom-right sub-figures
show the S1 and S2 potential energy around the dihedral angles
that takes the molecule between the cis and trans minima (in this
4D subspace) of the S1 and S2 surfaces respectively. The model
therefore allows for dihedral rotation to occur properly. Its worth
noting that the degeneracy of D states is only broken to fourth
order, in contrast to second order for P states.

According to literature [29], there should be no stabilisation
away from the linear geometry arising from intra-state, diagonal
diabatic elements. Instead, it has been proven that any contribu-
tions to the energy that stabilise away from the linear geometry
should arise solely via pJT coupling. Fig. 4 shows the model dia-
batic surfaces of the intra-state elements along the Pg and Pu

curvilinear coordinates. Inter-state couplings are also shown in
the smaller sub-figures. The diagonal elements exhibit some stabil-
isation away from the linear geometry; it is therefore clear that the
model does not account for all diabatic interactions to higher lying
states and cannot be said to be a separable Hilbert subspace. But
given the strong pJT effect present in this system, it is an approxi-
mation that, as we show below, yields good qualitative agree-
ments. It is worth mentioning that a wavefunction relaxation on
the S1 state retained a D1h symmetry; the position expectation
value results in a linear molecule. That the matrices indeed obey
D1h operations is supported by this result, with no region in the
potential being asymmetrically favoured.

3.3. Absorption spectrum

The S1 minimum has been found experimentally [30] and theo-
retically [28] to be at a trans bent geometry with an isomerisation
barrier to its cis conformer via a torsional motion. Consequently,
the absorption spectrum is dominated by a long progression aris-
ing from S1 trans-bending mode as well as contributions arising
from CC and possibly CH (totally symmetric) stretch modes. The
S0 ! S1 maximum intensity is not discernible as it lies higher than
the onset of the S0 ! S2 transition (6.71 eV). The S0 ! S1 maxi-
mum is believed to lie 1.5 eV above the band origin [31].

The absorption spectrum [32] in the range provided in experi-
ments must be generated by the first three singlet excited states.
Theoretical spectrum from ab initio studies were first calculated
by Peric et al. [33] and more recently Köppel and co-workers have
built vibronic models to characterise the absorption spectrum. The
latter used the Liu et al. [34] Jacobi coordinate formulation with
two angles that approximately describe CCH angles, a CC bond
and a torsional angle. They calculate the PES for S1 using CASPT2
and later for S1 and S2 using MR-CISD+Q levels of theory (Ref.
[31,35] respectively). The last model of the series includes non-adi-
abatic transfer between S1 and S2 along the torsional motion using
a regularised diabatic representation [36]. Their spectra are in very
good qualitative agreement with experiment. Compared to this
earlier work, the coordinates used here should be more flexible
and able to describe the photo-dissociation of the C–H bond, while
including non-adiabatic effects.

To reproduce the spectrum with this model, a nuclear wave-
packet was propagated for 200 fs on these surfaces using the
MCTDH algorithm [24]. Mode combination of coordinates fha;/ag
(and similarly for b) were used, since these are coupled via the
kinetic energy operator (Eq. (21)). At least ten two-dimensional
single particle functions (SPF) were used to represent the time
dependent basis for each state, with fifteen for the first three
excited states. The number of primitive grid points for h and /
coordinates were 69 and 85 respectively, having used the 2D
Legendre DVR basis for pairs ha;/a and hb;/b. The relaxed ground
state wavefunction is initially operated on by the transition dipole
from the hS0 j l j S1i elements of this coordinate subspace using a
linear approximation. By multiplying the autocorrelation of the
resulting propagated wavefunction by a trigonometric damping
function and Fourier transforming this product, we obtain a theo-
retical estimate for the experimental absorption spectrum (Fig. 5).

The resulting 4D spectrum (top left in Fig. 5) is in qualitative
agreement with experiment around the energy range correspond-
ing to S1 and S2/3 cis and trans progressions, but is clearly missing
progressions at energies 6.75–7.5. It is likely that the missing pro-
gressions at higher energies arise from vibrational states arising
from the CC and CH (totally symmetric) stretch modes, with higher
ground state harmonic frequencies of x0 
 0:125 and 
 0:22 eV
respectively. To corroborate this, we calculated the spectrum for
the CC stretch mode, shown in the top right plot of Fig. 5, labelled
1D. Superimposed in red, the spectrum for the 4D model is shown
in the same plot; one can appreciate the relative intensity contribu-
tions to the final spectrum arising from these different coordinates.
The lower left panel of Fig. 5 also shows the spectrumobtained from
the convolution of the spectra from the four dimensional Renner–
Teller subspace and CC stretch mode models. This is effectively a
5D model with no coupling terms between the CC stretch mode
and 4D Renner–Teller coordinates. The resulting spectrum is in
qualitative agreement with the experimental spectrum, also pro-
vided in Fig. 5, as well as with work done by Köppel et al. [31].



Fig. 5. Top left: Calculated spectrum for 4D Renner–Teller subspace, ten state model. Top right: Calculated spectrum for CC stretch in first excited state (4D spectrum super-
imposed in red). Bottom left: Convolution of 1D and 4D spectrum presented in the top of this figure. Bottom right: Experimental spectrum [32]; image edited fromMalsch et al.
[31], providing assignments for cis/trans progressions in S1–S3.
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4. Conclusions

We have presented two strategies to generate symmetry-
adapted bases of matrices of real polynomials representing nuclear
coordinates over electronic diabatic elements that are invariant
with respect to non-Abelian point group operations. The two cases
for which we generated these bases are the D1h and O, but this
approach should work for any group. Working in the simplest pos-
sible representation, i.e. a complex symmetrised bases representa-
tion which leaves the matrix representation of the IrReps of the
groups as generalised permutation matrices, and the use of the
projection operator were two indispensable tools that made the
generation of these polynomials tractable. The D1h polynomials
generated were subsequently used to construct a four dimensional,
ten state diabatic model of acetylene which adequately fits the
ab initio EOM-CCSD energies. This includes a coupled manifold of
nine excited states and an uncoupled ground-state. The absorption
spectrum was calculated to validate the model thus constructed.
Owing to the strong pTJ coupling exhibited by S1 to high lying
states, without recourse to the D1h polynomial basis presented
here it would not have been possible to construct such a model.
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Appendix A. D‘h group

See Table A.2.

Invariant matrices

Diabatic potential matrices that are invariant with respect to
operations of the D1h group. First and second orderPu=g polynomi-

als for Rþ=�
u=g , Pu=g and Du=g states are provided. Elements represent-

ing states spanning IrReps A and B are labelled as jAiĤhBj. The
nuclear coordinate, polynomial terms entering these elements

are similarly labelled, such as ðCÞ2 for given a IrRep C (quadratic
term). The coordinate labelling ’Q’ has been ommited for the sake
of clarity. Ommited gerade/ungerade inversion symmetry symbols
implies either is possible (so long as the total expression is gerade).

1. First order

P xiĤhRþ
��� ��� : ðP xÞ

P yiĤhRþ
��� ��� : ðP yÞ

ða1:1Þ

P xiĤhR�
��� ��� : ðP yÞ

P yiĤhR�
��� ��� : �ðP xÞ

ða1:2Þ

P xiĤhD x
��� ��� : ðP xÞ

P xiĤhD y
��� ��� : ðP yÞ

P yiĤhD x
��� ��� : �ðP yÞ

P yiĤhD y
��� ��� : ðP xÞ

ða1:3Þ



Table A.2
Matrix representations of D1h group under the representation given in Eq. (5). Contents taken from [22].

D1h Pu Pg Dg Du

E 1 0
0 1

� �
1 0
0 1

� �
1 0
0 1

� �
1 0
0 1

� �
Cþ
1ðwÞ e�iw 0

0 eiw

� �
e�iw 0
0 eiw

� �
e�2iw 0
0 e2iw

� �
e�2iw 0
0 e2iw

� �
C�
1ðwÞ eiw 0

0 e�iw

� �
eiw 0
0 e�iw

� �
e2iw 0
0 e�2iw

� �
e2iw 0
0 e�2iw

� �
C2 �1 0

0 �1

� � �1 0
0 �1

� �
1 0
0 1

� �
1 0
0 1

� �
rv ð/Þ 0 e�2i/

e2i/ 0

� �
0 �e�2i/

�e2i/ 0

� �
0 e�4i/

e4i/ 0

� �
0 �e�4i/

�e4i/ 0

� �
rh 1 0

0 1

� � �1 0
0 �1

� �
1 0
0 1

� � �1 0
0 �1

� �
Sþ1ðwÞ e�iw 0

0 eiw

� �
�e�iw 0
0 �eiw

� �
e�2iw 0
0 e2iw

� �
�e�2iw 0

0 �e2iw

� �
S�1ðwÞ eiw 0

0 e�iw

� �
�eiw 0
0 �e�iw

� �
e2iw 0
0 e�2iw

� �
�e2iw 0
0 �e�2iw

� �
i �1 0

0 �1

� �
1 0
0 1

� �
1 0
0 1

� � �1 0
0 �1

� �
C0
2ð/þ p

2Þ 0 e�2i/

e2i/ 0

� �
0 �e�2i/

�e2i/ 0

� �
0 e�4i/

e4i/ 0

� �
0 �e�4i/

�e4i/ 0

� �
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2. Second order

Rþ
g iĤhR�

u

��� ��� : �ðP x
uÞ � ðP y

g Þ þ ðP x
g Þ � ðP y

u Þ ða2:1Þ

D xiĤhRþ
��� ��� : ðP xÞ2 � ðP yÞ2

D yiĤhRþ
��� ��� : þ2 � ðP xÞ � ðP yÞ

ða2:2Þ

D x
g iĤhD x

u

��� ��� : ðP x
g Þ � ðP x

u Þ þ ðP y
g Þ � ðP y

u Þ

D x
g iĤhD y

u

��� ��� : �ðP x
uÞ � ðP y

g Þ þ ðP x
g Þ � ðP y

u Þ

D y
g iĤhD x

u

��� ��� : ðP x
u Þ � ðP y

g Þ � ðP x
g Þ � ðP y

u Þ

D y
g iĤhD y

u

��� ��� : ðP x
g Þ � ðP x

u Þ þ ðP y
g Þ � ðP y

u Þ

ða2:3Þ

D xiĤhR�
��� ��� : �2 � ðP xÞ � ðP yÞ

D yiĤhR�
��� ��� : ðP xÞ2 � ðP yÞ2

ða2:4Þ

P xiĤhP x
��� ��� : ðP xÞ2 � ðP yÞ2

P xiĤhP y
��� ��� : 2 � ðP xÞ � ðP yÞ

P yiĤhP y
��� ��� : �ðP xÞ2 þ ðP yÞ2

ða2:5Þ

P x
g iĤhP x

u

��� ��� : ðP x
g Þ � ðP x

uÞ þ ðP y
g Þ � ðP y

u Þ

P x
g iĤhP y

u

��� ��� : �ðP x
uÞ � ðP y

g Þ þ ðP x
g Þ � ðP y

u Þ

P y
g iĤhP x

u

��� ��� : ðP x
uÞ � ðP y

g Þ � ðP x
g Þ � ðP y

u Þ

P y
g iĤhP y

u

��� ��� : ðP x
g Þ � ðP x

uÞ þ ðP y
g Þ � ðP y

u Þ

ða2:6Þ

D x
g iĤhR�

u

��� ��� : þðP x
uÞ � ðP y

g Þ þ ðP x
g Þ � ðP y

u Þ

D y
g iĤhR�

u

��� ��� : �ðP x
g Þ � ðP x

uÞ þ ðP y
g Þ � ðP y

u Þ
ða2:7Þ
Appendix B. O group

See Table B.3.
Diabatic potential matrices that are invariant with respect to

operations of the O group. First order polynomials for A1, E and T1

coordinates and states are provided. Elements representing

electronic states spanning IrReps A and B are labelled as jAiĤhBj.
The nuclear coordinate, polynomial terms entering these elements
are similarly labelled, such as ðCÞ for given a IrRep C (linear term).
The coordinate labelling ’Q’ has been ommited for the sake of clarity.

1. First order

A1iĤhA1

��� ��� : ðA1Þ ðb1:1Þ

EaiĤhA1

��� ��� : ðEaÞ

EbiĤhA1

��� ��� : ðEbÞ
ðb1:2Þ

EaiĤhEa

��� ��� : ðEaÞ

EaiĤhEb

��� ��� : �ðEbÞ

EbiĤhEb

��� ��� : �ðEaÞ

ðb1:3Þ

EaiĤhEa

��� ��� : ðA1Þ

EbiĤhEb

��� ��� : ðA1Þ
ðb1:4Þ

T1xiĤhA1

��� ��� : ðT1xÞ

T1yiĤhA1

��� ��� : ðT1yÞ

T1ziĤhA1

��� ��� : ðT1zÞ

ðb1:5Þ

T1xiĤhEa

��� ��� : �ðT1xÞ

T1xiĤhEb

��� ��� : � ffiffiffi
3

p
� ðT1xÞ

T1yiĤhEa

��� ��� : 2 � ðT1yÞ

T1ziĤhEa

��� ��� : �ðT1zÞ

T1ziĤhEb

��� ��� : ffiffiffi
3

p
� ðT1zÞ

ðb1:6Þ



Table B.3
Matrix representations of the O group in the representation given in Eq. (15), but with
T1 in its real representation given by Eq. (17). g ¼ expð2ip=3Þ. Modified from [22].

O E T1

E 1 0
0 1

� �
1 0 0
0 1 0
0 0 1

2
4

3
5

C2x 1 0
0 1

� �
�1 0 0
0 �1 0
0 0 1

2
4

3
5

C2y 1 0
0 1

� �
1 0 0
0 �1 0
0 0 �1

2
4

3
5

C2z 1 0
0 1

� �
�1 0 0
0 1 0
0 0 �1

2
4

3
5

C�
31 g 0

0 g�
� �

0 �1 0
0 0 1
�1 0 0

2
4

3
5

C�
32 g 0

0 g�
� �

0 1 0
0 0 �1
�1 0 0

2
4

3
5

C�
33 g 0

0 g�
� �

0 �1 0
0 0 �1
1 0 0

2
4

3
5

C�
34 g 0

0 g�
� �

0 1 0
0 0 1
1 0 0

2
4

3
5

Cþ
31 g� 0

0 g

� �
0 0 �1
�1 0 0
0 1 0

2
4

3
5

Cþ
32 g� 0

0 g

� �
0 0 �1
1 0 0
0 �1 0

2
4

3
5

Cþ
33 g� 0

0 g

� �
0 0 1
�1 0 0
0 �1 0

2
4

3
5

Cþ
34 g� 0

0 g

� �
0 0 1
1 0 0
0 1 0

2
4

3
5
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T1xiĤhT1x

��� ��� : � ffiffiffi
3

p
� ðEbÞ � ðEaÞ

T1yiĤhT1y

��� ��� : þ2 � ðEaÞ

T1ziĤhT1z

��� ��� : þ ffiffiffi
3

p
� ðEbÞ � ðEaÞ

ðb1:7Þ

T1xiĤhT1x

��� ��� : ðA1Þ

T1yiĤhT1y

��� ��� : ðA1Þ

T1ziĤhT1z

��� ��� : ðA1Þ

ðb1:8Þ
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.chemphys.2015.
07.034.
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