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Abstract 

In the present paper, the torsional-translational response of a prototype wind turbine tower considered as 

an irregular structure is studied. As a matter of fact a plethora of wind turbine towers have collapsed 

during the last decades due to torsional dynamic actions. An effective numerical model of the prototype 

irregular wind turbine tower is herein developed which has been verified by the application of the 

continuous model method considering both a fixed and a partially fixed foundation. As known, the higher 

eigenmodes of the tower strongly affect the structural response and may become critical in the case that 

the tower is subjected to strong dynamic loading, as is e.g. wind loading, when simultaneously excited by 

a strong seismic motion. In order to estimate the role of the fundamental torsional modes of the above 

mentioned structure in its overall structural response, three pairs of appropriately selected artificial 

seismic accelerograms having response acceleration spectra (for equivalent viscous damping ratio 0.03) 

equivalent to the Eurocode elastic acceleration spectra are used and then, applying a type of backwards 

analysis, an equivalent dynamic or static torsion loading is defined. 

Keywords: Wind turbine structures, torsional-translational response, numerical analysis. 
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1. Introduction 

At Searsburg, a town in north-eastern United States, a turbine of the wind farm there collapsed in 2008 

under extreme wind conditions. During this event, one of the turbine blades hit the base destabilizing the 

tower and leading the nacelle and rotor assembly to crash on the ground [1] (Fig.1). The collapse mode of 

the wind turbine tower was identical to the standard torsional collapse mode about the vertical axis of the 

tower that theoretically is due to strong wind pressure and related aeroelastic fluttering in combination to 

a significant seismic excitation. Due to the aerodynamic loading, aeroelastic phenomena leading to 

excessive elastic deformations often appear leading in certain cases to structure’s collapse, cf. e.g. the 

reference Tacoma Narrows Bridge collapse in 1940. A plethora of studies on the aeroelastic behaviour of 

wind turbines have been published the last years [2-5]. As the height of the wind turbine towers the last 

decades significantly increased up to 200m, the length of the rotor blades also significantly increased, a 

fact leading to strong aeroelastic effects (e.g. strong torsional vibrations on the tower or even collapse of 

the blades themselves). Specific structural design guidelines against torsional vibrations are in general not 

provided by modern Structural Codes and therefore, tall wind turbine towers could be considered as 

exposed to this collapse mode.  

Wind energy structures are expected in the near future to correspond to a significant part of energy 

produced by renewable energy systems (cf. e.g. [6-7]) and therefore, the need to further enhance the 

energy systems applications in terms of efficiency is indispensable [8]. A plethora of Aeolian parks with 

numerous wind energy towers are nowadays under erection or planned to be erected; most of these towers 

are steel tubes with reduced thickness along their heights. Although the structural design of such towers 

could be considered as a rather simple task, the variety of irregularities appearing due to the blades shape, 

the concentrated mass on the top, the application of the dynamic loadings, the aeroelasticity phenomena 

and the peculiarities of their foundation, requests their analysis and design to be performed in the most 

meticulous way [9]. To this end, several significant design issues as are local buckling analysis of the 

shell structure, stress concentration states around the opening and tower modal analysis have to be 

thoroughly examined [10]. A modal analysis of a prototype tubular tower with fully fixed foundation has 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



been recently carried out by applying the well-known continuous model approach, and the role of a 

partially fixed foundation due to uplift that likely leads to overturning has been studied by the same 

method [11], [12]. It is obvious that the complexity of the aforementioned structural analysis issues at 

hand requests sophisticated and innovative treatment (cf. e.g. [13-14]). Advanced mathematical models 

for the analysis of the structural response of horizontal axis wind turbines with flexible tower and blades 

were developed by Kessentini et al. [15], where the eigenvalue problem was treated both analytically and 

numerically by applying the differential quadrature method. The use of the finite element method for the 

tower analysis in combination with the identification of the tower dynamic characteristics via ambient 

vibrations is nowadays considered as a standard technique for the tower structural behavior modeling 

[16]. Moreover, advanced procedures and techniques have been examined about the extreme wind 

loadings on the towers [17-19].  Recently, in order to encounter the torsional behavior of the wind turbine 

towers an appropriate backwards analysis has been proposed by Makarios & Baniotopoulos [20] that 

leads to the calculation of the equivalent static torsion loading at the top of the tower under consideration. 

In the next paragraphs the latter being an advanced torsion analysis of a prototype wind turbine tower is in 

details presented and illustrated by means of a numerical example. 

 

2. Mathematic formulation of torsional behavior 

2.1 Torsional behavior of a circular cantilever 

In order to theoretically examine the torsional behavior of a steel tubular wind energy tower AB, the  

Technical Torsion Theory is applied to a cylinder-cantilever with  section radius R loaded at its top by a 

torsional moment 𝑀𝑡 [21] (Fig. 2). Considering that each section of the cantilever AB is loaded by the 

same torsional moment 𝑀𝑡, the relative rotation of this cantilever is constant along all its length L. 

Considering an infinitesimal element dz, where the line PΛ becomes PΛ′ with the shear deformation 𝛾𝑅 

being the angle and ignoring the second order infinitesimals, the following form is obtained: 
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𝛾𝑅 =
𝛬𝛬′

d𝑧
=

𝑅 ∙ d𝜑

d𝑧
                                                                                                 (1) 

 

Thus, the shear stress 𝜏𝑅 yields:  

𝜏𝑅 = 𝐺 ∙ 𝛾𝑅 =
𝛬𝛬′

d𝑧
= 𝐺 ∙

𝑅 ∙ d𝜑

d𝑧
                                                                                     (2) 

 

where G is the shear modulus, namely 𝐺 =
𝐸

2(1+𝑣)  
,  where E is the modulus of elasticity and v is the 

Poisson’s ratio.  

In addition, the shear stress component 𝜏(𝑟) is perpendicular to the radius R , while its value along the 

radius R for r R  is given as (Fig. 3): 

𝜏(𝑟) = 𝐺 ∙
𝑟 ∙ d𝜑

d𝑧
                                                                                                            (3) 

 

By means of the equilibrium equations, the total moment of the internal shear stresses  𝜏(𝑟) of a section 

should be equal to the external torsional moment , 𝑎𝑛𝑑 𝑡hus,  

∫ 𝑟 ∙ [𝜏(𝑟) ∙ (2𝜋 ∙ 𝑟 ∙ d𝑟)]
𝑟=𝑅

𝑟=0

 = 𝑀𝑡                                                                               (4) 

 

Inserting Eq.(3) into Eq.(4) , the following form is obtained: 

 

∫ 𝑟 ∙ [𝐺 ∙
𝑟 ∙ d𝜑

d𝑧
∙ (2𝜋 ∙ 𝑟 ∙ d𝑟)]

𝑟=𝑅

𝑟=0

 = 𝑀𝑡                                                                               (5) 

Thus, Eq.(5) becomes: 

2𝜋 ∙ 𝐺 ∙
𝑅4

4
∙

d𝜑

d𝑧
 = 𝑀𝑡                     ⇒                                                           (6) 
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d𝜑

d𝑧
 =

𝑀𝑡

𝐺 ∙ 𝐼p
                                                                                                   (7) 

where  𝐼p is the polar moment of inertia 𝐼p (namely, 𝐼p = 𝜋 ∙
𝑅4

4
  for the case of a circular section). 

2.2 Undamped torsional response of a thin-walled cantilever with reduced-section along its height  

     Consider the cantilever of Fig. 4 that has a thin-walled section reduced in elevation, loaded by a 

distributed dynamic torsional-loading 𝜇t(𝑡, 𝑧). The section polar moment of inertia 𝐼p̅(𝑧), as well as the 

section mass moment of inertia 𝐽m̅(𝑧) are functions that depend on the height z.  

Consider an infinitesimal element of the cantilever of length dz, where the internal torsional moments on 

the element are as depicted in Fig. 4. On this infinitesimal element the inertia torsional moment 𝑀̅t,𝑎 =

−𝐽m̅(𝑧) ∙
𝜕2𝜑(𝑧,𝑡)

𝜕𝑡2   is formulated by applying the D’Alembert’s principle where 𝑀t(𝑧, 𝑡) is the torsional 

moment according to the well-known aforementioned Technical Torsion Theory. Furthermore, it is 

known that 𝐽m̅(𝑧) = 𝐼p(𝑧) ∙
𝑚̅(𝑧)

𝐴(𝑧)
  , where 𝑚̅(𝑧) is the mass per unit length in elevation and 𝐴(𝑧) is the 

area of the section at level z. Equilibrium of vectors of torsional moments on the differential element in z-

direction yields: 

 

−𝑀t(𝑧, 𝑡) + 𝜇t(𝑡, 𝑧) ∙ d𝑧 + [𝑀t(𝑧, 𝑡) +
𝜕𝑀t(𝑧, 𝑡)

𝜕𝑧
∙ d𝑧] − 𝐽m̅(𝑧) ∙

𝜕2𝜑(𝑧, 𝑡)

𝜕𝑡2
∙ d𝑧 = 0                           (8) 

 

𝜕𝑀t(𝑧, 𝑡)

𝜕𝑧
+ 𝜇t(𝑡, 𝑧) − 𝐽m̅(𝑧) ∙

𝜕2𝜑(𝑧, 𝑡)

𝜕𝑡2
= 0                                                                    (9) 

 

Inserting Eq.(7) into Eq.(9), the following form is obtained: 

 

𝐺 ∙
𝜕[𝐼p(𝑧) ∙ 𝜕𝜑(𝑧, 𝑡)]

𝜕𝑧2
+ 𝜇t(𝑡, 𝑧) − 𝐼p(𝑧) ∙

𝑚̅(𝑧)

𝐴(𝑧)
∙

𝜕2𝜑(𝑧, 𝑡)

𝜕𝑡2
= 0                                                  (10) 
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Eq.(10) is a equation which can be effectively treated numerically. In order to develop an efficient model 

to simulate the structural response of the prototype wind energy tower at hand, the continuous model 

method has been applied for both the fully fixed and the partially fixed foundation case [12], [20]. By 

means of this method, two effective numerical models have been respectively developed which in the 

present paper were appropriately modified to examine the torsional behavior of the prototype wind energy 

tower. 

 

3. FEM Modeling and Shell modal analysis 

The prototype of the thin-walled tower at hand supporting a 2 MW wind turbine is considered. The height 

of the tower is L=80m and the total height of the wind turbine including the rotor and the blades is 125 m. 

The shell diameter at the base is 4.30 m linearly decreasing up to the top where the tower diameter is 3.0 

m.  Shell thickness varies linearly from 30 mm at the bottom to 12 mm at the top. The steel quality of the 

structure is S355, while the modulus of elasticity Ε=210 GPa.  Moreover, the self-weight of the tower is 

1480 kN and the blade self-weight is 𝑊0 = 1067 𝑘𝑁, located horizontally in a distance of 0.73 m from 

the vertical tower-axis passing from the tower cross-section centroid. Moreover, along the vertical 

direction, the weight of 𝑊0 = 1067 𝑘𝑁 is located 0.50 m above the upper section of the tower. The 

model of the wind energy tower using shell finite elements and the first mode shapes are also shown in 

Fig. 5. It is clear that the activation of the 3rd, 4th and 6th mode shape of the tower due to the wind loading 

and the rotation of the blades in neighbouring frequencies of the abovementioned critical mode shapes is 

the main cause of torsional failures (Fig. 1). Thus, the critical frequencies of the modal analysis are: 

𝑓3 =
1

𝑇3
=

1

0.135
= 7.41 Hz  ,    𝑓4 =

1

𝑇4
=

1

0.131
= 7.63 Hz , 𝑓6 =

1

𝑇6
=

1

0.09
= 11.11 Hz 

 

4. Time function of the torsional moment loading 

In order to obtain the torsional behaviour of a wind energy tower, a static loading that leads to the 

development of torsional moments 𝜇t(𝑧) (around z-axis) with continuous distribution in elevation has to 
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be inserted on the tower (one with positive sign and another one with negative sign). The base torsional 

moment 𝑀t of the above mentioned continuous torsional moment 𝜇t(𝑧) of the tower is calculated by its 

seismic base shear 𝑉𝑜 multiplied by an accidental eccentricity 𝑒𝑎. The respective parametric analysis 

performed concluded to an accidental eccentricity equal to  𝑒𝑎 = ± 0.10 ∙ 𝐻tot , where the total height of 

the wind turbine tower is 𝐻tot.  

A critical assessment of the contribution of the torsional mode-shapes to the overall analysis results of a 

wind turbine tower is presented in [20]. The analysis can be performed for the tower subject to a certain 

concentrated torsion about the z axis at the top having a value equal to the seismic base shear.  In this 

analysis, the magnitude of the steel yield stress and the tower torsional deformation at the yield state have 

been both taken into account. By means of the proposed iterative procedure, the magnitude of the 

concentrated torsional moment has been approximated; the latter is combined to the rest design actions so 

that the above mentioned torsional deformation at the yield state to be reached. Although this 

concentrated loading approach leads to satisfactory results for towers without or with small number of 

internal stiffening rings, this analysis does not generally provide the designer with appropriate results, in 

particular when the response history analysis is applied. For this reason, in the present study an amended 

method is proposed considering the loading along the height of the tower distributed 𝜇t(𝑧) and having a 

form related to the time function  𝑓(𝑡). By means of this approach the average value of the tower 

accidental eccentricity is 𝑒𝑎 = ± 0.10 ∙ 𝐻tot. Then, the dynamic torsional loading 𝜇t(𝑧, 𝑡) is coupled to 

the seismic time-history excitation leading in all cases to realistic results. 

It is always clear that 𝜇t(𝑧) = 𝑀t 𝐻tot⁄ . Furthermore, in the case of a response history analysis, the 

previous base torsional moment 𝑀t(𝑡) has the following time-history form: 

𝑀t(𝑡) = ± 𝑒𝑎 ∙ 𝑉𝑜 ∙ 𝑓(𝑡)                                                                                           (11) 

where the 𝑉𝑜 = 𝑚tot ∙ 𝑆e is the seismic base shear according to the modified design acceleration spectrum 

(Fig.6) as proposed for wind turbine towershaving the same form for each ground category respectively 

[11-12, 20]: 
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0 ≤ 𝑇 ≤ 𝑇B = 0.20s              𝑆e(𝑇) = 𝑎𝑔 ∙ 𝑆 ∙ [1 +
𝑇

𝑇B
∙ (𝜂 ∙ 2.5 − 1)]                                  (12) 

𝑇B < 𝑇 ≤ 𝑇C = 1.60s            𝑆e(𝑇) = 𝑎𝑔 ∙ 𝑆 ∙ 𝜂 ∙ 2.5                                                                 (13) 

1.60𝑠 < 𝑇                                𝑆e(𝑇) = 𝑎𝑔 ∙ 𝑆 ∙ 𝜂 ∙ 2.5 ∙
𝑇C

𝑇
                                                         (14) 

where 𝑎𝑔 is the effective acceleration of the seismic hazard zone (in g-units), the damping coefficient 

given by  𝜂 = √
0.10

0.05+𝜉ef
  , with 𝜉ef the equivalent ratio viscous damping referring to the critical damping, 

S  the factor of the ground category according to EN 1998-1 and 𝑚tot the total mass of the wind turbine 

tower with its blades and rotor. It is worthy to note that the extension of the spectrum plateau up to 1.6s 

without increase of the seismic risk of the area is proposed as a means to cover any discrepancies and 

erroneous assumptions in the development of the model and the respective tower eigenfrequencies (and 

therefore, to take into account the respective resonance phenomena from the external seismic excitation 

and the first tower eigenmodes) [11-12, 20]. 

According to the previous analysis, the continuous time-torsional moments 𝜇t(𝑧, 𝑡) in elevation is (Fig.4): 

                            𝜇t(𝑧, 𝑡) = 𝑀t(𝑡) 𝐻tot⁄                                                                                                                   (15) 

The proposed design acceleration spectrum is almost identical to the one given by Eurocode EN 1998-1 

with only two rather minor different characteristics: (a) the plateau is extended up to the period 1.60 s 

and (b) the characteristic period 𝑇D of EN 1998-1 is ignored [22]. This way, the fictitious change of the 

large tower eigenperiods due to unrealistic assumptions of the model is encountered without 

amplification of the design earthquake level [20]. 

With reference to the previous time function 𝑓(𝑡), a parametric analysis has been carried out where 

stresses and deformations due to the continuous torsional moments in elevation have been calculated. 

From the magnitude of these stresses in combination with the critical ones causing damage and collapse 

(Fig.1), the function 𝑓(𝑡) can be assessed having the following characteristics:   

a) a total duration 25s at least 

b) a form similar to the one of Fig.7 
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c) function (𝑡) is described as follows: 

𝑓(𝑡) = 0.40𝑡    for   𝑡1 = 0.00 ≤ 𝑡 ≤ 𝑡2 = 2.50s                                                            (16) 

𝑓(𝑡) = 1.00    for   𝑡2 = 2.50 < 𝑡 ≤ 𝑡3 = 22.50s                                                            (17) 

𝑓(𝑡) = 1.00 − 0.40 ∙ (𝑡 −  𝑡3)                  for   𝑡3 = 22.50 < 𝑡 ≤ 𝑡4 = 25.00s           (18) 

d) for the seismic analysis, the response history analysis must be carried out using 

appropriately selected accelerograms simultaneously for the torsional moments 𝜇t(𝑧) and 

the wind loading. In the case that these accelerograms have duration of strong ground 

motion greater than 20s, then   𝑡3 −  𝑡2  must be equal to the duration of strong ground 

motion, since the strong ground motion has to be always located into the time-window  

 𝑡3 − 𝑡2.  

 

It would be advisable to apply a loading combination of the earthquake action and the wind loading such 

as ±E±0.5W, where E and W are the design analysis values for the earthquake and the wind action, 

respectively, as in the regions where wind turbine towers are constructed there is always significant 

Aeolian potential [11-12,20]. Obviously the seismic spectrum using high frequencies cannot be in general 

applied to simulate wind action that is characterised by low frequencies. This is the reason why in the 

present study the frequency of application of the torsional dynamic loading is defined by means of the 

time function 𝑓(𝑡), whistl the seismic spectrum is used only for the assessment of the magnitude of 

𝜇t(𝑧, 𝑡) when both earthquake and wind are acting, i.e. load combination (±E±0.5W ). 

 

5. Numerical application 

Applying the previously presented approach and taking into account the results of the linear response 

history analysis, an equivalent linear oscillator-tower with a concentrated mass at the top is first 

considered being equal with a half of the distributed mass in elevation plus the concentrated mass of the 

rotor and blades.  
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Thus: 

Weight in elevation: 50%x1422kN=711 kN 

Weight of rotor and blades: 1067 kN  

Total weight: 1778 kN 

Total mass: m=1778/9.81=181.24t 

Ground Category: D according to EN 1998-1 

Equivalent viscous damping ratio: 𝜉ef = 0.03 

Fundamental period: 𝑇1 = 2.59s from Fig. 5. 

Thus, 𝜂 = √
0.10

0.05+𝜉ef
= √

0.10

0.05+0.03
=1.12 

This oscillator-tower is loaded with equivalent static force 𝑉𝑜: 

𝑉𝑜 = 𝑚tot ∙ (𝑎𝑔 ∙ 𝑆 ∙ 𝜂 ∙ 2.5 ∙
𝑇C

𝑇
) = 181.24 ∙ (0.16𝑔 ∙ 1.35 ∙ 1.12 ∙ 2.5 ∙

1.60

2.59
) = 664.29 kN 

The accidental eccentricity of the tower is: 

 𝑒𝑎 = ± 0.10 ∙ 𝐻tot = ± 0.10 ∙ 80.00 = ± 8.00 m 

 
 

Therefore, the torsional moment 𝑀𝑡(𝑡) is: 

𝑀t(𝑡) = ± 𝑒𝑎 ∙ 𝑉𝑜 ∙ 𝑓(𝑡) = ± 8.00 ∙ 664.29 ∙ 𝑓(𝑡) = ± 5314.32 ∙ 𝑓(𝑡)      

where 𝑓(𝑡) is taken from Fig.7. 

 

The uniform torsional-moment 𝜇t(𝑧, 𝑡) in elevation is calculated as follows: 

𝜇t(𝑧, 𝑡) = 𝑀t(𝑡) 𝐻tot⁄ = ±5314.32 ∙ 𝑓(𝑡) 80.00⁄ = 66.43 ∙ 𝑓(𝑡)      kNm/m 

In the general case, considering the previous torsional moment 𝜇t(𝑧, 𝑡) along the height of the oscillator-

tower with simultaneous action E of the two translational seismic horizontal components (in 

accelerograms), as well as the 50% of the lateral wind loading W according to the ±E±0.5W combination, 

the critical combination is obtained.  
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In order to calculate the seismic response of the prototype wind turbine tower at hand, a linear response 

history using three appropriately selected accelerograms is applied (Fig.8); the latter are compatible with 

both, the modified spectrum (Fig.9) and the local conditions by the seismic microzonation study where 

the spectral amplification is taken equal to 3 instead of 2.50, with the time-depended uniform torsional-

moment 𝜇t(𝑧, 𝑡). The artificial accelerograms applied have been developed keeping quality requirements 

following a recently proposed method [23-25]. In Fig.10 the trace of the response history displacements 

of the top of the wind turbine tower is depicted, where the extreme displacement occurs at 16.86s [26]. At 

this moment, the indicative values of the deformations in elevation, as well as the stresses s11, s22 and 

s12 due to artificial compatible accelerograms and time-depended uniform torsional-moment 𝜇t(𝑧, 𝑡)  are 

presented (Fig.11). 

It is worthy to note that the extreme deformations in elevation due to uniform torsional-moment 𝜇t(𝑧, 𝑡) 

appear near the diaphragms, while the extreme displacements about the mid-span between two 

diaphragms (Fig.11f).  The use of additional diaphragms in elevation (for instance of diaphragms every 

10.00m) seems that it would likely contribute to a safer design strategy against torsional collapse of the 

tower.  

 

 

5. Conclusions 

In the present paper, aeroelasticity phenomena combined to the torsional-translational structural response 

of a wind turbine tower considered as an irregular structure have been studied. An appropriate model of a 

prototype wind turbine tower by using shell finite elements is herein developed. The action of the higher 

eigenshapes is very important and may become critical in the case that the tower is subjected to strong 

dynamic loading, as is the wind loading simultaneously excited by a strong seismic motion. In order to 

estimate the contribution of the fundamental torsional mode shapes of the tower into the final results, 

pairs of appropriately chosen artificial seismic accelerograms that have response acceleration spectra (for 

equivalent viscous damping ratio 0.03 for steel structures) equivalent to elastic acceleration spectra as 
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proposed by Eurocode EN 1998-1, have been selected and applied. Using a type of backwards analysis, 

an equivalent time-depended uniform torsion loading has been calculated for application on the tower 

under investigation. According to the present study, the use of additional diaphragms in elevation 

significantly contributes to a safer design against torsional collapse of the tower. 
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7. Figure captions 

 

Figure 1: Torsional Failure of a Wind Energy Tower [1] 

Figure 2: Behavior of a regular cylinder subject to a torsional moment 𝑀t  at the top. 

Figure 3: Section at z-level 

Figure 4: Behavior of a regular tower loaded with torsional moments in elevation. 

Figure 5: Model of the prototype wind energy tower and the six first mode shapes with periods 2.59s, 

0.33s, 0.135s, 0.131s, 0.12s and 0.09s respectively. 

Figure 6:  Modified horizontal elastic acceleration spectra for towers for each ground category 

Figure 7: Time function f(t) for the dynamic torsional moment Mt(t) 

Figure 8: Artificial accelerograms for seismic hazard zone with effective PGA=0.16g and for soil 

category D, compatible to proposed spectrum for wind energy towers. 

Figure 9: Elastic response acceleration spectra of the three artificial accelerograms of Fig. 8 

Figure 10: Response history displacements of the tower due to artificial accelerograms (Art1)-(Art2) by 

SAP2000 [23] 

Figure 11: Results of response history analysis using SAP2000: (a) Distribution of stresses s12 at time 

16.86s due to time-depended uniform torsional-moment 𝜇𝑡(z, t), (b) Distribution of stresses 

s11 at time 16.86s due to art1 & art2, (c) Distribution of stresses s12 at time 16.86, due to 

art1 & art2, (d) Distribution of stresses s22 at time 16.86s, due to art1 & art2, (e) 

Displacements at time 16.86s, due to art1 & art2, (f) Displacements at time 16.86s due to 

time-depended uniform torsional-moment 𝜇𝑡(z, t).c 
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