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MALTAZ2 is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower 180 nm CMOS imaging
process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors both in terms of
increased tracking performance due to lower material budget but also in terms of ease of integration and
construction costs due to the monolithic design. Current research and development efforts are aimed towards
radiation-hard designs up to 100 Mrad in Total Ionizing Dose and 3 x 10" 1 MeV n,,/cm* in Non-lonizing
Energy Loss. One important property of a sensor’s radiation hardness is the depletion depth at which efficient

charge collection is achieved via drift movement. Grazing angle test-beam data was taken during the 2023
SPS CERN test beam with the MALTA telescope and Edge Transient Current Technique studies were performed
at DESY in order to develop a quantitative study of the depletion depth for un-irradiated, epitaxial MALTA2
samples. The study is planned to be extended for irradiated and Czochralski MALTA2 samples.

1. The MALTA2 sensor

The MALTA sensor is a Depleted Monolithic Active Pixel Sensor
(DMAPS) featuring a small collection electrode, fabricated in the Tower
180 nm feature size process. The monolithic design offers multiple
advantages for tracking applications such as small radiation lengths
(100-300 pm sensor thickness), low power dissipation (~1 pW/pixel)
and high granularity (36.4 x 36.4 pm” pixel pitch). Additionally, the
small collection electrode design leads to a low sensor capacitance
(<5 fF) and to a larger signal amplitude and signal to noise ratio for
relatively thin devices [1].

MALTA2 is the second generation of the MALTA sensor family. It
has a 512 x 224 pixel array and brings improvements over the original

sensor design [2]. The new design implements a cascode readout stage
and enlarged transistors in the front-end amplifiers that in turn lowers
the Random Telegraph Signal (RTS) noise component and shifts the
operating threshold to lower values (~100 e™) [3]. Additionally, a more
efficient sensor configuration was realized by incorporating a shift
register-based slow control [4].

Fig. 1 shows the MALTA pixel cross-section [5]. A low doped n-
type implant (L-dop) is used to extend the depletion laterally across
the entire pixel. Additionally, two modifications to the standard process
have been added: a gap in the n-layer (NGAP) and an extra deep p-well
implant (XDPW) [6]. They both are designed to shape the electric field
in the pixel corners, such that the charge carriers avoid the electric
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Fig. 1. Cross section of the modified process, implementing a small electrode pixel.
The n-layer extends the junction to the full pixel size. Two variations of this process
are presented: modified process where the low dose n-implant is removed at the edge
of the pixel (NGAP) (a) and an extra deep p-well is added at the edge of the pixel
(XDPW) (b).

field minima points at the pixel corners (due to the double junction
field potential) [7]. Both modifications were found to have a similar
effect in terms of efficiency and radiation hardness.

Several test beam campaigns have been performed at the CERN
Super Proton Synchrotron (SPS) facility, between 2021 and 2023 in
order to characterize the novel MALTA2 sensor. The MALTA-based
beam telescope [8] is a permanent installation in the North Area beam
line and was used for triggering and characterization of the efficiency
and timing measurements. The MALTA2 sensor was characterized in
terms of hit efficiency, cluster size and timing performance [9] before
and after neutron [10] and X-ray irradiation [3].

A decrease in depletion propagation leads to a degradation of all
tracking figures of merit, making it an important sensor parameter to
be studied. Measurements of the depletion depth within the pixel aim
to shed light on the sensor performance at various pixel comparator
thresholds and bias values. A systematic study of the depletion also
aims to characterize the impact of process modifications on the elec-
tric field propagation. A detailed understanding of the hit collection
efficiency allows for a sensor configuration optimization in future
applications.

This study uses two methods for measuring the depletion depth
of the MALTA2 sensors: a direct investigation of the depletion depth
with a pulsed laser set-up (Edge Transient Current Technique [11])
and an indirect investigation method (the grazing angle technique [12])
performed with the MALTA telescope at SPS. An un-irradiated epitaxial
silicon sample was used in this study. The low resistivity epitaxial layer
has a 30 pm thickness, with a total sensor thickness of 100 pm and 300
pm respectively for mechanical support.

Nuclear Inst. and Methods in Physics Research, A 1063 (2024) 169262
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Fig. 2. MALTA2 carrier board layout for E-TCT with a wide opening at the top.

2. The Edge Transient Current Technique

The Edge Transient Current Technique (E-TCT) [11] uses a highly
focused pulsed laser incident on the edge of the sensor. This technique
acts as a very precise charge injection that aims to characterize a
sensor’s charge collection efficiency at various well-defined positions
inside the silicon bulk. By scanning the laser across a pixel edge, a 2D
map of the charge collection of a pixel can be made.

In order to access the edge of the MALTA2 sensor, the standard
carrier board was redesigned to allow the laser to penetrate the sensor.
Fig. 2 shows the new design of the PCB for E-TCT study. In order to
minimize any laser non-uniformities, before wire bonding, the sensors
were edge polished. The edge polishing was performed by manually
applying a fine diamond paste (0.1 pm granularity) and repeatedly
stroking with a cotton bud. For mechanical support and in order to
avoid any static discharge on the sensor during polishing, the sensor
was fixed with Kapton tape between two plastic blocks. Ref. [13] gives
an in-depth explanation of best practices for edge polishing of a thin
sensor. Finally, the sensor surface was cleaned with de-ionized water
and prepared for wire bonding. Fig. 3 shows the MALTA sensor edge
before (a) and after (b) polishing. After stealth dicing (laser ablation,
followed by a tape expansion process [14]), several irregularities can
be observed on the sensor edge. They are polished away and a smooth
surface is achieved.

A pulsed Infra Red laser (1064 nm wavelength, 500 Hz frequency)
was used for the E-TCT measurements of the MALTA2 sensor. Fig. 4
shows the E-TCT experimental set-up. The scanning of the sensor is
performed by illuminating the pixel edge with the laser head and
moving the linear stage in two axes (pitch and depth). Fig. 5 shows an
expanded view of a pixel cross-section and highlights the two axes of
movement of the stage: the pitch (across the sensor length) and depth
(in the silicon bulk depth) axes. Additionally, the laser head can be
moved on the height axis (down the matrix of the sensor).

Special analog pixels that bypass the normal digital operation of
the pixel array are present at the matrix edges. The signal from these
pixels can be read with a differential probe via an oscilloscope. Each
measurement point of a detected amplitude is achieved by averaging
200 consecutive pulses.

2.1. Focus scan
To determine the minimum spot size and the focus position of the

laser, a focus scan was performed. To measure the width of the beam,
the laser is shone across the edge of the sensor in the depth axis.
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(a) Before Polishing.

(b) After Polishing.

Fig. 3. MALTA2 sensor edge before polishing (a) and after polishing (b).

Fig. 4. E-TCT experimental setup. It consists of a sensor wire bonded to a specially
designed PCB with a cut-out which allows laser penetration. The sensor slow control
is performed with an FPGA and the analog readout is performed with a probe to an
oscilloscope.
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Fig. 5. Expanded view of a MALTA pixel cross-section. The orientation of the pitch and
depth axes are marked and the laser spot position on the sensor edge is highlighted.

As the laser is scanned across the pixel, the signal turn-on near the
pixel collection electrode gives a quantitative measurement of the beam
width via the error function [13]:

F(x, A, 6) =A(erf(%) + 1),

Nuclear Inst. and Methods in Physics Research, A 1063 (2024) 169262
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Fig. 6. Average amplitude recorded for multiple measured signals induced with the
E-TCT laser at different depths in the pixel near the collection electrode for a fixed
height. The data is fitted with an error function.
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Fig. 7. The focus scan performed for a MALTA2 sample. The width calculated through
the error function fit of multiple focus configurations is plotted versus the height
position of the laser head. The data is fitted with a waist function for a Gaussian
beam from which the best focus position and smallest beam width are extracted.
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6 \z Jo

The fitting parameter A is proportional to the maximum of the
charge profile and p to the position of the edge corner. The beam
width is deduced from the width parameter of the error function, é as
= \/56 [13]. Fig. 6 shows a depth scan near the collection electrode
for a laser focus configuration. The focus scan consists of measuring
multiple laser widths at different laser heights, shown in Fig. 7. The
data is fitted with a waist function for a Gaussian beam:

zZ—2g\2

- 1 (

w(z) = w, + R )

The minimum spot size is found to be 4.4 + 0.4 pm and the Rayleight
length, zx = 163 = 16 pm.

2.2. E-TCT results

A 2D scan of the analog pixel edge has been performed for multiple
bias values: —6 V, —8 V and —10 V. Fig. 8 shows the evolution of
the depth and pitch depletion with the increase in bias voltage. The
overlaid red box estimates the position of the pixel projection in the
2 axes (364 pm pitch dimension and 30 + 2 pm depth maximum
size). The maximum charge collection efficiency follows a distribution
which shows a larger electric field near the collection electrode later-
ally (pitch) and horizontally (depth). This effect was simulated with
TCAD [7] and is attributed to the lightly doped n-layer which provides
an enhanced lateral electric field. The extra deep p-well modification
suppresses the electric field near the pixel corners which limits the
lateral depletion along the pitch axis [15].
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Fig. 8. 2D distribution of analog signal amplitudes induced with an E-TCT for multiple
bias values of the sensor: —6 V (a), —8 V (b) and —10 V (c). The orientation of the
plot is such that the collection electrode sits at the top of the plot and the sensor edge
on the left.

Fig. 9 shows the projection of Fig. 8 in the pitch direction. The top
plot shows the data normalized to the maximum value of the —10 V bias
measurement point and the bottom plot shows the data normalized to
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Fig. 9. Projection on the pitch axis of the measured amplitude distribution with the
E-TCT for multiple bias voltages: —6,—8,—10 V. Two normalization procedures are
performed on the data. A normalization to the maximum value of the —10 V SUB
bias amplitude distribution is performed in the top plot and a normalization to the
respective maximum amplitude of the distributions in the bottom plot.

each distribution maximum. Both normalizations highlight a symmetric
distribution around the pixel collection electrode. This is expected due
to the octagonal electrode and symmetrical pixel pitch design [7].
The lateral depletion is calculated as the Full Width at Half Maximum
(FWHM) of the projection distribution. The estimation of the depletion
is additionally convoluted with the Gaussian smearing of a ~4 pm
wide beam. The lower amplitudes at smaller bias values are compatible
with fewer collected charges. As expected, a larger bias voltage leads
to larger collected amplitudes. A systematic increase of the lateral
depletion is observed with an increase in the bias voltage, from 23.6 pm
at —6 V, to 25 pm at —10 V. The lateral depletion can be improved by
further optimization of the electrical field design, in order to achieve
the full 36.4 pm lateral dimension.

Fig. 10 shows the projection of Fig. 8 in the depth direction. Unlike
the pitch projection, it shows an asymmetrical distribution. It is char-
acterized by a rapid increase near the collection electrode, followed by
a plateau and a slower decrease further in the silicon bulk. The normal-
ization of the upper figure shows the increase in measured amplitude
with bias voltage, due to the increase of the electric field strength. The
bottom normalization highlights that at larger bias voltages, the depth
distribution has a “flatter” plateau after the sharp increase near the
collection electrode (depth ~ 30 pm). This is an indication of a more
uniform electric field in depth at higher bias voltages. The depletion
depth estimation remains relatively unchanged for the various bias
voltages, suggesting that the epitaxial layer is fully depleted in depth
at —6 V and only an increase in the electric field strength is achieved
by increasing the bias voltage.

3. The grazing angle technique

An additional, indirect investigation method of the depletion depth
was performed. The grazing angle technique [12] uses a geomet-
rical model that correlates the depletion depth of a sensor to the
increase of the average cluster size due to the inclination of incident
charged-particle (mixed hadron beam from the SPS facility) tracks:

Clyizey (tana) = % tana + Cly;_,, (0)

The average cluster size is defined as the average numbers of pixels
above the comparator threshold associated to a single particle hit.
Cly;,,, is the cluster size projected on the axis perpendicular to the axis
of rotation, d is the active depth, p is the pixel pitch and « is the track
angle. The active depth of a sensor configuration can be calculated from
the slope of the increase in cluster size with track angle. A smearing
of the estimated depth is expected at the boundary of the junction,



D.V. Berlea et al.

I||II||I1I|III|III|I

MALTA2

-0V
e
o

e
=)

sub

EPI 30, 100 pum, L-dop, XDPW
0.4
Vs =-6V

FWHM =30.2 +£0.2 pm

0.2

Normalized to
max. of V,

0 [ P FETTE FET T FEET FEET FETT i

== Vsun:’sv
g F FWHM =29.8 £ 0.2 pm
E 08
B 0sE- Vp=-10V
) E FWHM =30.0 +0.2 pm
B o4
N -
S e
E 02
o -
z [T FET FEETY FEUE AT IYT PO P

o

15 20 25 30 35 40
Depth [um]

Fig. 10. Projection on the depth axis of the measured amplitude distribution with
the E-TCT for multiple bias voltages: —6,—8,—10 V. Two normalization procedures are
performed on the data. A normalization to the maximum value of the —10 V SUB
bias amplitude distribution is performed in the top plot and a normalization to the
respective maximum amplitude of the distributions in the bottom plot.

22

8 [ MALTA2
@ = Epi 30, 100 um, L-dop, XDPW
2 2—
s : VSUD = -6 V
5]
2 C
1.8—
= —e— perpendicular to the rotation axis
16—
14 C —s=— parallel to the rotation axis
12f
010 20 30 4

50 60
Angle [deg]

Fig. 11. Average cluster size projected on the perpendicular and parallel axis of
rotation vs the angle of rotation for a MALTA2 sample.

where an electric field gradient is present. As a consequence, the active
depth estimation approaches the depletion depth of the sensor, when
the diffusion component of the collected charge is minimized. In order
to generate inclined tracks through the sensor, the DUT was placed on
a rotating stage that allowed the systematic rotation of the sensor.

While at low angles, the diffusion component of cluster formation is
dominant, at large angles the cluster formation due to angled particle
tracks is dominant. Fig. 11 shows the projections in the perpendicular
(blue line and circles) and parallel (red line and squares) directions
relative to the axis of rotation of the average cluster size for multiple
angle values. The parallel projection remains constant with the increase
in angled tracks. At larger angles, a slight increase in cluster size is
noticed. It is correlated to both a tilt in the DUT plane and a larger total
deposited energy of hits that lead to an increase in charge sharing. The
perpendicular projection increases with the rotation angle. The increase
is characterized by a diffusion dominated regime (angles < 30) and a
linear regime for larger angles (angles > 30).

A systematic study of the active depth of an epitaxial MALTA2
sample has been performed for multiple pixel comparator threshold and
bias voltage configurations as is shown in Fig. 12. Similar to the E-TCT
results, the increase in bias over —6 V for an epitaxial sample does not
lead to an increase in active depth, indicating a full depletion of the 30
pm thick substrate. The systematically lower measured active depth at
higher bias is due to the increase in sensor noise at larger bias values,
as seen in Ref. [10].

Fig. 13 shows the Most Probable Value (MPV) of the energy loss
projected onto a 2 x 2 pixel matrix. A ~50% drop between the charge
collected in the pixel center and the pixel corner is observed. This is
explained by the lower active depth at larger applied thresholds due to
pixel boundary charge sharing.

Nuclear Inst. and Methods in Physics Research, A 1063 (2024) 169262
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Fig. 12. Active depth versus threshold in electrons for two measurement techniques:
grazing angle, performed with a 180 GeV hadron beam at SPS CERN and E-TCT,
performed with a pulsed laser.

MALTAZ2, 30um EPI, H-dop, NGAP, Veu= -6V
1800 g

&
1600 &

1400

Track Y pos [um]

1200

1000

800

0 10 20 30 40 50 60 70
Track X pos [um]

Fig. 13. Most probable value of the energy loss (MPV) projected onto a 2 x 2 pixel
matrix. The MPVs are sorted into 2.3 x 2.3 pm” bins based on their associated track
position within the pixel extracted from the telescope data. It is obtained by scanning
the threshold in fine steps and fitting a cumulative Landau distribution to the efficiency
spectrum.

Due to a limited diffusion component from the low resistivity silicon
carrier wafer, the active depth estimation approaches the depletion
depth for the lowest threshold value. This is additionally highlighted
by comparing the E-TCT measurement point (red data point in Fig. 12)
with the grazing angle technique measurements. The threshold for the
E-TCT measurement point is deduced as the oscilloscope trigger value
(~30 mV) scaled to the MPV of a Minimum Ionizing Particle (MIP)
passing through the sensor.

4. Conclusions

The active depth of the MALTA2 sensor has been measured by
employing two methods: the E-TCT and the grazing angle technique.
The E-TCT offers a direct measurement of the two-dimensional col-
lected charge profile, but requires multiple preparatory steps: PCB
redesign, edge polishing and analog read-out. The grazing angle tech-
nique has a straightforward implementation in an already existing
beamline experiment, but has resolution only in the depth axis.

The two techniques show similar results for the lowest threshold
configuration of the sensor measured with the grazing angle technique.
The 30 pm epitaxial thick silicon is fully depleted in depth at —6 V
bias, but an increase in the lateral depletion is observed at larger bias
voltages, up to —10 V. Additionally, a more uniform electric field is
highlighted at higher bias voltages.

The performed study shows important results in terms of pixel
performance and future sensor configuration tuning for radiation hard-
ness and efficient charge collection shape optimization. The measured
epitaxial samples offered an important proof of concept for the two
techniques and highlights the importance of both techniques in a
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thorough depletion depth study. Further studies are planned, in order
to measure the depletion depth of Czochralski silicon samples and
irradiated samples that will offer further estimation of the radiation
damage impact on the MALTA2 sensor.
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