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Surrogate-Driven Multi-Objective Predictive Control
for Electric Vehicular Platoon

Yanhong Wu, Zhiqiang Zuo, Senior Member, IEEE, Yijing Wang, Qiaoni Han, Ji Li, Member, IEEE,
Quan Zhou, Member, IEEE, Hongming Xu

Abstract—This paper proposes a surrogate-driven multi-
objective predictive control (SMPC) strategy to address the
dynamics uncertainty and multi-objective optimization issues of
electric vehicular platoon (EVP). A surrogate-driven model is
established with subspace identification to alleviate the adverse ef-
fects of uncertain dynamics for EVP. Then, a subspace predictor-
based distributed surrogate-driven model predictive controller
is developed for EVP. To mitigate conflicts among multiple
optimization objectives involving driving safety, driving comfort
and energy economy, a multi-objective cost function with the
predictive sequence is designed. To this end, a grey wolf optimizer
is suggested to guide the search towards diverse solutions, aiming
to achieve globally optimal trade-offs among conflicting multiple
objectives. In this way, the SMPC strategy is constructed, and its
stability is theoretically proven. Finally, several experiments are
carried out on a co-simulation vehicular platoon platform with
the IPG-CarMaker software. The experimental results validate
the effectiveness of the proposed SMPC strategy.

Index Terms—Electric vehicular platoon, multi-objective op-
timization, surrogate-driven model predictive control, grey wolf
optimization.

I. Introduction

The burgeoning requirement for intelligent transportation
system has encountered obstacles due to limited road capacity,
increasing concerns about traffic safety and the intensifying
energy crisis. The promotion of autonomous electric vehicle
(AEV) constitutes a long-time strategic goal by the trans-
portation community [1]. Therefore, it is essential to design
a suitable strategy to strike a balance among driving safety,
driving comfort and energy economy for electric vehicular
platoon (EVP).

Powertrain modelling constitutes a pivotal element in the
optimization of AEV performance. Actually, each AEV has
a complex structure involving motor, battery, transmission
and chassis. As a result, it is hard to dissect the accurate
physical parameters [2]. To this end, extensive research has
been conducted to alleviate the adverse effects of uncertain
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dynamics, thereby ensuring the inter-spacing of EVP [3]–
[6]. However, focusing solely on the safety of EVP while
disregarding their economic viability and comfort implications
poses significant risks [7], [8]. In detail, disregarding economic
dimension may generate heavy financial burden, thus impeding
their widespread acceptance [9]. Concurrently, disregarding
comfort facets could potentially evoke user discontent and
engender resistance towards the assimilation of novel tech-
nologies. Therefore, a suitable solution is expected to inte-
grate the safety, economy and comfort of EVP. As a result,
the exploitation of multi-objective optimization approach has
triggered a widespread research upsurge.

Among plenty of existing platoon control schemes, the
distributed model predictive control has attracted considerable
attention [10], [11]. For the distributed model predictive con-
trol scheme, each controller solves individual optimal control
problem within a finite horizon and exchanges information
over the communication network [12]. This approach relies
on an accurate dynamic model and becomes impractical for
several intricate dynamic systems, especially for AEV [13]–
[15]. In light of this predicament, the surrogate-driven mod-
elling method provides a feasible solution with rapid evolution
in data collection, storage and processing capabilities. The
underlying principle of this focuses on examining the real-time
input-output (I/O) trajectory to identify the black-box system
[16]. One of the representatives is Network-based model pre-
dictive control, namely, surrogate-driven model predictive con-
trol [17], [18]. It should be pointed out that this scheme would
cause a substantial computational burden. Then, a subspace-
based surrogate-driven modelling approach has emerged with
satisfactory computational efficiency [19]. Its subspace linear
predictor can be directly employed in the predictive process
without identifying the local state-space model. Therefore,
these studies inspire us to develop an efficient surrogate-driven
predictive control strategy for EVP.

In practice, keeping the inter-spacing of EVP does not imply
that the optional performance can be achieved. The energy e-
conomy and driving comfort also are important indicators [20],
[21]. These indicators directly influence the driving experience
and the acceptance of autonomous driving technology in the
transportation ecosystem. The essence of this task pertains to
a multi-objective optimization problem. Therefore, a hierar-
chical multi-objective optimization scheme considering fuel
consumption minimization and traffic safety improvement was
developed in [22]. To simplify the multi-objective problem,
the Pareto method and weighted-sum method provide feasible
ideas, and then multiple objectives can be integrated into
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Fig. 1. Schematic diagram of vehicular platoon with PLF communication topology

one single objective [23]. In this way, several optimization
approaches such as particle swarm optimization [24], genetic
optimization [25], ant colony optimization [26] and grey wolf
optimization (GWO) [27] have been put forward. Among
them, GWO adeptly maintains a diversified pool along the
Pareto front, thereby enhancing its capacity to capture a
comprehensive spectrum of trade-off solutions. It is noted that
GWO may occasionally get stuck in local optimal, failing
to find the global optimum. To enhance global exploration
capability, an annealing-based GWO was developed in [28].
Nevertheless, these multi-objectives optimization schemes on-
ly rely on current conditions, and they may fall short in
addressing intricate and dynamically evolving traffic scenarios.

The aforementioned research in vehicular platoon mod-
elling is dedicated to constructing dynamic models rather
than surrogate-driven ones. This brings a challenge in ob-
taining accurate dynamic parameters for EVP. Furthermore,
the existing control algorithms are hard to balance multi-
objectives conflicts in complex driving scenarios. All these
factors motivate us to develop an accurate platoon model and
an efficient multi-objective optimization scheme for EVP. The
main contributions of this paper are summarized below.

i) A subspace-based surrogate-driven modelling method is
developed to characterize the EVP dynamics. The electric
vehicular model includes driving motor, battery, transmis-
sion and chassis, and it is arduous to obtain these complex
dynamic parameters. Therefore, the subspace technology
is employed to construct a surrogate-driven model. This
model can be directly utilized to the prediction process
without identifying the local state-space model, thereby
enhancing the applicability of EVP model.

ii) A surrogate-driven multi-objective predictive control
(SMPC) strategy is proposed to solve the multi-objective
issue involving driving safety, driving comfort and energy
economy. It combines the predictive capabilities of model
predictive controller with the global optimization perfor-
mance of GWO. Such a treatment could optimally balance
the multi-objective conflicts and reduce the computational
burden.

iii) An EVP co-simulation platform is established with the
Matlab software and the IPG-CarMaker software. Several
field experiments are conducted to verify the effectiveness
of our proposed strategy.

This paper is organized as follows. Section II illustrates
the vehicular platoon model. Section III designs the SMPC
strategy. Field experiments are carried out in Section IV.
Experimental results are analyzed in Section V. Section VI

draws the conclusion.
Notations: ‖·‖q stands for the Frobenius norm. The Moore-

Penrose pseudo inverse of matrix H is denoted as H†. |A|
denotes the absolute of A. ‖ · ‖2 represents the L2 norm.

II. VehicleModelling
The EVP consists of one leading vehicle (LV) and M −

1 following vehicles (FV). The predecessor-leader following
(PLF) communication topology is utilized to characterize the
relationship between the preceding vehicle and the following
ones [4]. Each AEV involves motor, battery, transmission and
chassis. To alleviate the adverse effects of uncertain dynamics,
the mechanism model is transformed into a surrogate-driven
one.
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Fig. 2. Schematic diagram of AEV

A. Mechanism Model
Fig. 2 gives the powertrain structure of AEV. The battery

could generate direct current which is converted to alternating
current to steer the motor. Wheels are propelled by the motor
through the transmission, and they also suffer the resistance
[29]. To derive a concise model, several reasonable hypotheses
are given: 1) The vehicle is traveling on a dry and flat road,
with negligible longitudinal slip of the tires. 2) The vehicle
body is symmetric and rigid. 3) The yaw and pitch motions
of the vehicle are neglected. 4) The influences of internal
resistance, temperature variation and capacity degradation on
the battery are ignored [30], [31].

The actual driving torque of AEV is expressed as

Tt = Teigηt

where Tt denotes the driving torque from the transmission. Te

represents the demand torque. ig is the transmission ratio. ηt

stands for the transmission efficiency.
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The vehicle kinematics model is provided to describe the
characteristics of AEV. Specifically,

Tt = FR
F = ma
Ṡ = V
V̇ = a

where F denotes the driving force. R represents the tire radius.
m stands for the vehicle mass. S is the position. V represents
the velocity. a denotes the acceleration.

The current I is generated through the motor [32], and it
has the form

I =
TeNt

95U
≈

Te

Ke
(1)

where Ke denotes the anti-electromotive force coefficient. Nt

and U are the speed and voltage of the motor.
The state of charge (SOC) of the battery is described as

SOC = SOC0 −

∫
I

Cbat
dt

where SOC0 denotes the initial condition of SOC. Cbat stands
for the capacity of the battery.

With the above formulas, we can get
Ṡ = V

V̇ =
Teigηt

mR
˙SOC = −

Te

KeCbat

According to the properties of PLF communication topology
in Fig. 1, FV i could receive the information of LV 1. LV 1
has the optimal velocity, spacing and SOC, which are regarded
as the reference states. Then, the Taylor formula is introduced
to build an error model of the ith AEV. That is

Xi(k + 1) = Ai(k)Xi(k) + Bi(k)Ui(k) (2)

with

Ai(k) =

 1 0 0
0 Ts + 1 0
0 0 1

 , Bi(k) =

 Te,iig,iηt,iTs/(miRi)
0

−Ts/(Ke,i Cbat,i)

 ,
Xi(k) =


Ṽi(k)
S̃ i(k)

S̃OCi(k)

 =

 Vi(k) − V1(k)
S i(k) − S 1(k) − di

SOCi(k) − SOC1(k)

 ,
Ui(k) =

[
T̃e,i(k)

]
=

[
Te,i(k) − Te,1(k)

]
,

where Ts stands for the sampling period. d represents the
spacing. Subscript 1 denotes the leading vehicle. Note that

Among the existing complex characteristics, there are sev-
eral uncertain parameters such as m, R, Ke and Cbat. To
address this issue, a surrogate-driven model approach will be
developed in the following subsection.

B. Surrogate-driven Model

The subspace identification method has its proficiency in
surrogate-driven modelling by identifying underlying low-
dimensional structures in high-dimensional data. This ap-
proach facilitates accurate representation, analysis, and pre-
diction of complex vehicle dynamics. To certain extent, it
could enhance model interpretability and reduce computational

complexity [33]. Therefore, we employ it to construct the
surrogate-driven model for EVP.

The control output Yi(k) is made up of state vector with
Yi(k) = CXi(k). Here, Ci is an identity matrix. Then, the I/O
trajectory for prediction horizon N and excitive order L is
stacked up to construct Hankel matrices. That is,

Y
f
i (k) = Γi(k)X f

i (k) +Hi(k)U f
i (k) (3a)

Y
p
i (k) = Γi(k)Xp

i (k) +Hi(k)Up
i (k) (3b)

with

Y
p
i (k) =


Yi(k) · · · Yi(k + N − L)

:
. . . :

Yi(k + L − 1) · · · Yi(k + N − 1)

,
Y

f
i (k) =


Yi(k + L) · · · Yi(k + N)

:
. . . :

Yi(k + 2L − 1) · · · Yi(k + L + N − 1)

,
X

p
i (k) =

[
Xi(k) · · · Xi(k + N − L)

]
,

X
f
i (k) =

[
Xi(k + L) · · · Xi(k + N)

]
,

Γi(k) =
[
Ci(k) Ci(k)Ai(k) · · · Ci(k)AL−1

i (k)
]T

,

Hi(k) =


0 Ci(k)Bi(k) · · · Ci(k)AL−2

i (k)Bi(k)
0 0 · · · Ci(k)AL−3

i (k)Bi(k)

: :
. . . :

0 0 · · · 0


T

,

U
f
i (k) and Up

i (k) have similar forms as Y f
i (k) and Yp

i (k),
where superscripts p and f denote the past and future matrices
of the variables.

So far, the mechanism model (2) has been converted to a
surrogate-driven one (3), and it will be employed to design
the control strategy.

III. SMPC Strategy Design

In this section, the SMPC strategy is suggested by com-
bining the GWO-based multi-objective optimization method
and the distributed surrogate-driven model predictive control
approach. Furthermore, the stability of EVP is analyzed.
Fig. 3 depicts the framework of the SMPC strategy. More
specifically, the surrogate-driven EVP model is implemented
to construct the subspace predictor of the model predictive
control, and it could generate the predictive sequence. Based
on this, a multi-objective cost function involving driving
safety, driving comfort and economy is calculated by GWO.
Then, the optimal control sequence is obtained to steer EVP.

A. Subspace Predictor

The Hankel matrices in (3) are derived as the subspace-
based linear predictor. The rationale behind adopting a sub-
space predictor lies in employing data mapping techniques to
formulate a novel surrogate-driven model, thereby efficiently
mitigating control issues caused by modelling errors. These
approach can be directly employed in the prediction process
without identifying the local state-space model [34].
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Fig. 3. The framework of the SMPC strategy

By introducing the least squares scheme to calculate Lw,i(k)
and Lu,i(k), the optimization problem can be formulated as

min
wwwwwwwwwwY f

i (k) −
[
Lw,i(k) Lu,i(k)

] [ Wp
i (k)

U
f
i (k)

] wwwwwwwwww
2

q

(4)

where Wp
i (k) = [Yp

i (k) Up
i (k)]T stands for the subspace pre-

diction matrix corresponding to the past I/O trajectory. Lu,i(k)
and Lw,i(k) denote the subspace linear predictor coefficients.

Then, the orthogonal projection technique is suggested to
calculate the least squares problem in (4). Thus,

Ŷi(k) = Y
f
i (k)

/ [
W

p
i (k) U f

i (k)
]T
.

According to the properties of QR-decomposition, we can
obtain

Ŷi(k) = Y
f
i (k)

[
W

p
i (k)

U
f
i (k)

]† [
W

p
i (k)

U
f
i (k)

]
(5)

=
[

Lw,i(k) Lu,i(k)
] [ Wp

i (k)
U

f
i (k)

]
.

Furthermore, the model predictive control algorithm offers
a significant benefit in handling operational constraints of the
cost function [30]. That is

Ymin
i ≤ Yi(k + τ|k) ≤ Ymax

i

Umin
i ≤ Ui(k + τ|k) ≤ Umax

i

where superscripts min and max denote the lower and upper
bounds of the constraints.

The predicted output sequence Ŷi(k) will be used to design
the following multi-objective cost function.

B. Multi-Objective Cost Function

The multi-objective optimization of EVP has received sig-
nificant attention [35]. It is pivotal in ensuring an efficient
driving experience, aligning with both driving safety and eco-
nomic consideration [23]. Here, a multi-objective cost function
with predictive sequences is constructed in the sequel.

Three optimization objectives involving driving safety, driv-
ing comfort and energy economy correspond to distinct predic-
tive variables (Ŷ). The velocity and control torque are crucial
indicators for ensuring driving comfort, while spacing and
SOC are determinants of driving safety and energy economy.
Note that the predictive sequences of the preceding vehicle
i − 1 are regarded as the optimal objectives for ego vehicle i.
The economic objective aims to maintain a consistently high
SOC, closing to SOC of reference states. In this way, three
cost functions concerning safety, comfort and economy are
respectively defined as

J s
i (k) = min

N−1∑
τ=0

‖ S̃ i(k + τ|k) − S̃ i−1(k + τ|k) − d ‖2 (6)

Jc
i (k) = min

N−1∑
τ=0

(
‖ Ṽi(k + τ|k) − Ṽi−1(k + τ|k) ‖2Qi

(7)

+ ‖ T̃e,i(k + τ|k) ‖2Ri

)
Je

i (k) = min
N−1∑
τ=0

‖ S̃OCi(k + τ|k) ‖2 (8)

where Q and R are the weight coefficients of velocity and
input torque.

Each objective has been well addressed in [36], [37]. More
specific,

1) Driving safety J s
i : Driving safety refers to the ability to

prevent accidents and minimize potential risks within the
traffic system. The objective of driving safety aims to
improve the position tracking performance by adjusting
the inter-vehicle spacing. Here, it requires a desired
platoon spacing between ego vehicle i and the preceding
vehicle i − 1.

2) Driving comfort Jc
i : Driving comfort seeks to meet the

user’s driving experience. The purpose of this item is
to provide smooth and moderate speed variations, min-
imizing discomfort and bumps during acceleration and
braking processes. Specially, it should minimize velocity
error for ego vehicle i and preceding vehicle i − 1. In
addition, the control input T̃e should also stay within a
reasonable range.

3) Energy economy Je
i : Energy economy is vital for im-

proving driving range and enhancing economic efficiency.
This object represents the ability to minimize battery
consumption with the goal of achieving efficient energy
utilization. Each vehicle is required to ensure a stable
discharge process by reducing SOC deviation from the
optimal value.
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The process of solving multi-objective optimization is
fraught with inherent challenges. One of the pivotal difficulties
comes from the intricate task of simultaneously optimizing
multiple conflicting objectives. Therefore, the weighted-sum
scheme integrates different objectives into one single objective
with configurable weights. This efficient approach demon-
strates remarkable performance in addressing complex multi-
objective issue, particularly in practical applications where
computational resources are limited [35].

From (6)-(8), the sum cost function can be represented by

J∗i (k) = min
3∑
ς=1

wςJςi (k) = min
N−1∑
τ=0

ξ
(
Yi(k + τ|k),Ui(k + τ|k)

)
s.t. wς > 0,

3∑
ς=1

wς = 1, ς = {s, c, e} (9)

where wς denotes the weight coefficients corresponding to
each objective. Previous studies [23], [38] have given the
recommended values of wς = [0.5, 0.25, 0.25].

Then, each sum cost function J∗i with prediction sequence
is subject to optimization in terms of the following GWO
algorithm.

Initialize parameters 

Calculate the fitness 

of grey wolves

Update the position 

of grey wolves

Calculate the position 

of grey wolves

Start

End

t > Ng

Yes

No

Return the optimal 

control sequence

Determine upper and 

lower bounds

Surrogate-driven 

EVP model

Subspace predictor

Multi-objects cost

Model predictive control

Fig. 4. The flowchart of the SMPC strategy

C. Grey Wolf Optimization

Actually, the GWO algorithm has emerged as a nature-
inspired metaheuristic algorithm that demonstrates distinctive
efficacy in addressing the global optimization issue [39]. GWO
could maintain diversity within the solution space by emu-
lating the collaborative and individualistic tendencies of grey
wolves. The wolves with the best fitness values are regarded
as leading wolves (α, β and δ). The grey wolf, denoted as ω,
represents the residual individuals within the wolf pack. Under
the leadership of wolves α, β and δ, a continuous search for the
optimal solution in multi-objective optimization is conducted.

In the encircling prey step, the grey wolves surround the
prey during the hunt. This behavior is modeled as{

D(t) = |C Pp(t) − P(t)|, t ∈ [1,Ng]
P(t + 1) = Pp(t) −A D(t) (10)

with

A = 2ar1 − a, r1 ∈ [0, 1]
C = 2ar2, r2 ∈ [0, 1]

where P and Pp represent the population positions of the wolf
ω and the prey at the tth iteration step, respectively. Ng denotes
the maximum number of iterations. D is the distance between
the wolf ω and the prey. A and C represent the coefficient
vectors, which are determined by the convergence factor a
and random vectors (r1, r2). Such a treatment could mitigate
local optimum stagnation and enhance the exploration speed
by assigning random weights to the prey. Here, the optimal
control input Te is derived from the population position of
grey wolf and is then implemented to drive AEVs.

0 1 2 3 4 5 6 7 30
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sc
or
e

Iterate step

   a wolf 
   b wolf 
   d wolf   

Fig. 5. The convergence performance of GWO

Fig. 4 plots the detailed solving process of GWO. Note
that the fitness function is responsible for scalarizing the sum
cost function into unified scores. These scores are assigned
to different wolves α, β and δ for discerning the quality of
each solution. As shown in Fig. 5, the scores of wolves α, β
and δ could converge within 6 iterative steps. This indicates
that the proposed strategy executes effective performance in
addressing multi-objective optimization problems.

D. Stability Analysis

The stability is essential to ensure that the algorithm con-
sistently converges to an optimal equilibrium while addressing
complex optimization issues. Therefore, the detailed stability
analysis of the proposed strategy is carried out in this subsec-
tion.

Lemma 1: [16] System (2) is characterized by the stabi-
lizability and the detectability. If system (2) is stable, there
exists a Lyapunov function Wi(k) fulfills

Wi(k + 1) −Wi(k) ≤ −ε0‖Xi(k)‖2 + ξ
(
Yi(k),Ui(k)

)
(11)

s.t. Wi(k) ≤ γ0‖Xi(k)‖2,WN
i (k) =

∑N−1
τ=0 Wi(k + τ|k)

where ε0 and γ0 are positive constants.
By combining the quadratic stage cost with an exponential

controllability argument, it guarantees the boundedness of
infinite horizon cost, i.e.,

J∗i (k) ≤ γs‖Xi(k)‖2, γs > 0. (12)
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Then, a local Lyapunov function candidate Vi(k) is con-
structed as

Vi(k) = J∗i (k) + WN
i (k). (13)

Theorem 1: Suppose that {Up
i ,U

f
i } is persistently exciting

of order N + 2n. For any constant Υ > 0, there always exists
a horizon Nm > 0 such that for all N > Nm and any initial
condition satisfying Vi(0) < Υ, the SMPC problem (9) is
recursively feasible. Then, the closed-loop system is stable
if the function Vi(k) satisfies ε0‖Xi(k)‖2 ≤ Vi(k) ≤ γs‖Xi(k)‖2

and γs(γs−γo)
ε0(Nm−1) − ε0 ≤ 0.

Proof: With (11)-(13), the lower bound and upper bound
of Vi(k) can be obtained

ε0‖Xi(k)‖2 ≤ Vi(k) ≤ γs‖Xi(k)‖2 + γ0‖Xi(k)‖2. (14)

According to Lemma 1, the detectability property (11) yields

WN
i (k + 1) −WN

i (k) (15)

=

N−1∑
τ=0

(
Wi(k + τ + 1|k + 1) −Wi(k + τ|k)

)
≤ −

N−1∑
τ=0

(
ε0‖Xi(k)‖2

)
+

N−1∑
τ=0

ξ
(
Yi(k + τ|k),Ui(k + τ|k)

)
.

From (14) and (15), we can get
N−1∑
k=1

(
ε0‖Xi(k)‖2

)
≤ Vi(k) ≤ (γs + γ0)‖Xi(k)‖2.

Thus, there exists an integer Nm ∈ {1, 2...,N − 1} such that

‖Xi(k)‖2 ≤
γs + γ0

ε0(Nm − 1)
‖Xi(k)‖2.

Denote the standard candidate solution being {Yi
′

(k +

1|k),Ui
′

(k + 1|k)}, then one derives

J
′

i (k + 1) =

N−1∑
τ=0

ξ
(
Yi

′

(k + τ + 1|k + 1),Ui
′

(k + τ + 1|k + 1)
)

= J∗i (k) − ξ
(
Yi
∗(k|k),Ui

∗(k|k)
)
.

Hence, it follows that

J∗i (k + 1) ≤ J∗i (k) − ξ
(
Y∗i (k|k),U∗i (k|k)

)
.

Then, the cost of the candidate solution over the horizon
Nm satisfies

J∗i (k + 1) + ξ(Yi(k|k),Ui(k|k)) (16)

≤

Nm−1∑
τ=0

ξ
(
Y∗i (k + τ|k),U∗i (k + τ|k)

)
+ J∗i (k + 1)

≤ J∗i (k) +
γs + γ0

ε0(Nm − 1)
‖Xi(k)‖2.

According to (14) and (16), the Lyapunov function candi-
date admits

Vi(k + 1) − Vi(k) ≤
γs + γ0

ε0(Nm − 1)
‖Xi(k)‖2 − ε0‖Xi(k)‖22.

To ensure Vi(k) being decreased monotonically, a sufficient-
ly long horizon Nm is required, that is

N ≥ Nm ≥
γs + γ0

ε2
0

+ 1.

Now it can be concluded that the SMPC scheme is stable,
thus achieving vehicular platoon tracking. This completes the
proof.

Here, the prediction horizon N is chosen as 16. Note that
the control horizon is set to be consistent with the prediction
horizon N. This consistency allows simultaneous consideration
of prediction and control within the same scale, reducing the
complexity of optimization problem [4].

In addition to prediction horizon N, sampling time Ts also
plays a significant role in the performance of MPC [40]. The
above two parameters determine the prediction time TN of
MPC, where TN = Ts ∗ N. To ensure the stability of platoon,
TN should satisfy [41]

TN ≥
Vmax

amax
+

2a3
max

3J2
max

where Vmax, amax and Jmax represent maximum velocity,
maximum acceleration and maximum jerk of the vehicle,
respectively. With this in mind, Ts is chosen as 10Hz.

IV. Experiments Design

In this section, a co-simulation experimental platform is
designed with IPG-CarMakerr software. Then, several com-
parison experiments are conducted to verify the effectiveness
of the proposed SMPC strategy.

A. Experimental Platform

The experiment is carried out on a vehicular platoon co-
simulation platform (see Fig. 6) with Matlabr software and
IPG-CarMakerr software and high-performance computer.
This computer is equipped with an Intel i7-14700KF (3.4GHz)
CPU and an RTX4060 GPU, which meets the computational
requirements for the actual vehicle applications [42], [43].
IPG-CarMakerr details AEV dynamics including chassis,
battery, motor, clutch, engine and tire models.

Worker 1

(Algorithm)

Worker M 

(Algorithm)

Vehicle 1

PID controller

AccelerateBrake

Matlab 
code

C++ 
codeBuild

Vehicle M

SimnetS
ta

te
s

S
ta

tes

Plug in

Platoon states

Te Thr

Fig. 6. Experimental framework of vehicular platoon
platform

The proposed SMPC strategy is deployed with Matlab
language on the host computer, and it could generate the
optimal control sequence (Te). However, it is not feasible
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that Te is directly used to drive AEV. Therefore, a PID-based
lower-level controller is designed. In this way, each AEV is
driven via brake and acceleration to track Te, thus achieving
platoon control. The algorithm is compiled into C++ code
and plugged in the IPG-CarMakerr software. In addition, the
real-time information of vehicular platoon could be exchanged
through the SimNet module. The SimNet add-on for IPG-
CarMakerr allows a connection of multiple vehicles running
in an independent CarMaker application. This forms a closed-
loop structure.

TABLE I: VEHICULAR PARAMETERS

Symbol m (kg) R (m) ig Cbat (Ah) Ke

L1 1891 0.334 0.89 190 3.8
F1 1401 0.317 0.85 105 3.2
F2 2100 0.341 0.86 110 3.4

The EVP configuration with three AEVs traveling on a
9km straight road with ideal conditions. Such a platoon size
could meet the requirements for platoon testing [44]. The
default vehicle models of platoon including CompanyCarEV
(leading vehicle 1, L1), MyBatteryCU (following vehicle 2,
F2) and Tesla modelS (following vehicle 3, F3) are chosen
from IPG-CarMakerr. The reference velocity of L1 follows a
predefined drive cycle source block (FTP75) from Simulink.
This block simulates various driving speeds encountered in
urban traffic, which accommodates frequent idling, stopping
and acceleration situations. As stated in Ref. [45], the general
headway time (Th) is 2-3s, which could ensure vehicles have
sufficient response time to avoid collisions. The minimum safe
spacing (S min) should satisfies S min ≥ Th ∗V . Here, the desired
safe spacing is set to 50m. TABLE I lists the relevant vehicle
dynamic parameters.

B. Experimental Procedure

The experimental procedure is divided into two stages: data
collection stage and strategy verification stage. At the first
stage, all AEVs are driven by the default control module of
IPG-CarMakerr. The collected vehicular platoon dataset is
utilized to train the surrogate-driven model. For the second
stage, L1 is regarded as a leading vehicle while different
control strategies are embedded into the following vehicles
(F2, F3).

TABLE II: DIFFERENCES OF EXPERIMENTS

Merits Exp1 Exp2 Exp3
Modelling Mechanism Surrogate Surrogate
Solver LQR LQR GWO

Three different experiments are conducted to validate the
performance of our proposed SMPC strategy. Detailed exper-
imental procedure is given below.

• Exp1. F2 and F3 with mechanism-based multi-objective
predictive control (MMPC) strategy [46] track L1. In this
case, the dynamic parameters of EVP are uncertain.

• Exp2. The surrogate-driven multi-objective predictive
control strategy with LQR solver, namely, LMPC [19]
is applied to each following vehicle to track L1.

• Exp3. F2 and F3 are driven by the SMPC strategy to
track L1.

TABLE III: EXPERIMENTAL PARAMETERS

Symbol N L Nm Ts SOC0 d Ng

Value 16 9 12 10Hz 70% 50m 30

The merits of the proposed strategy involving surrogate-
driven modelling and GWO-based multi-objective optimiza-
tion are listed in TABLE II. Furthermore, TABLE III gives
several key experimental parameters.

V. Results and Discussions

In this part, the results of different strategies will be an-
alyzed in terms of three indicators involving safety, comfort
and economy for EVP.

A. Driving Safety
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(a) Spacing between L1 and F2 with different strategies
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(b) Spacing between F2 and F3 with different strategies

Fig. 7. Results of the spacing for EVP

It is clear to see the superiority of our proposed SMPC
strategy from Fig. 7. More specifically, F2 with the MMPC
strategy performs an obvious spacing error in Fig. 7(a). The
LMPC strategy could maintain consistent spacing within 200s,
and then it executes a bigger spacing error at the rest of
the time. Comparatively, the proposed SMPC strategy exhibits
more stable spacing than the others, which indicates that more
robust string stability could be ensured for EVP. Furthermore,
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a similar result is also obtained for F3, see Fig. 7(b) for details.
Therefore, these results illustrate that the SMPC strategy
outperforms both MMPC and LMPC schemes in terms of
driving safety.

B. Driving Comfort

The driving comfort of EVP is investigated by analyzing the
velocity and acceleration in Fig. 8. To be more specific, the
MMPC strategy exhibits a larger oscillation during velocity
tracking, resulting in an uncomfortable driving experience.
Apart from situations with rapid velocity fluctuations, the
LMPC strategy has the capability to maintain stable tracking
of the desired velocity. Note that the SMPC strategy performs
the most desirable velocity tracking capability, even amidst
intricate velocity scenarios.
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(a) Velocity of F2 with different strategies
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(b) Velocity of F3 with different strategies

Fig. 8. Results of the velocity for EVP

Furthermore, three evaluation indicators including mode,
interquartile range (IQR) and median of acceleration are
plotted in Fig. 9. The SMPC strategy exhibits the minimum
values compared to others, implying the most stable driving
operation. According to the analysis above, the proposed
SMPC strategy could provide satisfactory driving experience
for drivers than others.
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Fig. 9. Results of the acceleration for EVP

C. Driving Economy

The economic objective of EVP aims to enhance battery
efficiency, essentially minimizing the decline of SOC. Here,
the SOC of each AEV is employed to verify the economy
for different strategies. As illustrated in Fig. 10, SOC0 is
set to 70%. With the increase of the accumulated mileage,
SOC gradually decreases. The MMPC strategy exhibits a fast
decline trend, especially on the high-speed section from 200s
to 300s. Upon completing the entire journey, the final SOC of
F2 and F3 turn to be 57.8% and 58%, respectively. In addition,
F2 and F3 with the SMPC strategy execute a gradual discharge
rate, and the final SOC reaches 61% and 60%. Relatively, the
degradation trend of the LMPC strategy is similar to that of
the SMPC, but the final SOC changes to 59.2% and 58.7%. It
can be seen that the SMPC strategy is superior to the MMPC
and LMPC ones in terms of economic efficiency.
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(a) SOC of F2 with different strategies
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Fig. 10. Results of the SOC for EVP
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Fig. 11. Computational time of different strategies

D. Computational Efficiency

The computational efficiency of algorithms is also of
paramount significance for EVP, affecting real-time platoon
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control. Therefore, the average computational time of each
sampling interval among three strategies has been presented in
Fig. 11. F2 and F3 with the MMPC strategy spend the minimal
computational time about 0.0132s and 0.0138s, respectively.
The LMPC strategy allocates the utmost computational time
of 0.0173s and 0.0195s. Meanwhile, the computational time
of the SMPC strategy falls within the spectrum between the
aforementioned two. This indicates that despite a marginal
compromise in computational efficiency, the SMPC strategy
can efficiently handle dynamic uncertainty and enhance string
stability of EVP.

E. Comprehensive Analysis

To provide a more intricate explanation of the advantages
of our proposed SMPC approach, the correlation coefficient
method [47] is employed to analyze the aforementioned ex-
periments. The rationale behind this approach is to investigate
the correlation between the leading vehicle and the following
vehicles. A higher coefficient indicates a greater similarity,
signifying a more effective control. Note that the safety index
is attributed to velocity and acceleration. As shown in TABLE
IV, the proposed SMPC strategy keeps higher coefficients over
MMPC and LMPC. Accordingly, the variance values of these
results are also demonstrated in Fig. 12. A smaller value
indicates a better performance. The proposed SMPC strate-
gy has the minimum coefficient, which implies the optimal
comprehensive performance in terms of economy, comfort and
safety.

TABLE IV: CORRELATION COEFFICIENT ANALYSIS

Symbol MMPC LMPC SMPC

Safety (S )
F2 0.8569 0.9293 0.9751

F3 0.8424 0.9246 0.9535

Comfort (V , a)
F2 0.9167 0.9217 0.9845

F3 0.9011 0.9341 0.9490

Economy (SOC)
F2 0.8017 0.8404 0.8773

F3 0.8001 0.8446 0.8651
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Fig. 12. Variance analysis of different strategies

Additionally, assessing the platoon string stability of the
proposed strategy is also essential. The results of spacing

among all AEVs keep a reasonable range of approximately
50m within the deviation of 1m. F2 and F3 execute a desirable
capability in velocity tracking and SOC consumption for EVP.
Therefore, it can be concluded that our proposed SMPC strat-
egy could provide a safe, economical and comfortable driving
experience for EVP. Furthermore, the proposed strategy could
also reduce the calculation burden for EVP.

VI. Conclusion

In this paper, we have developed an SMPC strategy to han-
dle vehicle dynamic uncertainty and multi-objective conflicts
for EVP. The subspace identification method has been utilized
to establish the surrogate-driven model, so as to alleviate the
adverse effects of uncertain dynamics. The optimal predictive
sequence is generated by the subspace predictor and utilized to
construct a multi-objective cost function. Then, a grey wolf op-
timizer has been developed to find the optimal solutions among
conflicting objectives. Finally, the experimental results have
demonstrated that our proposed SMPC strategy enables a more
safe, economical and comfortable driving manner for EVP.
However, limited experimental scenarios and dataset make it
challenging to validate the generalizability of the proposed
strategy on complex scenarios. Moreover, several hypotheses
are imposed to derive a concise electric vehicle model. This
would make it difficult to provide accurate predictions in
practical applications. Our future work will be dedicated to
broadening the scope of our dataset in several complex driving
scenarios. Moreover, exploring the application of our proposed
strategy to actual electric vehicles will constitute a distinct
research task.
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