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ABSTRACT: In 1971, Schill recognized that a prochiral macro-
cycle encircling an oriented axle led to geometric isomerism in
rotaxanes. More recently, we identified an overlooked chiral
stereogenic unit in rotaxanes that arises when a prochiral
macrocycle encircles a prochiral axle. Here, we show that both
stereogenic units can be accessed using equivalent strategies, with a
single weak stereodifferentiating interaction sufficient for moderate
to excellent stereoselectivity. Using this understanding, we
demonstrated the first direct enantioselective (70% ee) synthesis
of a mechanically axially chiral rotaxane.

■ INTRODUCTION
Early in the development of the chemistry of the mechanical
bond,1 Schill recognized that when a macrocycle containing a
prochiral center such that its faces are distinguishable encircles
an axle with distinguishable ends, the rotaxane can exist as
distinct geometric isomers even though the individual
components are stereochemically trivial.2 Although molecules
that correspond to the type 13 mechanical geometric isomers
(MGI-1) of rotaxanes have been reported, the vast majority
where the mechanical bond provides the sole stereogenic unit4

are constructed from calixarenes5 or similar macrocycles6

whose facial dissymmetry arises from the fixed cone-shaped
conformation of the threaded ring.7 The same is true of the
corresponding catenane stereogenic unit first reported by
Gaeta and Neri.8 In these cases, facial dissymmetry is expressed
over the whole macrocycle, which has been shown to lead to
the stereoselective formation of the corresponding rotaxanes.
However, to our knowledge, the only MGI-1 rotaxanes in
which a single covalent prochiral center differentiates the faces
of the ring,9 as envisaged by Schill, were reported by Bode and
Saito,10 where no stereoselectivity was reported.
More recently,11 we identified that when a facially

dissymmetric macrocycle encircles a prochiral axle, an
overlooked mechanically axially chiral (MAC)12 stereogenic
unit arises that is analogous to the MAC stereogenic unit of
catenanes identified by Wasserman and Frisch over 60 years
earlier.13 Having made this observation, we demonstrated that
such molecules can be synthesized using a diastereoselective
co-conformational chiral auxiliary14 active template15 Cu-

mediated alkyne−azide cycloaddition (AT-CuAAC)16,17 ap-
proach with a ring whose facial dissymmetry arises from a
single prochiral sulfoxide unit.
If we consider a schematic AT-CuAAC retrosynthesis of

MGI-1 isomers (Figure 1a) and MAC enantiomers (Figure
1b), in which the axle is divided into two components that
couple through the macrocycle in the forward synthesis, the
common challenge involved in the stereoselective synthesis of
both becomes obvious; we must control which face of the
macrocycle is oriented toward which half-axle component in
the mechanical bond-forming step.
Here, by re-examining our stereoselective synthesis of MAC

rotaxanes, we identify that a single H-bond between the
sulfoxide unit and one of the two half-axle components appears
to play a key role in the reaction outcome. We use this
understanding to develop a stereoselective approach to
rotaxane MGI-1 isomers that can be extended directly to
their catenane counterparts. Finally, we apply these principles
to the direct synthesis of MAC rotaxanes without the need to
produce diastereomeric intermediates.
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■ RESULTS AND DISCUSSION
Effect of the Conditions and Substrate Structure in

the Synthesis of MAC Rotaxanes 4. Previously,11 we found
that the AT-CuAAC reaction of azide (R)-1a, macrocycle 2,
and alkyne 3 gave rotaxane diastereomers (Rma,Rco−c)

18-4a
(major) and (Sma,Rco−c)-4a (minor) in 50% de (Scheme 1 and
Table 1, entry 1). These products have the same co-
conformational covalent configuration19 (set by the config-
uration of 1a) but opposite mechanical axial configuration.
They are separable because the steric bulk of the NHBoc
group prevents the epimerization of the covalent stereocenter
by shuttling of the macrocycle between triazole-containing
compartments. The solid-state structure obtained by single-
crystal X-ray diffraction (SCXRD) of an analogous catenane11

contained a close contact between the polarized NH of the
carbamate unit and the O atom of the sulfoxide unit, which
suggested that an H-bond between these groups may play a
role in the observed stereoselectivity.20

To test this proposal, we first compared the outcome of
reactions performed in CH2Cl2 and EtOH, the latter being a
more competitive H-bonding solvent, and found that the
stereoselectivity was indeed reduced to 14% de (entry 2).
Furthermore, the reactions of azides 1b−d to give rotaxanes
4b−d (entries 3−5) proceeded with selectivities that paralleled
the polarization of the N−H unit; trifluoroacetamide 1d
produced rotaxane 4d in the highest selectivity (70% de),
followed by trichloroacetamide 1c (48% de) then acetamide 1b
(36% de). The SCXRD structure of the major isomer of 4d
(Figure 2) revealed the same (Rma,Rco−c) configuration as that
of 4a, with an NH···O H-bond observed between the amide
NH and sulfoxide units. Methylated trifluoroacetamide
rotaxane 4e was produced in 10% de (entry 6), which,
although consistent with the key role of the NH···O H-bond,
suggests that there is some inherent facial bias between the
azide and alkyne half-axles in the AT-CuAAC reactions of 2.

The effect of the temperature on the stereoselectivity of the
reactions of 1a and 1d was more complicated. Whereas
reducing the reaction temperature in the synthesis of 4a from
rt (entry 1) to −40 °C (entry 8) and −78 °C (entry 9)
increased the observed selectivity, that for 4d was higher at
−40 °C (entry 10) and then fell at −78 °C (entry 11). We
suggest that this slightly counterintuitive observation can be
rationalized in broad terms by considering that the AT-CuAAC
reaction takes place over several steps,21 which include an

Figure 1. Schematic active template retrosyntheses of the mechanical
(a) type 1 geometric isomers and (b) axially chiral enantiomers of
rotaxanes, highlighting the need to control facial selectivity in the
mechanical bond-forming step and the potential for attractive
interactions between one face of the macrocycle and one of the
half-axles to provide this control.

Scheme 1. Synthesis of Rotaxanes 4a

aReagents and conditions (see also Table 1): (R)-1 (1.1 equiv), 2 (1
equiv), 3 (1.1 equiv), [Cu(CH3CN)4]PF6 (0.96 equiv), iPr2NEt (2
equiv). bDetermined by SCXRD for 1a11 and 1d (Figure 1); 1b, c,
and e are presumed. Ar = 3,5-di-tBu-C6H3.

Table 1. Effect of the Reaction Conditions and Substrate on
the AT-CuAAC Diastereoselective Synthesis of Rotaxanes 4

entry substrate conditions selectivitya

111 1a (R1 = OtBu, R2 = H) CH2Cl2, rt 50% de
2 1a (R1 = OtBu, R2 = H) EtOH, rt 14% de
3 1b (R1 = Me, R2 = H) CH2Cl2, rt 36% de
4 1c (R1 = CCl3, R2 = H) CH2Cl2, rt 48% de
5 1d (R1 = CF3, R2 = H) CH2Cl2, rt 70% de
6 1d (R1 = CF3, R2 = H) EtOH, rt 16% de
7 1e (R1 = CF3, R2 = Me) CH2Cl2, rt 10% de
8 1a (R1 = OtBu, R2 = H) CH2Cl2, −40 °C 72% de
9 1a (R1 = OtBu, R2 = H) CH2Cl2, −78 °C 80% de
10 1d (R1 = CF3, R2 = H) CH2Cl2, −40 °C 82% de
11 1d (R1 = CF3, R2 = H) CH2Cl2, −78 °C 70% de

aDetermined by 1H NMR analysis of the crude reaction product.

Figure 2. SCXRD structure of [(Rma,Rco−c)-4d (major isomer), with
key intercomponent interactions highlighted. Colors as in Scheme 1,
including the sulfoxide (SO) moiety to highlight the differentiation of
the macrocycle faces, except N [dark blue], O [gray], and H [white].
The majority of H was omitted.
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equilibrium between diastereomeric azide/acetylide complexes
I, followed by irreversible formation of the corresponding
triazolides II (Scheme 2).22 The observed stereoselectivity is
thus a composite function of the pre-equilibrium step (Keq)
and the relative rates (kRR, kSR) at which intermediates I
progress to triazolides II. The effect of temperature on the
reaction to produce 4d suggests the pre-equilibrium and
kinetic resolution steps respond differently to changes in
temperature, resulting in the observed behavior.23

Stereoselective Synthesis of MGI-1 Rotaxanes. Having
demonstrated that a single H-bond between the sulfoxide unit
and one of the incoming half-axle components appears to be
important in the synthesis of rotaxanes 4, we turned our
attention to the synthesis of analogous rotaxanes expressing the
MGI-1 stereogenic unit.
Intrigued by the small but measurable stereoselectivity

observed in the formation of 4e, which cannot arise due to the
proposed stereodifferentiating NH···O interaction, we exam-

ined the AT-CuAAC coupling between macrocycle 2, and half-
axles 3 and 5, neither of which contain a directing group. At rt
in CH2Cl2 (Scheme 3a, entry 1), geometric isomers (Em)-6
and (Zm)-6 were formed in low but significant stereoselectivity
(24% de), confirming that the AT-CuAAC reactions of 2 are
not only biased by the H-bond identified in the case of
rotaxanes 4.24 Analysis of the separated isomers of 6 by
SCXRD allowed their absolute stereochemistry to be
determined (Figure 3a,b). Replacing the solvent with THF
marginally improved the selectivity (28% de, entry 2), as did
lowering the reaction temperature to −20 °C (40% de, entry
3), but, as with 4d, reduced selectivity was observed at lower
temperatures (entries 4 and 5). Using EtOH as a solvent was
comparable to THF (entry 6).25

Scheme 2. Proposed AT-CuAAC Mechanism Highlighting
Pre-Equilibrium and Kinetic Resolution Steps

Scheme 3. AT-CuAAC Synthesis of Rotaxane Geometric Isomers of Type 1. (a) Effect of Conditions on the Formation of
Rotaxanes 6.a (b) Effect of the Half-Axle Structure, on the Stereoselectivity of Mechanical Bond Formation with Macrocycle
2b,c

aReagents and conditions: 2 (1 equiv), 3 (1.1 equiv), 5 (1.1 equiv), [Cu(CH3CN)4]PF6 (0.96 equiv), iPr2EtN (2 equiv). bSynthesized in THF at rt
(Scheme 3a, entry 2) unless otherwise stated. cStereochemistry of the major isomer indicated where determined. dDetermined by 1H NMR analysis
of the crude reaction product. eSynthesized in EtOH. fSynthesized at −40 °C in THF. Ar = 3,5-di-tBu-C6H3.

Figure 3. (a) Solid-state structures of (a) (Zm)-6, (b) (Em)-6, (c)
(Zm)-9, and (d) (Em)-11 with key intercomponent interactions
highlighted. Colors as in Scheme 1, including the sulfoxide (SO)
moiety to emphasize the macrocycle faces, except for O (gray), N
(dark blue), and H (white). The majority of H was omitted for clarity.
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Although the selectivities observed in the formation of 4e
and 6 are consistent with some inherent facial bias between the
azide and alkyne half-axles in the mechanical bond-forming
step, when a propargylic alkyne was employed with aryl azide 5
to generate rotaxane 7, no stereoselectivity was observed
(Scheme 3b). In contrast, the reaction of an alkyl azide and
aryl acetylene 3 to give rotaxane 8 proceeded in an appreciable
stereoselectivity (14% de). Thus, although it is clearly possible
to achieve low selectivities in the AT-CuAAC reactions of 2 in
the absence of obvious directing interactions, this is highly
substrate-dependent, and its origins are unclear at this time.26

Returning to our H-bonding-directed approach, when a
propargylic amide was reacted with 2 to give 9, significantly
improved stereoselectivity (54% de) was obtained, which was
reduced in EtOH (40% de). The corresponding N-methyl
amide gave rise to rotaxane 10 in low selectivity (13% de). The
AT-CuAAC coupling of 3 and an alkyl azide bearing a simple
amide gave rotaxane 11 in moderate stereoselectivity (40% de),
which was reduced in EtOH (19% de). Thus, the amide can be
placed in either coupling partner. Finally, rotaxane 12, whose
amide NH is expected to be more polarized than that of 11,
was produced in good selectivity (72% de) at rt, which was
improved (90% de) when the same reaction was conducted at
−40 °C. Reducing the temperature further did not improve the
observed stereocontrol and led to a slow reaction. Replacing
the reaction solvent with EtOH once again led to reduced
selectivity (26% de).
As in the case of rotaxanes 4, the high selectivity observed in

the synthesis of 9, 11, and 12 is consistent with the key role of
an NH···O interaction between the macrocycle and half-axle in
controlling the facial selectivity in the AT-CuAAC reactions of
macrocycle 2. However, we previously observed11 this
interaction in the solid-state structures of both diastereomers
of epimeric MAC catenanes even though, in principle, in one
diastereomer, the S−O bond could be expected to project
away from the NH unit, which is possible due to the flexible
nature of macrocycle 2. The major isomers of rotaxanes 9 and
11 determined by SCXRD (Figure 3c,d, respectively) highlight
the importance of this flexibility; although both were formed
selectively, counterintuitively, the ring is oriented in opposite
directions with respect to the amide in the major diastereomer
of each. Thus, although the NH···O interaction appears able to
direct the synthesis of MGI-1 isomers, the major product
depends on the detailed structure of the half-axles used.27 We
also note that whereas an NH···O interaction is observed in the
SCXRD structure of 4d, in the case of 9 and 11, this is
replaced by an NH···N interaction between the amide proton
and one of the bipyridine N atoms, with the SO unit instead
interacting with the polarized C−H of the triazole moiety in an
inter- or intramolecular manner, respectively, presumably
because the NH unit is geometrically accessible to the
macrocycle in rotaxanes 9 and 11 whereas it is not in the
case of 4d.
Stereoselective Synthesis of an MGI Catenane. Having

established that a polarized NH unit appears sufficient to
control the synthesis of MGI-1 rotaxanes with macrocycle 2,
we briefly investigated whether the same approach could be
applied to the related isomers of catenanes. Pre-macrocycle 13,
which contains an activated amide unit analogous to that of 12,
reacted with 2 under our AT-CuAAC catenane-forming
conditions (Scheme 4)28 to give 14 with good stereocontrol
(80% de, entry 1). The same reaction in CHCl3-EtOH gave
reduced selectivity (60% de, entry 2), whereas performing the

reaction at 0 °C in CH2Cl2 increased the selectivity (92% de,
entry 3). Lowering the temperature further (−40 °C) had no
significant effect (90% de, entry 4). Thus, unsurprisingly, given
the similarity of their stereogenic units, MGI-1 rotaxanes and
MGI catenanes can be made with good stereocontrol using
equivalent strategies.

Direct Enantioselective Synthesis of MAC Rotaxanes.
Finally, we returned to apply our findings to the stereoselective
synthesis of the enantiomers of MAC rotaxanes. In our original
report,11 we separated the diastereomers of epimeric rotaxanes
4a before removing the Boc group to generate rotaxane 15
(Scheme 5), in which the MAC stereogenic unit is the only
fixed source of stereochemistry. This was necessary as the AT-
CuAAC reaction only proceeded in 50% de; the ultimate
purpose of developing methodologies to produce stereochemi-
cally complex mechanically interlocked molecules is so that
they can then be investigated in applications such as sensing29

or catalysis,30 for which they must be of high stereopurity.

Trivially, our optimized conditions for the diastereoselective
formation of 4a (Table 1, entry 9) removes the need for the
separation of the MAC epimers and so allows the synthesis of
highly enantioenriched samples of rotaxane 15 in a two-step,
one-pot manner (Scheme 5); AT-CuAAC coupling of (R)-1a
followed by TFA-mediated removal of the Boc group gave
rotaxane (Rma)-15 in good stereoselectivity (78% ee) in

Scheme 4. Stereoselective Synthesis of Catenane 14a

aReagents and conditions: 13 (2 equiv) was added over the time
stated using a syringe pump to 2 (1 equiv), [Cu(CH3CN)4]PF6 (0.97
equiv), iPr2EtN (4 equiv).

Scheme 5. Two-Step, One-Pot Synthesis of Enantioenriched
MAC Rotaxanes 15a,b

aReagents and conditions: i. 1a (1.1 equiv), 2 (1 equiv), 3 (1.1
equiv), [Cu(CH3CN)]PF6 (0.96 equiv), iPr2EtN (2 equiv), CH2Cl2,
16 h; ii. TFA, CH2Cl2, −78 °C to rt, 6 h. bDetermined by analytical
CSP-HPLC. Ar = 3,5-di-tBu-C6H3.
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agreement with that observed for 4a (80% de). The same
reaction with (S)-1a gave (Sma)-5 (77% ee).
More excitingly, the high stereoselectivity observed in the

AT-CuAAC reaction of azides 1 bearing a polarized NH
presents the opportunity for the direct synthesis of MAC
rotaxanes without the need for first forming separable co-
conformational diastereomers; if the N substituent is too small
to trap the macrocycle in one triazole-containing compartment,
the only fixed stereochemistry in the product is provided by
the MAC stereogenic unit. Thus, the reaction of primary
amine-containing azide (R)-1e with macrocycle 2 and alkyne 3
at rt gave MAC rotaxane 15 directly but in low stereoselectivity
(16% ee, Scheme 6, entry 1), which increased when the
reaction was performed at −40 °C (28% ee, entry 2) and
improved further still at −78 °C (42% ee, entry 3). CSP-HPLC
analysis of a sample of rotaxane (Rma)-15 produced from (R)-
1a (Scheme 5) and comparison with the same product from
(R)-1f confirmed that the latter also produces (Rma)-15 as the
major product (Figure 4a).

When instead formamide-containing azide (R)-1g was
reacted with 2 and 3, even at rt rotaxane 1631 was obtained
in reasonable stereopurity (57% ee, entry 3), which was
improved further at −40 °C (67% ee, entry 4). Conducting this
reaction at −78 °C reduced the observed stereoselectivity

(59% ee, entry 5), suggesting that, as with azide 1d, the pre-
equilibrium and kinetic resolution steps result in an unusual
temperature dependence. CSP-HPLC analysis of a sample of
rotaxane 16 produced by formylation of a sample of rotaxane
(Rma)-15 of known stereopurity and comparison with the same
compound produced from (R)-1g confirmed that the latter
produces (Rma)-16 as the major stereoisomer. When (S)-1g
was reacted instead, (Sma)-16 was produced (70% ee, entry 6).
The solid-state structure of 16 obtained by SCXRD (Figure
4b) did not display the expected intermolecular NH···O H-
bond; instead, the same interaction was found to occur in an
intermolecular fashion within the unit cell.
The different co-conformational behaviors of 4a, 15, and 16

are clear from the analysis of their respective 1H NMR spectra.
Diastereomers (Rma,Rco−c)-4a and (Sma,Rco−c)-4a are separable
species; heating a mixture of diastereomers 4a resulted in no
change in their ratio (Figure S47), confirming that the
macrocycle cannot shuttle between the two compartments
due to the large NHBoc unit. In contrast, the diastereotopic
triazole resonances Hd

32 of amine rotaxane 15 appear as two
sharp singlets at 298 K, indicating that diastereomeric co-
conformations (Rma,Rco−c)-15 and (Sma,Rco−c)-15 are in fast
exchange on the 1H NMR timescale through rapid shuttling of
the macrocycle between the two triazole-containing compart-
ments (Figure S190). The same resonances for formamide
rotaxane 16 are broad at 298 K, although once again, only two
signals are observed (Figure S200). This observation is
consistent with (Rma,Rco−c)-16 and (Sma,Rco−c)-16 exchanging
on the 1H NMR timescale, albeit more slowly than
(Rma,Rco−c)-15 and (Sma,Rco−c)-15, in keeping with the larger
steric bulk of the formamide group of 16. Accordingly,
increasing the temperature resulted in the sharpening of the
two resonances corresponding to protons Hd (Figure S211).

■ CONCLUSIONS
In conclusion, we have demonstrated that type 1 rotaxane
mechanical geometric isomers and mechanically axially chiral
enantiomers can be obtained by controlling facial selectivity in
an AT-CuAAC synthesis. Specifically, we show that an H-
bonding interaction between a prochiral macrocycle and a
functional group contained in one of the two half-axles
(rotaxane synthesis) or unsymmetrically disposed in the
corresponding pre-macrocycle structure (catenane synthesis)
appears to be sufficient to control the reaction outcome.
Although the focus of our discussion has been on reaction
stereoselectivities, it should be noted that, as is typically the
case for AT-CuAAC reactions mediated by bipyridine
macrocycles,33 all of the interlocked structures reported were
obtained in good to excellent isolated yield (50−90%, see the
SI for details). The high selectivity observed with optimized
substrates allowed us to design a direct enantioselective
synthesis of mechanically axially chiral rotaxanes, only the
second34a example of a direct stereoselective synthesis of a
mechanically chiral molecule and the first of this recently
identified stereogenic unit. To date, type 1 mechanical
geometric isomers of rotaxanes based on calixarenes and
similar cone-shaped macrocycles,5,8b,6d,e as well as structures
expressing combinations of mechanical and covalent stereo-
chemistry4h have been investigated as components of
molecular switches and motors. Here, we have demonstrated
that such isomerism can be expressed and controlled in much
simpler macrocycles, opening up new motifs for study.
Similarly, mechanically planar chiral molecules, for which

Scheme 6. Direct Synthesis of Enantioenriched
Mechanically Axially Chiral Rotaxanes 15 and 16a

aReagents and conditions: i. 1 (1.1 equiv), 2 (1 equiv), 3 (1.1 equiv),
[Cu(CH3CN)]PF6 (0.96 equiv), iPr2EtN (2 equiv), CH2Cl2, 16 h.
bDetermined by analytical CSP-HPLC. Ar = 3,5-di-tBu-C6H3.

Figure 4. (a) CSP-HPLC analysis of i. (Rma)-16 (67% ee) produced
from (R)-1g; ii. (Rma)-16 (21% ee) produced from (Rma)-15 (21% ee;
minor impurity highlighted in gray), and iii. (Sma)-16 (70% ee)
produced from (S)-1g. (b) Solid-state structure of rac-16, in which
the N−H···O bond between the SO unit and the amide is
intermolecular (colors as in Scheme 6, including the sulfoxide (SO)
moiety to highlight the differentiation of the macrocycle faces, except
N [dark blue], O [gray], and H [white]). The majority of H was
omitted for clarity.
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stereoselective methods are known,14,26,34 have been inves-
tigated as enantioselective sensors,29 catalysts,30 and chiroptical
switches.35 With methodological concepts now in hand to
efficiently synthesize their mechanically axially chiral cousins in
high stereopurity, we eagerly anticipate the chemical
applications to which molecules containing this stereogenic
unit will soon be put.
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