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Optical momentum distributions in monochromatic, isotropic random vector fields
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We investigate the decomposition of the electromagnetic Poynting momentum density in
three-dimensional random monochromatic fields into orbital and spin parts, using analytical and
numerical methods. In sharp contrast with the paraxial case, the orbital and spin momenta
in isotropic random fields are found to be identically distributed in magnitude, increasing the
discrepancy between the Poynting and orbital pictures of energy flow. Spatial correlation functions
reveal differences in the generic organization of the optical momenta in complex natural light fields,
with the orbital current typically forming broad channels of unidirectional flow, and the spin current
manifesting larger vorticity and changing direction over subwavelength distances. These results
are extended to random fields with pure helicity, in relation to the inclusion of electric-magnetic
democracy in the definition of optical momenta.

Keywords: statistical optics, optical momentum, Poynting vector, spin momentum, orbital momen-
tum

I. INTRODUCTION

Conservation of electromagnetic (EM) energy is de-
termined by the well-known theorem of Poynting [1]:
in the absence of charges, the rate of change of EM
energy density is equal to the divergence of the Poynt-
ing vector P = E ×H, the cross product of the electric
and magnetic fields. By analogy with other continuity
equations, it is customary to interpret P as the direc-
tion and magnitude of EM energy flow [2, 3]. However,
this choice often fails to produce an intuitive picture,
even in seemingly elementary situations : for instance,
the Poynting vector for two crossed plane waves [4] or in
a single evanescent surface wave [5, 6] exhibits a coun-
terintuitive component perpendicular to the direction
of propagation. Similarly, the (time-averaged) radia-
tion pressure exerted by an optical field on a subwave-
length probe particle is generally not proportional to
the Poynting vector [7, 8].

Divided by c2, the Poynting vector also defines the
linear momentum density of the EM field. It is now
well understood that in monochromatic fields, the time-
averaged linear momentum P is the sum of orbital PO
and spin PS parts, respectively generating the orbital
and spin angular momenta [9–11]. In [10], these vec-
tor fields were dubbed optical currents. This Poynt-
ing vector splitting has deep foundations, as the orbital
momentum is in fact equal to the canonical momen-
tum derived from application of Noether’s theorem to
translational invariance in the relativistic field theory
formulation of electromagnetism [12, 13]. The orbital
momentum correctly accounts for the radiation pres-
sure on dipole particles, and can provide a more intu-
itive picture of energy flow than the Poynting vector
in the situations mentioned above. In the field theory
framework, the spin momentum corresponds to a term
introduced by Belinfante [14] to restore symmetry and
gauge-invariance to the EM stress-energy tensor, which
when integrated over space does not contribute to the
total linear momentum of the field. As such, the Belin-
fante spin momentum is often described as a “virtual”
quantity introduced for theoretical reasons. Neverthe-

less, this spin momentum has recently been evidenced
experimentally, by measuring the extraordinary optical
force it induced on a nano-cantilever [15]. Importantly,
the couplings to the orbital and spin parts of the Poynt-
ing vector differ by orders of magnitude, highlighting
their distinct physical nature.

Recent experimental and theoretical studies have
thus demonstrated striking differences between the
Poynting, orbital, and spin momenta, and continue to
redefine our views of EM energy flow and optical forces
[8, 11, 16]. Still, they have so far been limited to rather
elementary, highly symmetric fields, with geometries
optimized to best showcase the differences between the
three optical currents.
In this work, we explore generic features of these optical
currents, to build insight into their organization in nat-
ural light fields : what are their properties when many
independent waves interfere with no particular sym-
metries ? To this end, we investigate their behaviour
in monochromatic, isotropic random EM vector fields,
a convenient statistical model of 3D EM fields speci-
fied by only one physical parameter, the wavelength λ.
Strikingly, we will see that in this model, the magni-
tudes of the spin and orbital currents have the same
probability distribution, but that the two vector fields
have different spatial correlations : the apparent weak-
ness of the spin current is due to its failure to organ-
ise coherent correlated vector structures over large dis-
tances in space, unlike the orbital current (and Poynt-
ing vector itself). We demonstrate these facts using
analytical statistics and numerical simulations for the
vector random wave model.

II. THEORETICAL FRAMEWORK

A. Poynting, orbital and spin momenta

We work in units where ε0 = µ0 = c = 1. In a
monochromatic field with frequency ω = ck = c(2π/λ),
the electric and magnetic fields are represented by
complex-valued vector fields, E = Re{Ee−iωt} and H =



2

Re{He−iωt}. The temporal cycle-averaged Poynting
momentum can be written

P =
1

2
Re

{
E∗ ×H

}
. (1)

Using Maxwell’s equations and the vector identity
A × (∇ × B) = A · (∇)B − (A · ∇)B (where we use
the customary notation [A · (∇)B]i =

∑
j Aj∂iBj), the

Poynting momentum can be split into a sum of orbital
and spin momenta [10],

P =
1

2ω
Im

{
E∗ · (∇)E

}
− 1

2ω
Im

{
(E∗ · ∇)E

}
= PE

O +PE
S .

(2)

This splitting is not unique : expressing the Poynt-
ing momentum using the electric (resp. magnetic) field
only, we obtain the electric-biased (resp. magnetic-
biased) momenta PE

O,S (resp. PH
O,S) as in (2). But

another option, retaining the electric-magnetic symme-
try of Maxwell’s equations for free fields, is to take the
mean of the two representations,

P =
1

4ω
Im

{
E∗ · (∇)E+H∗ · (∇)H

}
− 1

4ω
Im

{
(E∗ · ∇)E+ (H∗ · ∇)H

}
= PEH

O +PEH
S ,

(3)

producing the so-called democratic (or dual) momenta
PEH
O ,PEH

S [10]. In general non-paraxial fields, these
are all distinct quantities, and in monochromatic fields,
their definition is unambiguous (otherwise the splitting
is gauge-dependent). An interesting situation arises
in fields with pure helicity, only containing circularly-
polarized plane wave components of same handed-
ness : such fields satisfy E = ±iH, such that all biased
and democratic quantities become identical.

The dual formulation of electromagnetism that treats
electric and magnetic fields equally has many attrac-
tive features when working with free fields, in the ab-
sence of matter [13, 17] — for instance, democratic
momenta naturally split into two independent parts
associated with components of opposite helicity [18].
However, experimental measurements require material
probes, which typically do not respond identically to
electric and magnetic fields : a common example is the
radiation pressure on a subwavelength particle respond-
ing in the electric dipole approximation, which is pro-
portional to the electric-biased orbital momentum PE

O

only. We therefore choose to center our discussion on
electric-biased quantities, and devote section III C to
observations on democratic momenta and pure helicity
fields for which the distinction vanishes.

For reference, we briefly recall the typical magnitudes
of the three momenta in a paraxial beam [9, 11] prop-
agating along z, for which the field is approximately
E ≈ eikz(Ex, Ey, 0) with transverse amplitude and po-
larization profiles Ex(x, y) and Ey(x, y) varying over a
lengthscale W ≫ λ, on the order of the beam waist. We
find that P and PE

O are mostly longitudinal, that PE
S

is purely transverse, and the following orders of magni-

tude

|P| ∼ E2,∣∣∣PE
O

∣∣∣ ∼ 1

ω
Im

{
E∗∂zE

}
∼ k

ω
E2 ∼ E2,∣∣∣PE

S

∣∣∣ ∼ 1

ω
Im

{
E∗∂xE

}
∼ λ

W
E2 ≪ E2.

We conclude that in a regular optical beam, orbital and
Poynting momenta are closely aligned, the spin momen-
tum being small in comparison.

B. Gaussian random optical fields

We model generic, natural EM light fields as super-
positions of N → +∞ plane waves, with uniformly ran-
domly sampled propagation directions, polarizations,
and global phases. This construction aims to portray
an unprepared field, akin to ambient light in a room, or
thermal black-body radiation, composed of many waves
emitted from independent points or having scattered
off various surfaces, producing a field with no partic-
ular symmetries or preferred directions, but statisti-
cally homogeneous and isotropic. This approach builds
on the long history of the study of speckle patterns
[19–21] and statistical properties of random light fields
[22–26], which revealed salient features underlying the
organization of all EM fields. Physically and geometri-
cally, these random vector fields are very different from
paraxial optical beams. The complex electric and mag-
netic fields can be parameterized as follows,

E =

√
2

N

N∑
n=1

eikn·r+iψn

[
eiαn/2 cos

βn
2
e+(kn)

+e−iαn/2 sin
βn
2
e−(kn)

]
,

(4a)

H =

√
2

N

N∑
n=1

eikn·r+iψn 1

i

[
eiαn/2 cos

βn
2
e+(kn)

−e−iαn/2 sin
βn
2
e−(kn)

]
,

(4b)

where the sum runs over the N ≫ 1 plane waves, with
wavevectors kn sampled uniformly on the sphere of di-
rections with spherical angles (θn, ϕn) and identical
magnitudes k, and polarizations sampled uniformly on
the Poincaré sphere with angles (βn, αn), and uniformly
sampled global phases ψn. e±(k) = [e1 ± ie2]/

√
2 are

helicity basis vectors, with {e1, e2} a basis of two real
orthogonal unit vectors transverse to k (see the SI for
explicit expressions and alternative parameterizations).
We introduce the following notation for the real and
imaginary parts of the fields [2, 26]

E = pE + iqE, H = pH + iqH,

since statistics are convenient with real quantities only.
Ensemble-averaging over many random fields is denoted
by brackets and amounts to integrating over the five
random angles

⟨•⟩ =
N∏
n=1

[
1

32π3

∫ π

0
sin θndθn

∫ 2π

0
dϕn

×
∫ π

0
sinβndβn

∫ 2π

0
dαn

∫ 2π

0
dψn

]
• .

(5)
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FIG. 1. Magnitudes and relative orientations of the Poynting, orbital and spin momenta.
(a) Analytical (lines) and numerical (dots) probability distributions for the magnitudes of the Poynting, orbital and spin
momenta. (b) Distribution of the angles between momenta, obtained numerically. (c) Illustration of one realisation of the
random field, showing the three vector fields on the faces of a cubic region of side λ/2, and a set of streamlines seeded near
the center of the cube. Numerical data in this figure was obtained from 105 realizations of the random field, each containing
N = 103 plane waves.

From the definitions above, it can be seen that any
component of the real or imaginary part of a field is
a sum of N real-valued, identically distributed random
variables. The central limit theorem ensures that in
the limit N → +∞, each component is a real random
variable obeying Gaussian statistics [19, 20]. The same
reasoning holds for all derivatives of the components. In
our case these variables are all centered, hence we only
require their variances and correlations to fully describe
the statistics. They are obtained by direct integration
using (5), and are tabulated in the SI. With these pro-
vided, an ensemble average rewrites as an integral over
a set of M Gaussian random variables u = (pEx , p

E
y . . .)

⟨•⟩ =

√
det{Σ−1}
(2π)M

∫
. . .

∫
dMu exp

{
−u⊺Σ−1u

2

}
•, (6)

where Σ is the covariance matrix, with Σij =
〈
uiuj

〉
.

Useful formulae and strategies for computing averages
are further described in the SI, and can be found in
references [22, 23, 25–27].

C. Spatial correlation functions

To investigate local order in the spatial organization
of the optical currents, we will average products of vec-
tor components at two different positions in space. The
statistical, directional correlators in random Gaussian
vector fields, here representing EM waves, are analo-
gous to those used in the theory of isotropic turbulence
in fluids [28]. For a homogeneous random vector field v

to be isotropic requires the two-point correlation tensor
to have the form〈

vi(0)vj(r)
〉
= [f(r)− g(r)]

rirj
r2

+ g(r)δij ,

where f and g are scalar functions depending only on
the magnitude r = |r| of the separation vector. They
respectively describe longitudinal and lateral autocor-
relations of a given vector component

f(r) = ⟨vi(0)vi(rei)⟩ , g(r) =
〈
vi(0)vi(rej)

〉
(i ̸= j).

where the separation vector rei is taken along some
chosen direction i = x, y, z. If, in addition, the field is
solenoidal (∇ · v = 0), f and g are related, such that
the full correlation tensor can be determined from, for
example, the longitudinal correlation function f only,

〈
vi(0)vj(r)

〉
= −rf

′(r)
2

rirj
r2

+ δij

[
f(r) +

rf ′(r)
2

]
. (7)

Since there are no charges in the model field, cycle-
averaging Poynting’s theorem yields ∇ ·P = 0. As the
spin momentum itself is the curl of a vector field [10], it
is divergenceless ∇ · PS = 0, and consequently we also
have ∇ · PO = 0. Hence all momenta are isotropic ho-
mogeneous solenoidal random fields, to which the above
results apply. They also apply to the complex electric
and magnetic fields themselves. In our calculations, we
will be able to express all correlation functions using
the longitudinal and lateral autocorrelation functions
of the electric field [29], that we respectively denote L



4

and T

L(r) =
〈
pEx (0)p

E
x (rex)

〉
=

sin(R)−R cos(R)

R3

T (r) =
〈
pEx (0)p

E
x (rey)

〉
=
R cos(R)− (1−R2) sin(R)

2R3
,

where R = kr. Further useful strategies and elementary
correlation functions are provided in the SI.

III. RESULTS AND DISCUSSION

All analytical derivations can be found in great detail
in the SI. We mostly state final results here, except
when intermediate steps are useful for understanding
how a result comes about.

A. Magnitudes and relative directions of the
optical momenta

We begin by deriving the fundamental statistical dis-
tributions for the magnitudes of the Poynting, orbital
and spin momenta. In terms of real and imaginary field
components, the Poynting momentum writes

P =
1

2

[
pE × pH + qE × qH

]
.

Each component of P is a sum of products of two Gaus-
sian random variables. As detailed in the SI, isotropy
allows us to retrieve the magnitude distribution D(P )

from that of the x-component Dx(Px) only [26]. We
briefly outline this first derivation, to see the main steps
involved:

Dx(Px) =

〈
δ
(
Px −

∑
j,k

ϵxjk
2

[
pEj p

H
k + qEj q

H
k

] )〉

=

∫
ds

2π
e−isPx

〈
exp

{
is
1

2
pEy p

H
z

}〉4

=

∫
ds

2π
e−isPx

[
1

1 + s2σ4x/4

]2
=

1 + 2|Px|/σ2x
2σ2x

exp

{
−2|Px|

σ2x

}
,

where σ2x =
〈
(pEx )

2
〉

= 1/3 (see tabulated variances in

the SI). The second step involves factorization of the
average using the statistical independence of field com-
ponents, the third step uses (6), and the last step is an
integration in the complex plane. The distribution for
the magnitude of the Poynting momentum is then

D(P ) = −2P
∂Dx(Px)

∂Px

∣∣∣
Px=P

= 108P 2 exp{−6P}.

The electric-biased orbital and spin momenta read

PE
O =

1

2ω
pE · (∇)qE − 1

2ω
qE · (∇)pE

PE
S = − 1

2ω
(pE · ∇)qE +

1

2ω
(qE · ∇)pE.

Again, each component is a sum of products of two
Gaussian random variables (one field component and

one space derivative), and we only have to find the dis-
tribution for the x-component. For the orbital momen-
tum this is

Dx(P
E
O,x) =

〈
δ
(
PE
O,x −

∑
j

1

2

[
pEj ∂xq

E
j − qEj ∂xp

E
j

] )〉

=

∫
ds

2π
e−isP

E
O,x

〈
exp

{
is

2
pEx ∂xq

E
x

}〉2 〈
exp

{
is

2
pEy ∂xq

E
y

}〉4

= . . .

and the distribution for the magnitude is

D(PE
O ) = 180PE

O

[
e−6

√
5PE

O −
[
1− 3

√
10

2
PE
O

]
e−3

√
10PE

O

]
.

Surprisingly, we find that in repeating the calculation
for the spin momentum, the result is the same. Indeed,
the first steps of the derivation read

Dx(P
E
S,x) =

〈
δ
(
PE
S,x −

∑
j

1

2

[
pEj ∂jq

E
x − qEj ∂jp

E
x

] )〉

=

∫
ds

2π
e−isP

E
S,x

〈
exp

{
is

2
pEx ∂xq

E
x

}〉2 〈
exp

{
is

2
pEy ∂yq

E
x

}〉4

and since ∂xqEy and ∂yq
E
x are both uncorrelated to pEy

and have the same variance (see tables in the SI), the
rest of the calculation is strictly identical to that for
the orbital momentum, and we conclude that the or-
bital and spin momenta obey the exact same magnitude
distribution. All these distributions are wavelength-
independent, and only scale with the overall intensity
in the field.

They are plotted and checked against numerical es-
timates in Figure 1.a). It is interesting to observe that
the spin momentum, usually negligibly small in parax-
ial beams, becomes here equivalent in magnitude to the
orbital momentum, responsible for the actual energy
flow. The intuitive reason for the different order of
magnitude is that in the fully non-paraxial case, there
are waves propagating in all directions, such that all
space derivatives result in a factor ∼ ik, whereas trans-
verse gradients are only of order ∼ 1/W in the paraxial
case. Moving away from paraxiality, part of the linear
momentum converts from an orbital to a spin nature,
in a manner strictly similar to how the angular momen-
tum does [30].

To complete the picture of the three momenta at
a given point in space, we present in Figure 1.b) the
distributions for the angles between each pair of mo-
menta. They were obtained numerically, as attempting
to compute analytical joint distributions of two mo-
menta hardly leads to tractable expressions. We ob-
serve that the angle between PE

O and PE
S has a broad

distribution roughly centered on π/2 (with a slight skew
towards larger angles), indicating that they tend to
point in perpendicular directions. Since they have com-
parable magnitudes, the resulting Poynting momentum
is generically not closely aligned with either of them.
This implies that the streamlines for the three optical
currents tend to diverge away from one another.

In Figure 1.c), we illustrate one realisation of the
random field, in a cubic region of side λ/2. We plot
the three momenta on the sides of the box, and a
set of streamlines seeded near the center of the cube.
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FIG. 2. Local structure of the optical currents.
First three columns : optical currents of the vector EM field V = PE

O, P
E
S , P. Last column : current in the complex scalar

field V = J. First row : normalized analytical spatial autocorrelation functions ⟨Vx(0)Vx(r)⟩ /
〈
(Vx)

2
〉
of the x-component

of each momentum, for separation vectors r in the x− y plane. Second row : in-plane streamlines of each momentum in a
slice through one realization of the random vector field (first three columns) and one realization of the random scalar field
(last column), each containing N = 103 plane waves. Streamlines are colored according to the value of the x-component of
the vector field, and zero-crossings are shown in black to better distinguish regions having a flow oppositely directed along
x. Third row : in-plane streamlines in the same slices as in the second row, after local averaging of the vector fields over a
spherical volume of diameter λ (dashed circle). All plots in a given row share the same colorbar.

The three vector fields are indeed observed to generi-
cally point in different directions, and the streamlines
to follow seemingly unrelated paths in space, crossing
with angles in agreement with the distributions of Fig-
ure 1.b). This reinforces the claim that the Poynting
and orbital currents generally provide contrasting pic-
tures of EM energy flow, both in terms of magnitude
and direction. These observations could prove impor-
tant for simulating optical forces in complex nanopho-
tonics systems.

B. Short-range organization of the currents

1. Spatial correlation tensors

Going beyond their identical magnitude distribution,
we find that the orbital and spin momentum vector
fields are actually arranged very differently in space.
To explore this, we compute two-point spatial corre-
lation tensors for all pairs of components of a given
momentum. Each tensor will be of the form in (7),

given entirely by the longitudinal autocorrelation func-
tion f(r). For the Poynting momentum, this function
writes

fP (r) = ⟨Px(0)Px(rex)⟩

=
∑

j,k,l,m

〈
1

4
ϵxjkϵxlm[pEj p

H
k + qEj q

H
k ](0)[pEl p

H
m + qEl q

H
m](rex)

〉
.

To evaluate these averages we make use of Isserlis’ the-
orem for moments of Gaussian variables [19]. fP (r) is
obtained as

fP (r) = T 2(r) +
(kr)2

4
L2(r),

and the correlation tensor is

〈
Pi(0)Pj(r)

〉
=
rirj
r2

[
2R

(
R2 − 3

)
sin(2R)

+
(
6R2 − 3

)
cos(2R) + 2R4 + 3

]/
8R6

+ δij

[
R
(
2−R2

)
sin(2R) +

(
1− 2R2

)
cos(2R)− 1

]/
4R6.
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The strategy is similar for the orbital and spin mo-
menta. We find

ω2fO(r) =
1

2

[
L′2(r)− L(r)L′′(r)

]
+

[
T ′2(r)− T (r)T ′′(r)

]
,

giving the correlation tensor〈
PE
O,i(0)P

E
O,j(r)

〉
=
rirj
r2

[1
2

(
R4 − 24R2 + 72

)
R sin(2R)

+ 3
(
R4 − 10R2 + 6

)
cos(2R) +R6 − 3R4 − 6R2 − 18

]/
4R8

+ δij

[
−

(
R4 − 20R2 + 54

)
R sin(2R)

+
(
−5R4 + 46R2 − 27

)
cos(2R) + 3R4 + 8R2 + 27

]/
8R8.

And for the spin momentum,

ω2fS(r) =
3

4
L′2(r)− L(r)L′′(r)

2
− 2L′(r)

T (r)

r

with the correlation tensor〈
PE
S,i(0)P

E
S,j(r)

〉
=
rirj
r2

[
3
(
R4 − 14R2 + 24

)
R sin(2R)

+
(
16R4 − 69R2 + 36

)
cos(2R) + 2R4 − 3R2 − 36

]/
8R8

+ δij

[ (
−3R4 + 32R2 − 54

)
R sin(2R)

+
(
−13R4 + 52R2 − 27

)
cos(2R)−R4 + 2R2 + 27

]/
8R8.

For each momentum, the (normalized) autocorrelation
function of the x-component for separation vectors r

in the xy-plane is plotted in the top row of Figure 2.
For the orbital momentum, the degree of correlation is
largely positive, and longer-ranged in the longitudinal
direction. In sharp contrast, components of the spin
momentum tend to change sign periodically, and more
strongly so in the lateral directions. These findings hint
at qualitatively distinct spatial organizations for the
two currents. In the middle row of Figure 2, we show
2D streamlines for each momentum in a slice through
one realisation of the random field, and colour them ac-
cording to the value of the x-component. Zero-crossings
of the x-component are shown in black to better dis-
tinguish regions of “upwards” and “downwards” flow
along x. We observe that the orbital current keeps the
same direction across relatively broad channels, with a
typical size in accordance with the correlation function
given above. Such structures are channels of energy
flow. Conversely, the spin current changes direction
more frequently, particularly along the lateral (y) di-
rection, forming narrow pockets of oppositely directed
flow. These two contrasting behaviours can seemingly
be traced back to the elementary building block of the
non-paraxial field, consisting of two interfering plane
waves and studied in [4], in which it was found that PO
homogeneously points along the bisector, whereas PS
oscillates in the transverse direction.

Corresponding results for the Poynting current,
shown in the third column of Figure 2, indicate a less
clear-cut behaviour, close but not identical to that of
the orbital current. At this point, it is enlighten-
ing to compare the currents of the vector EM field
to the simpler case of a random complex scalar field
Ψ = pΨ + iqΨ, defined by dropping the polarization
term in brackets in (4). Ψ obeys the Helmoltz equation
with wavevector k, and there is a single, divergenceless

current J = 1
2ω Im{Ψ∗∇Ψ}. Its longitudinal autocorre-

lation function is given by

ω2fJ (r) =
1

2

[
C′2(r)− C(r)C′′(r)

]
,

with C(r) = L(r) + 2T (r) = sin(kr)/kr (we remark the
similarity of this expression to that for the orbital mo-
mentum), and the correlation tensor is

〈
Ji(0)Jj(r)

〉
=
rirj
r2

[(
2R2 +R sin(2R) + 2 cos(2R)− 2

)
4R4

]

+ δij

[
− (R sin(2R) + cos(2R)− 1)

4R4

]
.

The correlation behaviour of the scalar current, shown
in the rightmost column of Figure 2, appears to lie in
between that of the orbital and Poynting currents, and
is similar to both. This in turn emphasizes the “spin”
nature of PS , which possesses a behaviour unfound in
the scalar case ; it raises the interesting question of how
corresponding currents would behave for tensor waves
describing other fundamental particles with different
spin.

Finally, we discuss the experimental observability of
these optical currents. As mentioned in [11] , a small
probe particle can hardly image subwavelength struc-
tures, as its own presence will distort the field on a com-
parable lengthscale. With this in mind, it is tempting
to only consider local spatial averages of the currents.
Our correlation functions suggest that the orbital cur-
rent will survive local averaging, as it is largely posi-
tively correlated to itself over a wavelength-sized vol-
ume. Conversely, neighbouring pockets of opposite spin
flow will cancel each other out. In the bottom row of
Figure 2, we plot the same streamlines again, but af-
ter having performed a local average of the field over a
spherical volume of diameter λ (rendered by the dashed
circle). The integrated spin current indeed quickly van-
ishes. As a result, orbital and Poynting currents will
tend to reconcile, if probed by sufficiently large parti-
cles that effectively average over the generic subwave-
length inhomogeneities of the spin momentum. Con-
sequently, we expect the difference in the orbital and
Poynting streamlines highlighted in Figure 1 to have its
significant impact on the motion of very subwavelength
objects, such as single atoms or atomic clusters.

2. Vorticity of the currents

The tendency of the spin current to “turn” more can
be further quantified by deriving statistical distribu-
tions for the vorticities of the optical currents, that
were discussed in previous studies [10, 11]

ΩP = ∇×P ΩE
O = ∇×PE

O ΩE
S = ∇×PE

S . (8)

The strategy for these calculations follows closely that
for the magnitudes of the momenta themselves. We
note that the additional space derivative involved now
makes the distributions wavelength-dependent. The
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FIG. 3. Vorticity distributions.
Analytical (lines) and numerical (dots) probability distribu-
tions for the magnitudes of the vorticities of the Poynting,
orbital and spin currents. Numerical data was obtained
from 105 independent realizations of the random field, each
containing N = 103 plane waves.

magnitude distributions for the three vorticities are

D(X = ΩP /ω) =
9X

78 886 240

×
[ (

237
√
5X + 172

)
819 200e−6

√
5X

+
(
939 752 400X − 44 642 639

√
10

)
sinh(20X)e−8

√
10X

+
(
1 860 213

√
10X − 880 640

)
160 cosh(20X)e−8

√
10X

]
D(X = ΩE

O/ω) =
225

77
X

×
[
64e−(15/2)X − 99e−10X + 35e−6

√
5X

]
D(X = ΩE

S /ω) =
25X

361 504

×
[
83 187e−20X + 9 628 125e−12X

− 5 824 512e−10X + 286 374
√
10 sinh(20X)e−8

√
10X

− 4 792 320e−6
√
5X + 905 520 cosh(20X)e−8

√
10X

]

These distributions are shown in Figure 3. Despite be-
ing identically distributed in magnitude, orbital and
spin momenta have different vorticities : in agreement
with the observations of the previous section, that of
the spin current is statistically larger. An interest-
ing extension of this investigation could be to explore
whether or not this relates to some difference in the
density of singularities in the orbital and spin flows [11].
The geometry of these singularities, in the special case
where all components of the complex electric field van-
ish, was recently studied in [31], where it was found
that the orbital momentum always arranges in elon-
gated “pseudo vortex lines” in the vicinity of such zeros.
Visual exploration of the random fields (not shown) in-
dicates that such a coiling structure seems to occur fre-
quently near generic zeros of both the orbital and spin
momenta.

C. Democratic momenta and fields with pure
helicity

Throughout this work, we have focused on electric-
biased momenta. Equivalent statistics would evidently
hold for the magnetic-biased quantities, but not for
democratic ones. Berry and Shukla recently investi-
gated the difference between biased and democratic
quantities in similar statistical calculations [26], and
concluded that as a rule of thumb, democratic quanti-
ties tend to vary more smoothly and follow narrower
distributions. Indeed, including contributions from
both the electric and magnetic fields (which are uncor-
related to some extent) effectively suppresses regions of
strong interference, similarly to the way vector quanti-
ties built from three field components also show less
interference detail than corresponding scalar quanti-
ties. We derived the magnitude distributions for the
democratic momenta (see SI) and present them in Fig-
ure 4.a). The distribution is still identical for the orbital
and spin parts, but is indeed slightly narrower than for
the biased momenta (dashed grey line). Interestingly,
when computing the angle distributions numerically in
Figure 4.b), we find that the angle between PEH

O and
PEH
S is on average narrower than that between the cor-

responding biased quantities. As a result, democratic
momenta are (slightly) more closely aligned with the
Poynting vector than their biased counterparts. Our
investigations in randomly polarized fields did not re-
veal more striking differences between biased and demo-
cratic momenta, and we believe all qualitative descrip-
tions given in previous sections to hold for democratic
currents as well.

It is enlightening at this point to backtrack on our
assumption of randomly polarized plane wave compo-
nents, to consider instead random fields with pure he-
licity σ = ±1. This amounts to fixing βn to 0 or
π in (4), and enforces H = −iσE such that biased
and democratic quantities become equal (we denote
them by a σ superscript). As detailed in the SI, this
adds new non-zero correlations between variables in our
statistics, though values of local averages that were al-
ready non-zero in the randomly polarized case are un-
affected. Taking these new correlations into account,
we can proceed through similar calculations. It is how-
ever easy to predict what the distributions will be, as
democratic momenta always split into two independent
terms originating from components of opposite helic-
ity P = [P+ + P−]/2 [18]. In a randomly polarized
field, this becomes a sum of two independent identi-
cally distributed variables, whose distribution simply
results from the self-convolution of the distribution for
a pure helicity term. This easily appears considering
the Fourier transform form of our calculations (see SI).
Distributions in pure helicity fields are also shown and
checked against numerics in Figure 4.a), and they are
broader than all distributions in the randomly polarized
case. This is likely explained by a weaker “suppression
of interference” effect, since there is now even less inde-
pendence between the different components of the EM
field.

Finally, it was recently shown by Aiello that for in-
stantaneous (that is, not time-averaged) democratic
quantities, the fast-oscillating double-frequency terms
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FIG. 4. Statistics of democratic momenta in ran-
domly polarized and pure helicity fields.
(a) Analytical (lines) and numerical (dots) probability dis-
tributions for the magnitudes of the Poynting, orbital and
spin (democratic) momenta in randomly polarized fields
(the thin dashed curve shows the distribution for the bi-
ased momenta of Figure 1), and in pure helicity fields (Pσ).
(b) Distribution of the angles between democratic momenta
in randomly polarized fields, obtained numerically. Numer-
ical data in this figure was obtained from 105 realizations
of the random field, each containing N = 103 plane waves.

also happen to be the cross-helicity terms [32, 33]. Con-
sequently, cycle-averaging becomes equivalent to ignor-
ing cross-helicity terms, and has therefore no effect on
democratic quantities in pure helicity fields. For this
reason, the distributions derived here for pure helicity
fields are also expected to be the magnitude distribu-
tions for instantaneous democratic momenta (for which
the nature of the polarization should be irrelevant). Ex-
tending our approach to general time-dependent poly-
chromatic fields is beyond the scope of this article, but
represents an intriguing avenue, that could highlight
profound relations between electric-magnetic democ-
racy, helicity and time-averaging.

CONCLUDING REMARKS

We have investigated various statistical properties
of the Poynting, orbital and spin optical momenta in
generic isotropic random light fields. Non-paraxiality
was found to increase the discrepancy between Poynt-
ing and orbital flows, as the spin momentum unexpect-
edly becomes equivalent in magnitude to the orbital
one. Deriving correlation functions, we were able to de-
scribe the distinct spatial structures of the orbital and
spin currents, the former arranging in broad channels

of energy flow akin to those found in a scalar random
field, when the latter has higher vorticity and changes
direction on a subwavelength scale. Upon local aver-
aging over a wavelength-sized volume, the spin current
rapidly averages out, leading the orbital and Poynt-
ing currents to reconcile. Still, the very different be-
haviour of the orbital and spin currents interrogates
what our approach would reveal in other types of waves.
Indeed, the field-theoretic formalism decomposing the
kinetic (Poynting) momentum into canonical (orbital)
and Belinfante (spin) parts is of broader generality, and
these investigations could be extended and compared
to waves describing other particles, such as electrons
described by the Dirac equation whose current decom-
position into orbital and spin contributions is known
as the Gordon decomposition [34, 35], but also to tur-
bulence in acoustic [36] and gravity water waves [37],
the latter extensions appearing very natural consider-
ing that results from fluid dynamics were used in the
present study. The spin angular momentum density of
all types of waves could also be studied, as it is arguably
the more relevant quantity from a field-theory perspec-
tive, the Belinfante momentum being constructed from
it.

Further investigations of the electromagnetic case
could characterize the generic singularities of the op-
tical currents (isolated points in 3D space) and the
statistical geometry of the flows around them, some-
thing that has so far only been explored for non-generic
zeros of the full complex electric field [31]. More ad-
vanced correlation functions (involving more than two
positions, evaluated near extrema, etc. . . ) could reveal
finer features of the optical currents as well ; random
fields generally offer endless possibilities of statistical
investigation [21].

Finally, there appears to be profound links to un-
cover in relating electric-magnetic democracy, helicity
and time-averaging. This prompts the extension of our
approach to general time-dependent fields, which could
require introducing the vector potentials for defining in-
stantaneous momenta, and the weighing of plane wave
components by a power spectrum [22, 25]. This could
represent a step towards better understanding of the
spin-orbit decomposition of optical momentum, which
as of today remains largely confined to the monochro-
matic case.
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