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Hybrid systems—more precisely, their mathematical models—can exhibit behaviors, like
Zeno behaviors, that are absent in purely discrete or purely continuous systems. First, we
observe that, in this context, the usual definition of reachability—namely, the reflexive and
transitive closure of a transition relation—can be unsafe, i.e., it may compute a proper
subset of the set of states reachable in finite time from a set of initial states. Therefore, we
propose safe reachability, which always computes a superset of the set of reachable states.
Second, in safety analysis of hybrid and continuous systems, it is important to ensure that
a reachability analysis is also robust w.r.t. small perturbations to the set of initial states and
to the system itself, since discrepancies between a system and its mathematical models are
unavoidable. We show that, under certain conditions, the best Scott continuous approximation
of an analysis A is also its best robust approximation. Finally, we exemplify the gap between
the set of reachable states and the supersets computed by safe reachability and its best
robust approximation.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

0. Introduction

In a transition system—i.e., a relation → on a set of states—reachability is a clearly defined notion, namely, the reflex-
ive and transitive closure →∗ of →. Reachability analysis plays an important role in computer-assisted verification and
analysis [2], since safety (a key system requirement) is usually formalized in terms of reachability, namely:

state s is safe ⇐⇒ it is not possible to reach a bad state from s.

For a hybrid system one can define a transition relation → on a continuous and uncountable state space, but →∗ captures
only the states reachable in finitely many transitions, and they can be a proper subset of those reachable in finite time!
Hybrid systems with Zeno behaviors—where infinitely many events occur in finite time—are among the systems in which
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the two notions of reachability differ. Zeno behaviors arise naturally when modeling rigid body dynamics with impacts,
as illustrated by the system consisting of a bouncing ball (Example 2.8), whose Zeno behavior is due to the modeling of
impacts as discrete events.

0.1. Contributions

The first contribution of this paper is the notion of safe reachability (Definition 3.6), which gives an over-approximation—
i.e., a superset—of the states reachable in finite time, including the case where the hybrid system has Zeno behaviors.
Mathematical models are always simplifications, through abstractions and approximations, of real systems. Simplifications
are essential to making analyses manageable. In safety analysis, over-approximations are acceptable, since they can only
lead to false negatives, i.e., the analysis may wrongly conclude that (a state s of) the system in unsafe, because the over-
approximation includes some unreachable bad states.

The second contribution is to show, under certain assumptions, that the best Scott continuous approximation of safe reach-
ability coincides with its best robust approximation. In safety analysis robust over-approximations are important, because
inaccuracies in the modeling of a cyber-physical system (as well as in its building and testing) are unavoidable, as convinc-
ingly argued in [13].

0.2. Background

We build directly on the following papers.

• [15] is an excellent tutorial on hybrid systems, from which we borrow the definition of a hybrid system (Definition 2.1),
but we do not use hybrid arcs (and related notions), since they cannot reach nor go beyond Zeno points.

• [10,9] introduce topological transition systems (TTS), which we use for defining safe reachability (Definition 3.6). In TTSs
on discrete spaces, standard reachability (Definition 3.1) and safe reachability (Definition 3.6) coincide.

• [12] is one among several papers, where Edalat recasts mainstream mathematics in Domain Theory, and shows what is
gained by doing so. In the context of this paper, Domain Theory becomes relevant when the Scott and Upper Vietoris
topologies on certain hyperspaces coincide.

The reachability maps we introduce are arrows in the category of complete lattices and monotonic maps, which is the
standard setting for defining and comparing abstract interpretations [8]. Our notion of robustness is related to δ-safety, i.e.,
safety of a system subject to imprecision up to δ. [13,19] argue that δ-safety makes the verification task easier, and excludes
systems that are safe only under unrealistic assumptions.

0.3. Summary

The rest of the paper is organized as follows:

• Sec. 2 recalls the definition of a hybrid system from [15], defines the corresponding transition relation (Definition 2.3),
and gives some examples.

• Sec. 3 introduces two reachability maps Rf and Rs (Definition 3.1 and 3.6, respectively), establishes their properties and
how they relate to each other.

• Sec. 4 introduces the notion of robustness (see Definition 4.1) and states two results on the existence of best robust
approximations (Corollary 4.4 and 4.5), that follow from more general results on Scott continuous maps.

• Sec. 5 uses the category of complete lattices and monotonic maps (see Definition 5.2) as a framework to discuss ap-
proximations and relate reachability maps defined on different complete lattices. In this framework we give a general
definition of best approximation (Theorem 5.11), and in particular a systematic way to turn a monotonic map f between
complete lattices into its best Scott continuous approximation f � (see Proposition 5.15).

• Sec. 6 recalls and assesses several notions defined in [15] using hybrid arcs, like forward invariant/stable/pre-attractive
subset, and gives simpler way to recast or redefine them using the notions introduced in this paper.

• Sec. 7 analyzes (with the aid of pictures) the differences between the under-approximation Rf and several over-
approximations (from Rs to Rs� ) of sets of reachable states, for the hybrid systems introduced in Sec. 2.

Appendix A contains proofs that were too long to inline and a section relating robustness and Scott continuity (see Ap-
pendix A.1).

1. Mathematical preliminaries

We assume familiarity with the notions of Banach, metric, and topological space, and the definitions of open, closed, and
compact subset of a topological space (see, e.g., [7,18]). The relations among spaces are:
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• Every Banach space is a Cauchy complete metric space whose distance is d(x, y)
�= |y − x|, where |x| is the norm of x;

• Every metric space is a topological space whose open subsets are given by unions of open balls B(x, δ)
�= {y|d(x, y) < δ}.

For the sake of simplicity, one may replace Banach spaces with Euclidean spaces Rn . For membership we may write x:X
instead of x ∈ X , and we use the following notations:

• R denotes the Euclidean space of the real numbers;
• N denotes the set of natural numbers, while ω is the poset of natural numbers with the usual linear order;
• P(S) is the set of subsets of a set S (the notation is used also when S is a set with additional structure, e.g., a Banach

or topological space);
• O(S) is the set of open subsets of a topological space S, and C(S) is the set of closed subsets (the notation is used also

when S is a set with additional structure that induces a topology, e.g., a Banach or metric space).

Except for Sec. 5, we make limited use of Category Theory ([3,4]).

• If A is a category and X, Y :A are two of its objects, then A(X, Y ) denotes the set of arrows from X to Y .
• Products and coproducts in A are denoted by

∏
and

∐
, they are defined by the properties (where

∏
on the right-hand

side is a product of sets)

A(X,
∏

i:I.Yi)∼=
∏

i:I.A(X, Yi) A(
∐

i:I.Xi, Y )∼=
∏

i:I.A(Xi, Y ).

• Set is the category of sets and (total) maps. It has both products and coproducts, in particular
∐

i:I.Xi is (up to iso) the
set {(i, x)|i:I ∧ x:Xi}.

• Setp is the category of sets and partial maps. It has both products and coproducts, but only coproducts are computed
as in Set.

• Top is the category of topological spaces and continuous maps.

Finally, we recall some definitions and their basic properties:

• x is a limit of a sequence (xn|n:ω) in the topological space S
�⇐⇒ ∀O :O(S).x:O =⇒ ∃m.∀n > m.xn:O .

The limits of a sequence form a closed subset of S. In a metric space a sequence has at most one limit.

• x is an accumulation point of a sequence (xn|n:ω) in the topological space S
�⇐⇒ ∀O :O(S).x:O =⇒ ∀m.∃n > m.xn:O .

The accumulation points of a sequence form a closed subset of S, every limit is also an accumulation point, and every
accumulation point is a limit of a sub-sequence (x f (n)|n:ω) for a strictly increasing f :Set(ω,ω), i.e., ∀n. f (n) < f (n+ 1).
In a metric space, if a sequence has a limit, then the limit is the only accumulation point.

• The derivative ḟ :Setp(R,S) of a partial map f :Setp(R,S) from R to a Banach space S is given by ḟ (x)= v
�⇐⇒ ∃δ > 0

s.t. B(x, δ) is included in the domain of f , and if x is the limit in R of a sequence (xn|n:ω) in B(x, δ)− {x}, then v is
the limit of the sequence (

f (xn)− f (x)
xn−x |n:ω) in S.

If ḟ (x) is defined, then f must be defined in an open ball B(x, δ) and continuous at x. If ḟ is defined and continuous
in B(x, δ), then f is called continuously differentiable in B(x, δ).

2. Hybrid systems and topological transition systems

In this section, we define what is a hybrid system (cf. [15]), i.e., a mathematical model suitable for describing cyber-
physical systems [20,22]; what is a topological timed transition system (cf. [10]), i.e., an abstraction of hybrid systems useful
for defining various reachability maps; finally we introduce some examples of hybrid systems that will be used throughout
the paper.

Definition 2.1. A Hybrid System (HS for short) H on a Banach space S is a pair (F , G) of binary relations on S, i.e.,
F , G:P(S × S), respectively called flow and jump relation. We say that H is open/closed/compact, when the relations F
and G—as subsets of the topological space S× S—are open/closed/compact.

Remark 2.2. In [15], the authors restrict S to a Euclidean space Rn , and show that HS subsume Hybrid Automata [2] and
Switching Systems.

The flow and jump relations are constraints for the trajectories describing how the HS evolves over time (see the notion
of solution in [15, page 39–40]). Trajectories are not needed to define reachability (see Sec. 3), since a simpler notion of
transition suffices (see also [2, Sec. 2] and [21, Def. 5]).
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Definition 2.3. A Topological Timed Transition System (TTTS) is a pair (S, � ) consisting of a topological space S and

a timed transition relation � :P(S × T × S), where T
�= {d:R|d ≥ 0} is the continuous time line. Its corresponding

transition relation on S is given by s � s′ �⇐⇒ ∃d.s
d� s′ .

A HS H= (F , G) on S induces a TTTS (S, H
� ) s.t. s

d

H
� s′ �⇐⇒

1. d = 0 and s G s′ , or,
2. d > 0 and there exists a continuous map f :Top([0,d],S) s.t.:
• the derivative ḟ of f is defined and continuous in (0,d);
• s = f (0), s′ = f (d) and ∀t:(0,d). f (t) F ḟ (t).
In this case we say that f realizes the transition.

Remark 2.4. Hybrid arcs (cf. [15]) could be defined in term of a transition relation where the labels d > 0 are replaced by
their realizer maps f .

• In [15] the requirements on f are more relaxed than ours, namely: f must be absolutely continuous (which, in our
case, is implied by the continuity of ḟ ), and the flow relation must hold almost everywhere in (0,d). However, the safe
evolution and safe reachability maps (see Definition 3.6) are insensitive to these changes. Thus, we have adopted the
requirements on f that are mathematically simpler to express.

• In [16] the requirements on f are stricter than ours, namely: ḟ must extend continuously to [0,d], and the flow relation
must hold also at the end-points. For instance, the map f (t)=√

t is continuous in [0,d], its derivative ḟ (t)= 1
2∗√t

is

continuous in (0,d), but it cannot be extended continuously to 0. The main rationale for the stricter requirements is

that a transition s
d� s′ with d > 0 can only start from a state in the domain of the flow relation F .

Notation 2.5. Given a first-order language with an interpretation in a Banach space S, a HS on S can be described by two
formulas, a flow formula F (x, ẋ) and a jump formula G(x, x+), with two free variables each: x denotes the current state,
ẋ denotes the derivative of a trajectory flowing through x, and x+ denotes a state reachable from x with one jump.

Similarly, given a two sorted language, with one sort interpreted in R and the other in a topological space S, a timed
transition relation can be described by a formula T (x,d, x′) with three free variables: x denotes the starting state, d:R the
duration of the transition, and x′ the final state.

We introduce some hybrid systems, and give explicit descriptions of their timed transition relations (see also Sec. 7).

Example 2.6 (Expand). The HS HE on R describes the expansion of a quantity m until it reaches a threshold M > 0. Its flow
and jump relations are:

F = {(m,ṁ)|0≤m = ṁ ≤ M}, G = ∅.
It has two kinds of trajectories depending on the start state m0 (see Fig. 1).

1. When m0 = 0, the quantity remains 0 forever, i.e., f (t)= 0 when t ≥ 0.
2. When m0:(0, M), there is an exponential growth f (t) = m0 ∗ et until f (t) becomes M , then the trajectory cannot

progress further.

The timed transition relation HE

� consists of the transitions

• m
d� m′ with 0 < d and 0≤m ≤m′ =m ∗ ed ≤ M .

Removing (M, M) from F does not change the timed transitions, while adding (M,0) to F entails the addition of the

transitions M
d� M with d > 0.

Example 2.7 (Decay). The HS HD on R describes the decay of a quantity m > 0, and a refill to M > 0 when m = 0. Its flow
and jump relations are:

F = {(m,ṁ)|m > 0∧ ṁ =−m}, G = {(0, M)}.
It has two kinds of trajectories, depending on the start state m0 (see Fig. 2):
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1. When m0 = 0, there is a refill followed by a decay f (t)= M ∗ e−t .
2. When m0 > 0, there is a decay f (t)=m0 ∗ e−t . Thus, f (t) > 0 when t ≥ 0, and f (t)→ 0 as t →+∞.

The timed transition relation HD

� consists of the transitions

• 0
0� M , and

• m
d� m′ with 0 < d and m > m′ =m ∗ e−d > 0.

Adding (0,0) to F entails the addition of the transitions 0
d� 0 with d > 0.

Example 2.8 (Bouncing ball). The HS HB on R2 describes a bouncing ball with height h ≥ 0 and velocity v , which is kicked
when it stops, i.e., when h = v = 0. Its flow and jump relations depend on a coefficient of restitution b (we do not restrict
its value, but b:[−1,0] would be the obvious restriction), and a velocity V > 0 given to the ball when it is kicked. We
assume the force of gravity to be −1 (for the sake of simplicity). Formally:

• F = {((h, v), (ḣ, v̇))|h > 0∧ ḣ = v ∧ v̇ =−1}.
• G = {((0, v), (0, v+))|v < 0∧ v+ = b ∗ v} � {((0,0), (0, V ))}.

It has seven kinds of trajectories starting from (h = 0, v > 0), depending on the value of b (see Fig. 3 in Sec. 7).

1. When b <−1, the ball never stops (its energy increases at each bounce).
2. When b =−1, the ball never stops (its energy remains constant).
3. When b:(−1,0), the ball stops in finite time, but after infinitely many bounces (this is a Zeno behavior), then it is

kicked, i.e., (h = 0, v = V ).
4. When b = 0, the ball stops as it hits the ground, then it is kicked.
5. When b:(0,1), as the ball hits the ground, it stops after infinitely many instantaneous slowdowns 0 > bn ∗ v → 0 (this

is a chattering Zeno behavior), then it is kicked.
6. When b = 1, as the ball hits the ground, the trajectory cannot progress further in time.
7. When b > 1, as the ball hits the ground, its velocity drifts to −∞ after an infinite sequence of instantaneous accelera-

tions 0 > bn ∗ v →−∞, and the trajectory cannot progress further in time.

The timed transition relation HB

� consists of the following transitions:

• (0, v)
0� (0, v ′) with v < 0 and v ′ = b ∗ v , this is a bounce;

• (0,0)
0� (0, V ), this is when the ball is kicked;

• (h, v)
d� (h′, v ′), with 0 < d and 0≤ h,h′ = h + v ∗ d− d2

2 ∧ v ′ = v − d, this is when the ball moves while the energy

E(h, v)= h + v2

2 stays constant.

In particular, (0, v)
2∗v� (0,−v) is the transition between two bounces. Adding {((0, v), (ḣ, v̇))|ḣ = v ∧ v̇ =−1} to F does

not change the timed transitions, while adding ((0,0), (0,0)) to G entails the addition of (0,0)
0� (0,0).

The following construction adds a clock to a HS to record the passing of time.

Definition 2.9. Given a HS H= (F , G) on S, the derived HS t(H)= (F ′, G ′) on R× S adds a clock to H, namely:

• F ′ �= {((t, s), (1, ṡ)) | s F ṡ}, because dt/dt = 1;

• G ′ �= {((t, s), (t, s+)) | s G s+}, because jumps are instantaneous.

Proposition 2.10. (t, s)
d

t(H)
� (t′, s′) ⇐⇒ t′ = t + d∧ s

d

H
� s′ .

Proof. Only the case d > 0 is non-trivial.

• If f ′:Top([0,d],R× S) realizes the transition (t, s)
d

t(H)
� (t′, s′), then f ′(x)= (t + x, f (x)) for a unique f :Top([0,d],S),

and moreover this f realizes the transition s
d

H
� s′ .

• Conversely, if f :Top([0,d],S) realizes s
d

H
� s′ , then f ′(x)= (t + x, f (x)) realizes (t, s)

d

t(H)
� (t′, s′). �
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3. Evolution and reachability

Transition systems (TS for short) provide the main formalism for modeling discrete systems. The formalism does not
mention time explicitly, but it assumes that time is discrete, and each transition takes one time unit (or alternatively, it
abstracts from time and describes only the order of discrete state changes).

Given a TS (S,→), i.e., a binary relation → on a set S (aka a directed graph), we identify the discrete time line with the
set N of natural numbers and define the following notions related to the TS.

• A trajectory (called trace in a discrete setting) is a map f :Set([0,n],S) s.t. ∀i < n. f (i) → f (i + 1) for some n:N, or
equivalently, a path f :S+ in the graph. The length of f is n and f (0) is its starting state.

• The evolution map Ef:P(S)→ P(N× S) is Ef(I)
�= {(n, s′)|∃s:I.s →n s′}, or equivalently the union of (the graphs of) all

trajectories starting from the set I of initial states. Therefore, Ef(I) says at what time a state is reached, but forgets the
trajectories used to reach it. However, when → is deterministic, there is at most one trajectory of length n from s to s′ ,
which can be recovered from Ef({s}).

• The reachability map Rf:P(S) → P(S) is Rf(I)
�= {s′|∃s:I.s →∗ s′}, or equivalently {s′|∃n.(n, s′):Ef(I)}. Therefore, Rf(I)

says whether a state is reachable from I , but forgets at which time instances it is reached.

For TTTS (and HS) one would like to reuse as much as possible the theory available for TS. The main point of this section is
that a naive reuse can under-approximate what is reachable in finite time. To address this problem, we present a solution
that computes an over-approximation (see Sec. 3.1). This solution exploits the topological structure of the state space S and
the continuous time line T.

We choose to cast analyses (like reachability) as monotonic maps (like Rf) rather than as relations (like →∗). This
becomes essential in Definition 3.6 and for defining approximability (Sec. 5) and robustness (Sec. 4) of an analysis.

Definition 3.1. The evolution map Ef:P(S)→ P(T× S) and the reachability map Rf:P(S)→ P(S) for a TTTS (S, � ) are:

• Ef(I)
�= smallest S:P(T×S) s.t. {0}× I ⊆ S and S closed w.r.t. timed transitions, i.e., (t, s):S ∧ s

d� s′ =⇒ (t +d, s′):S .

• Rf(I)
�= smallest S:P(S) s.t. I ⊆ S and S closed w.r.t. transitions, i.e., s:S ∧ s � s′ =⇒ s′:S .

We denote with EfH and RfH the evolution and reachability maps for the TTTS induced by the HS H.

Remark 3.2. The f in Ef and Rf stands for finite, because these maps consider only states that are reachable in finitely many
transitions. There is an important difference between discrete systems and continuous/hybrid systems. In a discrete (time)
system the transition relation suffices to define trajectories, the evolution, and the reachability maps. In a continuous (time)
system: to define trajectories, the structure of a HS is needed; to define the evolution map, the timed transition relation
suffices; and to define the reachability map, the transition relation suffices.

Theorem 3.3. The following properties hold:

1. Ef is monotonic, i.e., I0 ⊆ I1 =⇒ Ef(I0)⊆ Ef(I1), and preserves unions, i.e., ∀K ⊆ P(S).Ef(∪K )=∪{Ef(I)|I:K }.
2. Rf is monotonic, preserves unions, is a closure, i.e., I ⊆ Rf(I)= Rf2(I), and π(Ef(I))= Rf(I).
3. If H is a HS on S, then ∀I:P(S).EfH(I)= Rft(H)({0} × I) and ∀ J :P(R× S).π(Rft(H)( J ))= RfH(π( J )).

Here, π :R× S � S is π(t, s)
�= s, and π( J ) is the image of J ⊆R× S.

Proof. See Appendix A. �
A pair (t, s′) is in EfH(I) exactly when s′ is reached at time t in finitely many transitions starting from some s:I . In Zeno

systems there are states that are reached at a finite time t , but not in a finite number of transitions. Therefore, EfH and RfH
may under-approximate what we would like to compute.

Definition 3.4. A Zeno behavior of H is a sequence ((dn, sn)|n:ω) in T× S s.t.:

1. ∀n.sn
dn

H
� sn+1,

2. d
�=

∑
n:ω

dn is defined and finite, and,

3. the sequence has infinitely many jumps, i.e., {n|dn = 0} is infinite.
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The last requirement excludes fragmentation of a flow transition s
d

H
� s′ , i.e., sequences (( f (tn), tn+1 − tn)|n:ω), where

f :Top([0,d],S) realizes s
d

H
� s′ , and (tn|n:ω) is a strictly increasing sequence with t0 = 0 and supn:ω tn = d.

The accumulation points of (sn|n:ω) in the topological space S are called the Zeno points, and d is called the Zeno time,
since it is the time needed to reach a Zeno point from s0.

HB of Example 2.8 is the classical case of a HS with Zeno behavior. When b is in the interval (−1,0), the stop state
s = (0,0) is reached in finite time from s0 = (0, v) with v > 0, but after infinitely many bounces (see Fig. 3 in Sec. 7).
When b is in the interval (0,1), HB has a chattering Zeno behavior, i.e., the stop state is reached after infinitely many
instantaneous slowdowns. On the other hand, Proposition 3.5 shows that the stop state is not in RfHB ({s0}) when b �= 0.

Proposition 3.5. Let S
�= {(h, v)|h ≥ 0 ∧ E(h, v) > 0}, where E(h, v) = h + v2

2 is the energy in state (h, v). Then, RfHB (S) = S,
provided that b �= 0.

Proof. We prove that S is closed w.r.t. the transition relation HB

� by case analysis. There are three cases:

• bounce, i.e., (0, v) � (0,b ∗ v) with v < 0: (0, v):S , because E(0, v)= v2

2 > 0, and (0,b ∗ v):S , because E(0,b ∗ v) > 0
when b �= 0;

• ball kicked, i.e., (0,0) � (0, V ): there is nothing to prove, as (0,0) /∈ S;
• move, i.e., (h, v) � (h′, v ′) with h,h′ ≥ 0 ∧ v > v ′ ∧ E(h, v) = E(h′, v ′): (h, v):S =⇒ (h′, v ′):S holds, because the

energy stays constant. �
We propose a key change to Definition 3.1 that exploits the topology on S and T by considering reachable also a state

that is arbitrarily close to reachable states.

Definition 3.6 (Safe maps). Let C(S) be the set of closed subsets of a topological space S. Safe evolution Es:C(S)→ C(T×S)

and safe reachability Rs:C(S)→ C(S) for a TTTS (S, � ) are maps given by:

• Es(I)
�= smallest S:C(T× S) s.t. {0} × I ⊆ S and closed w.r.t. timed transitions.

• Rs(I)
�= smallest S:C(S) s.t. I ⊆ S , and closed w.r.t. transitions.

We denote with EsH and RsH the safe evolution and safe reachability maps for the TTTS induced by the HS H, respectively.

Remark 3.7. If s0:I and ((dn, sn)|n:ω) is a Zeno behavior of H, then the set S = RsH(I) includes every Zeno point s. In fact,
the sequence (sn|n:ω) is included in S , and all its accumulation points must be in S , because S is closed. More generally,
S = RsH(I) and E = EsH(I) have the following properties:

• If s0:I , ∀n.sn
dn

H
� sn+1 and s is an accumulation point of (sn|n:ω), then s:S , moreover (d, s):E when d =∑

n:ω dn <+∞.

We call this property of S path completion and d =∑
n:ω dn the duration of the path. When d =+∞, the states added

by path completion are asymptotically reachable, but may not be reachable in finite time.

• If s0:I , ∀n.s0
dn

H
� sn+1 and s is an accumulation point of (sn|n:ω), then s:S , moreover (d, s):E when d is an accumula-

tion point of (dn|n:ω). We call this property of S non-deterministic completion.

Among the states added by these two forms of completions, only those added by path completion of a path of finite
duration should be considered reachable, the others are spurious additions due to the definition of safe reachability. The
two completions can occur also in purely continuous systems.

1. Let f :Top([0,d),R) be the map f (t)= sin( 1
t−d ), then

• the derivative ḟ of f is defined and continuous in (0,d), but
• there is no way to extend f to a continuous map on [0,d].
If H on R2 has flow relation F = {((x, f (x)), (1, ḟ (x)))|0 < x < d}, then RsH({(0, f (0))}) = {(x, f (x))|0 ≤ x < d} �
{(d, y)| − 1≤ y ≤ 1}, where path completion adds the states (d, y).

2. If H on R2 has flow relation F = {((x, y), (1, v))|0 ≤ x, y < d ∧ 0 ≤ v < 1}, then RsH({(0,0)})= {(x, y)|0 ≤ y ≤ x ≤ d},
where non-deterministic completion adds the states (x, x) for x > 0.

There is an analogue of Theorem 3.3 for the safe maps, but with weaker properties, mainly because the set of closed
subsets is closed only w.r.t. finite unions.
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Theorem 3.8. The following properties hold:

1. Es is monotonic and preserves finite unions.
2. Rs is monotonic, preserves finite unions, is a closure, and π(Es(I))⊆ Rs(I).
3. ∀I:P(S).Ef(I)⊆ Es(I), and ∀I:P(S).Rf(I)⊆ Rs(I).
4. If H is a HS on S, then ∀I:C(S).EsH(I)= Rst(H)({0} × I), and ∀ J :C(R× S).π(Rst(H)( J ))⊆ RsH(π( J )).

Here, S:C(S) is the closure of S:P(S), i.e., the smallest S ′:C(S) s.t. S ⊆ S ′ .

Proof. See Appendix A. �
3.1. Summary of inclusion relations

We give a summary of the inclusion relations among the sets computed by the four maps defined in this section. Given
a HS H on S and a set I:C(S) of initial states, there are two informally defined subsets E:P(T× S) and R:P(S):

• E set of (t, s) s.t. s is reached at time t , i.e., there is a trajectory of H starting from a state in I and reaching s at time t .
• R set of states reachable (from I) in finite time, i.e., R = π(E).

The monotonic maps in Definition 3.1 and 3.6 allow to define four subsets:

• EfH(I) set of (t, s) s.t. s is reached at time t in finitely many transitions.
• RfH(I) set of states reachable in finitely many transitions, i.e., π(EfH(I)).
• EsH(I):C(T× S) a closed over-approximation of E .
• RsH(I):C(S) a closed over-approximation of R .

The inclusion relations among these six subsets are:

EfH(I) ⊂ � E

EfH(I)
�

∩

⊂ � EsH(I)
�

∩
RfH(I) ⊂ � R ⊂ � π(EsH(I))

RfH(I)
�

∩

⊂ � RsH(I)
�

∩

By suitable choices of closed HS H on R and singletons I we show that no other inclusion holds. In particular, EfH and
RfH may compute proper under-approximations, while EsH and RsH may compute proper over-approximations.

1. EfH(I)⊂ EfH(I)⊂ E = EsH(I) and RfH(I)⊂ RfH(I)⊂ R = RsH(I).

Take H= (∅, G) with G
�= {(x, x/2)|0≤ x} � {(0,2)} and I = {1}, then

• RfH(I)= {2−n|n:N} and EfH(I)= {0} ×RfH(I)

• RfH(I)= {2−n|n:N} � {0} and EfH(I)= {0} ×RfH(I)

• RsH(I)= {2−n|n:N} � {0,2} and EsH(I)= {0} ×RsH(I)
2. EfH(I)= E ⊂ EfH(I)⊂ EsH(I) and RfH(I)= R ⊂ RfH(I)⊂ π(EsH(I)).

Take H= (∅, G) with G
�= {(2, x)|x≥ 2} � {(x,1/x)|x≥ 2} � {(0,1)} and I = {2}, then

• RfH(I)= [2,+∞)� (0,1/2] and EfH(I)= {0} ×RfH(I)

• RfH(I)= [2,+∞)� [0,1/2] and EfH(I)= {0} ×RfH(I)

• RsH(I)= [2,+∞)� [0,1/2] � {1} and EsH(I)= {0} ×RsH(I)
3. RfH(I)= R = π(EsH(I))⊂ RfH(I)⊂ RsH(I).

Take H= (F , {(0,2)}) with F
�= {(x,−x)|0≤ x} and I = {1}, then

• EfH(I)= E = EsH(I)= {(t, e−t)|0≤ t}
• RfH(I)= (0,1]
• RfH(I)= [0,1]
• RsH(I)= [0,2]

4. Robustness

In this section we define when an analysis is robust (Definition 4.1). The definition assumes that the analysis is cast as
a monotonic map A:C(S1) → C(S2) between hyper-spaces consisting of closed subsets of a metric space. Intuitively, A is
robust at C when small extensions to the subset C cause small extensions to A(C). When an analysis is not robust, and
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this is often the case, one may want to replace it with a robust over-approximation. We give sufficient conditions on the
underlying metric spaces, which ensure that every monotonic map has a best robust approximation (Corollary 4.4). There are
two problems in relation to the reachability (and evolution) maps defined in Sec. 3:

• Robustness of RsH says only that small extensions to the set of initial states cause small extensions to the set of
reachable states, but it does not say what happens when small extensions to H are allowed.

• Corollary 4.4 is not directly applicable to RsH , because the only Banach space satisfying its conditions is the trivial one,
i.e., R0.

These problems are better addressed by moving to the category Po of complete lattices and monotonic maps (Sec. 5). In
fact, reachability maps are arrows in Po, and within Po one can easily derive other arrows, to which Corollary 4.4 applies.

Definition 4.1 (Robustness). Given a metric space (S,d) the δ-fattening Sδ:C(S) of S:P(S) is the closure of the open set

B(S, δ)
�= {y|∃x:S.d(x, y) < δ}. Given a monotonic map A:C(S1)→ C(S2) with S1 and S2 metric spaces

• A is robust at C :C(S1)
�⇐⇒ ∀ε > 0.∃δ > 0.A(Cδ)⊆ A(C)ε

• A is robust
�⇐⇒ A is robust at every C :C(S1).

Robustness is trivial when S1 is discrete (i.e., d(x, y) = 1 when x �= y), because C(S1) = P(S1) and any monotonic map
A:C(S1)→ C(S2) is robust.

Remark 4.2. The subset B(S, δ) is the semantic counterpart of the formula φδ(x)
�= (∃y.φ(y) ∧ d(x, y) < δ) adding impre-

cision up to δ to a formula φ(x) with one free variable x, where d(x, y) is a term defining a distance (see [13]). There
is no reason for the interpretation of formulas to be closed, and we could define robustness also for monotonic maps

A:P(S1)→ P(S2) on subsets, namely A is robust at S:P(S1)
�⇐⇒ ∀ε > 0.∃δ > 0.A(Sδ)⊆ A(S)ε . However, the main reasons

to focus on maps acting only on closed subsets are:

1. δ-fattening cannot distinguish two subsets of S with the same closure, namely B(S, δ)= B(S, δ) and Sδ = Sδ .

2. The map A:C(S1)→ C(S2) given by A(C)
�= A(C), satisfies ∀S:P(S1).A(S)= A(S) when A is robust.

In safety analysis one has also a subset U of unsafe states, and safety means that A(S) and U are disjoint. By analogy
with [19], we define δ-safety to mean that A(Sδ) and Uδ are disjoint. Since A is monotonic, δ-safety implies safety. If A is
robust at S and U is compact, then the converse hold, namely, safety implies δ-safety for some δ.

Example 4.3. One may ask whether the safe reachability map RsH or the safe evolution map EsH for a HS H on the
Banach space S are robust. More generally, the question makes sense for safe reachability Rs and safe evolution Es (see
Definition 3.6) for a TTTS � on a metric space S. With the definition of robustness in Remark 4.2 the question makes
sense also for reachability Rf and evolution Ef (see Definition 3.1) for a TTTS � on a metric space S. We check
robustness of RsH and RfH for the HS on R introduced in Sec. 2:

• for HE of Example 2.6 RfH and RsH are not robust at [0], since RfH([0]) = RsH([0]) = [0] and RfH([0]δ) =
RsH([0]δ)= [−δ, M] when δ ≤ M;

• for HD of Example 2.7 RfH and RsH are robust, but RfH is not robust at (0,m] when 0 < m < M , since RfH((0,m])=
(0,m] and RfH((0,m]δ)= [−δ, M] when m+ δ ≤ M .

Robustness is a desirable property, but it does not come for free. We state a useful corollary, whose proof hinges on two
more general results:

1. The first result (Theorem A.4) states that, under certain assumptions, robustness is equivalent to Scott continuity. This
equivalence is crucial to recasting order-theoretic results in term of robustness.

2. The second result (Theorem 5.15) states that every monotonic map A:X → Y between complete lattices has a best Scott
continuous approximation A� . Moreover, A�(x)=�{A(b)|b �X x} (Theorem 5.20), when X is a continuous lattice, and
�X is its way-below relation.

Corollary 4.4. If S1 and S2 are compact metric spaces, then any monotonic map A:C(S1)→ C(S2) has a best robust approximation
A�:C(S1)→ C(S2). Where best means smallest w.r.t. the point-wise inclusion order (A1 ⊆ A2) among the monotonic maps A′ that
are robust and approximate A (i.e., A ⊆ A′).

Moreover, A�(C) =
⋂
{A(Cδ)|δ > 0}, and A�(C) ⊆ A′(C) when A′ is a monotonic map, which is robust at C and approxi-

mates A.
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Proof. See Appendix A.1. �
Every reachability map R:C(S) → C(S) is idempotent, i.e., R = R2, but for R � one has only that R ⊆ R � ⊆ R � ◦ R � .
However, another general result on Scott continuous maps (Theorem 5.15) ensures the existence of a robust approximation
of R , which is also idempotent.

Corollary 4.5. If S is a compact metric space, then every monotonic map A:C(S)→ C(S) has a best approximation A�:C(S)→ C(S)

among the approximations A+ of A that are robust and satisfy ∀C :C(S).C ⊆ A+(C)= A2+(C).

Proof. See Appendix A.1. �
For discrete metric spaces the notion of robustness is not interesting, because every monotonic map is robust. In the case

of compact metric spaces Corollary 4.4 provides a systematic way of getting the best robust approximation of a monotonic
map. In all other cases robustness is an interesting notion, but a best robust approximation may not exist, as shown by the
following example.

Example 4.6. Consider the non-compact metric space R and the monotonic map A:C(R) → C(R) given by A(C)
�=

{x|∃n.xn:C ∧ x≥ n}, where (xn|n:ω) is a sequence in R with limit 0 s.t. ∀n.0 < xn+1 < xn , e.g., xn = 2−n , then

• A([0]xn )= A([xn])= {x|x≥ n}
• A([0])= ∅, thus A is not robust at [0]
• ⋂{A([0]δ)|δ > 0} = ∅.

Let An:C(R)→ C(R) be the monotonic map An(C)
�= A([xn])∪ A(C), then

• A(C)⊆ An+1(C)⊆ An(C), thus (An|n:ω) is a decreasing sequence of monotonic maps approximating A
• An is robust, since A(C) depends only on which xi with i < n are in C
• An([0])= An([0]xn )= A([0]xn )= {x|x≥ n}
• A([0])=⋂{An([0])|n:ω}.

If A′ were a best robust approximation of A, then we get a contradiction. In fact, every An approximates A′ , thus A′([0])= ∅,
moreover A′ approximates A, thus {x|x≥ n} ⊆ A′([0]xn ).

5. A framework for approximability

This section introduces the category Po of complete lattices and monotonic maps, and uses it as a framework for a
number of purposes. We present only the category-theoretic and order-theoretic background needed for establishing the
relevant results, but we illustrate the intuition behind formal definitions through informal prose and appropriate examples.

Notation 5.1. Complete lattices are posets, and a poset X is a pair (S, R), in which S is the underlying set, and R ⊆ S × S is
a reflexive, anti-symmetric, and transitive binary relation on S . We usually denote R as ≤X , or ≤ when X is clear from the
context, while for S we use the notation |X |.

The main reasons for choosing Po as framework are:

Abstraction. Po allows to cast definitions and prove results at the appropriate level of abstraction, focusing on the bare
essentials needed, thus avoiding the reworking of concrete instances of more abstract and general theorems.

For instance, the appropriate level of abstraction to define reachability maps and prove their properties is that
of (topological) transition systems.

By composition with a monotonic map (Definition 5.7) from a complete lattice H(S) of hybrid systems (on a
Banach space) to a complete lattice P(S2) of (topological) transition systems (on a topological space), one can turn
definitions on P(S2) into definitions on H(S).

Approximation. The order relation (on a complete lattice) allows to express when something is an over- or under-
approximation of something else, and one can choose different order relations on the same underlying set.

For instance, on the set P(S) of subsets of S the obvious order relation is subset inclusion, but we choose
reverse inclusion to express that a smaller over-approximation is more informative than a bigger one.

Optimality. Po is the natural setting for defining and comparing abstract interpretations [8]. In particular, adjunctions (aka
Galois connections) give a systematic way to move from a concrete to a more abstract semantic domain and back.
When the abstract domain is identified with a subset of the concrete domain, adjunctions provide a rigorous
formalization of best approximation.
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Generality. Category theory provides general machinery, like cartesian closed categories, for interpreting simply typed
lambda-calculus, and the dual concepts of initial algebra and final co-algebra, for interpreting inductive and co-
inductive definitions. Posets amount to categories where there is at most one arrow between two objects. Thus,
category-theoretic concepts and results apply both to the category Po and to its objects.

Several maps can be viewed as arrows in Po. For instance, adding a clock to a HS (Definition 2.9) is a monotonic
map from H(S) to H(R× S). The evolution and reachability maps in Definition 3.1 and 3.6 are monotonic maps
between complete lattices of (closed) subsets of a topological space. It is not difficult to see the inductive nature
of their definitions, thus in Po they can be defined from more elementary arrows and a fix-point operator. Since
Po is cartesian closed, one can use the simply typed lambda-calculus to define complex arrows from simpler ones.

Definition 5.2 (Po, dual, adjunction, algebra, co-algebra).

1. The category Po is defined as follows:
• Objects X:Po are complete lattices, i.e., posets (|X |,≤X ) s.t. each subset S of |X | has a sup, denoted by � S . In

particular, ⊥X
�=�∅ denotes the least element of X .

• Arrows f :Po(X, Y ) from X to Y , denoted X
f� Y , are monotonic maps f :|X | → |Y |, i.e., ∀x0, x1:|X |.x0 ≤X x1 =⇒

f (x0)≤Y f (x1).
2. Given X = (|X |,≤X ):Po, its dual Xop is (|X |,≥X ), i.e., the poset X with the order reversed.

3. An adjunction f � g is a pair of maps X
f��
g

Y s.t. ∀x:|X |.∀y:|Y |.x≤X g(y) ⇐⇒ f (x)≤Y y. We call g a right adjoint

to f , and f a left adjoint to g .
4. Given h:Po(X, X) we say that

• x:|X | is an algebra (aka prefix-point) for h
�⇐⇒ h(x)≤X x.

• x:|X | is a co-algebra (aka postfix-point) for h
�⇐⇒ x≤X h(x).

• An algebra μ is initial
�⇐⇒ ∀x:|X |.h(x)≤X x =⇒ μ≤X x.

• A co-algebra ν:|X | is final
�⇐⇒ ∀x:|X |.x≤X h(x) =⇒ x≤X ν .

In the definition of complete lattice we require only the existence of all sups, but it is well-known that a poset with all
sups has all infs (and conversely). Sups are irrelevant for defining the other notions, that make sense in the bigger category
of posets and monotonic maps. However, the restriction to complete lattices is essential for proving some of the properties
stated in Proposition 5.4.

Example 5.3. We define some objects and arrows in Po by equipping sets introduced in previous sections with a partial
order and by showing that certain maps are monotonic w.r.t. such partial orders.

1. P(S)
�= (P(S),≤) is the complete lattice of subsets of a set S ordered by reverse inclusion U ≤ V

�⇐⇒ U ⊇ V , where� S =⋂
S .

The dual P(S)op is the complete lattice (P(S),⊆), where � S =⋃
S .

Specific instances are the complete lattices P(S × T × S) of timed transition systems on S and P(S2) of transition
systems (relations) on S.

2. C(S)
�= (C(S),≤) is the complete lattice of closed subsets of a topological space S ordered by reverse inclusion ≤, and� S =⋂

S , because the intersection of a set of closed subsets is closed.
P(S)=C(S) when S is discrete, thus results on C(S) apply also to P(S).

3. A binary relation R:P(S1 × S2) induces two arrows P(S1)
R∗ �

� R∗ P(S2), namely the direct image R∗(S)
�=

{s2|∃s1:S.R(s1, s2)} and the inverse image R∗(S)
�= {s1|∃s2:S.R(s1, s2)}. Since R∗ = (Rop)∗ and R∗ = (Rop)∗ , every result

on R∗ can be turned into a result on R∗ (and conversely).
4. If R is (the graph of) f :Set(S1,S2), then we have an adjunction f ∗ � f∗ .
5. If R is the graph of f :Top(S1,S2), then the inverse image R∗ restricts to an arrow f ∗:Po(C(S2),C(S1)), but the direct

image R∗ may fail to map closed subsets to closed subsets.
The direct image of a compact subset along a continuous map is always compact, thus when compact subsets and
closed subsets coincide, as in compact Hausdorff spaces, R∗ restricts to an arrow f∗:Po(C(S1),C(S2)). In any case,
f ∗:Po(C(S2),C(S1)) has a right adjoint (see Example 5.5).

6. If R:P(S2), then one can consider algebras and co-algebras for R∗
• S:P(S) is an algebra when R∗(S)⊇ S
• S:P(S) is a co-algebra when S ⊇ R∗(S).
The initial algebra is the biggest S:P(S) w.r.t. ⊆ s.t. R∗(S)= S , the final co-algebra is the smallest S:P(S) s.t. R∗(S)= S ,
namely the empty set.
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We recall some key properties of Po. In particular, the construction (−)op is a functor on Po, which turns automatically
definitions and results (expressed in a certain language) into their duals. For instance, it turns left into right adjoints,
algebras into co-algebras, and the characterization of the right adjoint to f into a dual characterization for its left adjoint
(where sups become infs).

Proposition 5.4 (Basic properties).

1. The category Po is cartesian closed, more precisely
• The product

∏
i:I.Xi of the I-indexed family (Xi:Po|i:I) is the poset (

∏
i:I.|Xi|,≤), where≤ is defined point-wise. The terminal

object 1 is the product of the ∅-indexed family, and the binary product X0 × X1 is the product of the 2-indexed family (X0, X1).
• The exponential Y X of X, Y :Po is the poset (Po(X, Y ),≤), where ≤ is defined point-wise.

2. If f :Po(X, Y ), then f op �= f :Po(Xop, Y op). Moreover, X = (Xop)op , and:
• ∀ f :Po(X, Y ).∀g:Po(Y , X). f � g ⇐⇒ gop � f op .
• ∀h:Po(X, X).∀x:|X |.h(x)≤X x ⇐⇒ x≤Xop hop(x).

3. f :Po(X, Y ) has at most one right adjoint, and the following are equivalent:
• f preserves all sups, i.e., f (� S)=� f (S) for all S ⊆ |X |.
• f has a right adjoint, namely, f R(y)

�=�{x| f (x)≤Y y}.
4. h:Po(X, X) has a unique initial algebra μh and final co-algebra νh, there are monotonic maps μ,ν:Po(X X , X) s.t. μ(h) = μh

and ν(h)= νh, and moreover h(μh)=μh ≤X νh = h(νh).

Example 5.5. We use Proposition 5.4 to define arrows as left/right adjoint.

1. Given R:P(S1 × S2) the arrow R∗:Po(P(S1),P(S2)) preserves unions (same for R∗), thus R∗ has a left adjoint R L∗(S)
�=

{s1:S1|{s2|R(s1, s2)} ⊆ S}. If R is (the graph of) a map f , then f ∗L � f ∗ = f L∗ � f∗ .
2. Given f :Top(S1,S2), the arrow f ∗:Po(C(S2),C(S1)) preserves all sups, thus it has a right adjoint, which is given by

f∗(C1)
�= f∗(C1).

In particular, for any S:Top consider ι:Top(|S|,S), where |S|:Top is the set |S| with the discrete topology and ι is the
identity map on |S|. Clearly, C(|S|) = P(|S|), the arrow ι∗:Po(C(S),C(|S|)) is the inclusion of C(S) into P(S) and its
right adjoint is given by closure ι∗(S)= S .

All objects relevant for (topological) transition systems and hybrid systems are either exponentials or complete lattices
of the form C(S), where S is a topological space. We state some properties of the functor C:Top � Po.

Proposition 5.6. The construction C:Top � Po has the properties:

1. Binary union ∪:Po(C(S)×C(S),C(S)) is natural in f :Top(S,S′), namely f ∗(C ′1 ∪ C ′2)= f ∗(C ′1)∪ f ∗(C ′2) and f∗(C1 ∪ C2)=
f∗(C1)∪ f∗(C2).

2. C(−) turns co-products into products, namely
∏

i:I.C(Si)∼=C(
∐

i:I.Si) with isomorphism (Ci |i:I) �→ {(i, s)|i:I ∧ s:Ci} natural
in fi:Top(Si .S′i).

We recast previous definitions as objects and arrows in Po, and introduce the transition and support maps.

• The transition map allows to define the (safe) reachability maps in terms of final co-algebras. Definitions 3.1 and 3.6
are cast as initial algebras for certain monotonic maps on complete lattices of subsets ordered by inclusion, and the
proofs of Theorem 3.3 and 3.8 use systematically the universal property of initial algebras. However, the order on C(S)

is reverse inclusion, thus algebras turn into co-algebras.
• The support of a relation R on S gives the biggest subset of S, to which the (safe and robust) reachability map for R

can be restricted (see Definition 5.9). The support of a HS (F , G) serves a similar purpose, and ignores the image of the
flow relation F , because it consists of velocities.

Definition 5.7 (Revised definitions).

1. H(S)
�= P(S2)× P(S2) is the object of HS on a Banach space S, similarly Hc(S)

�= C(S2)×C(S2) is the object of closed
HS on S (Definition 2.1).

2. α:Po(H(S),P(S2)) maps a HS H to its transition relation H
� (Definition 2.3).

3. t:Po(H(S),H(R× S)) maps a HS H to t(H) (Definition 2.9).

4. T:Po(P(S2)× P(S),P(S)) given by T(R, S)
�= R∗(S) is the transition map, which maps a transition system (relation) R

on S and a set S of states to the set of states reachable from S in one step. Its currying curry(T):Po(P(S2),P(S)P(S))

maps a relation R to its direct image R∗ .
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5. The reachability and safe reachability maps are

• Rf:Po(P(S2)× P(S),P(S)) given by Rf(R, I)
�= ν(λS:P(S).I ∪ T(R, S))

• Rs:Po(P(S2)×C(S),C(S)) given by Rs(R, I)
�= ν(λS:C(S).I ∪ T(R, S))

where ν:Po(X X , X) computes the final co-algebra of a monotonic map.
6. The support maps for transition systems and hybrid systems are

• S:Po(P(S2),C(S)) given by S(R)
�= {s|∃s′.s R s′ ∨ s′ R s}

• S:Po(H(S),C(S)) given by S(F , G)
�= {s|∃v.s F v} ∪ S(G).

Remark 5.8. Proposition 5.6 implies that H(S) ∼= P(S′) and Hc(S) ∼= C(S′), where S′ is the topological space S2 + S2, and
S′ can be equipped with a metric, when S has one. The currying of the transition and reachability maps are arrows from
P(S2), thus by composing them with α one gets arrows from H(S), by further composing with the inclusion of Hc(S)

into H(S) one restricts these arrows to closed hybrid systems on S. The map RfR = λI.Rf(R, I) is an instance of a general

construction �:Po(X X , X X ), which maps f :Po(X, X) to the biggest h:Po(X, X) s.t. ∀x:X .h(x)≤ x, f (x),h2(x), namely h(x)
�=

ν(λy:X .x  f (y)). Categorically h is the co-monad generated by f . RfR is �(R∗), since S1  S2 in P(S) is given by union,
similarly RsR is �( f ) for a simple tweak f of R∗ .

Robustness (Definition 4.1) has been defined for arrows between objects of the form C(S) with S metric space, but
existence of best robust approximations (Corollary 4.4) is guaranteed only when S is compact. Refinement is a way to
shrink a complete lattice, and on C(S) it amounts to replace S with a closed sub-space.

Proposition 5.9 (Refinement). The object X ↑ x0 of refinements of x0:X, given by the set {x|x0 ≤X x} ordered by ≤X , has the proper-
ties:

1. C(S) ↑ C coincides with C(C), when C is viewed as a sub-space of S.
2. X ↑ x0 ⊂ � X preserves infs, and its left adjoint is x �→ x � x0 .
3. If f :Po(X, Y ) and y0 ≤Y f (x0), then f restricts to Po(X ↑ x0, Y ↑ y0).

Remark 5.10. We use refinement mainly to restrict reachability maps, such as Rs:Po(Hc(S)×C(S),C(S)), in fact

• S ≤ Rs(H0, S) when H0:Hc(S) and S ≤ S0
�= S(H0):C(S), therefore

• Rs restricts to an arrow Rs0:Po(Hc(H0)× C(S0),C(S0)), where we have exploited the isomorphism Hc(S)× C(S) ∼=
C(S2 + S2 + S) and with abuse of notation write Hc(H0)×C(S0) for C(H0 + S0).

If H0 is compact, then S0 is compact and Corollary 4.4 becomes applicable to Rs0. However, Rs�

0 is robust w.r.t. small
extensions of H ≥H0 and S ≥ S0, as far as they are refinements of H0 and S0, respectively. In other words, H0 and S0
represent hard constraints, thus the δ-fattening of S in C(S0) is given by Sδ ∩ S0, where Sδ is the δ-fattening of S in C(S).
Similarly, for the δ-fattening in H(H0).

We are interested in correct analyses, and we reuse the conceptual framework adopted in static program analysis to relate
the analysis A(p) of a program p to its semantics � p�. Program semantics usually interprets programs in an infinite poset X ,
while static analysis relies on a finite poset F to achieve decidability (which is not an issue we address in this paper). Most
program properties are undecidable, so analyses can only provide conservative answers. For instance, in the case of safety, a
program must be safe when a correct analysis says so, but it can be safe also when the analysis says that it could be unsafe.

• First, F should be (up to isomorphisms) the restriction of X to a subset, so one can say that A(p) is correct when
A(p)≤X � p�.

• Second, F must be able to approximate every element in X , namely for every x:X there exists �F (x):F s.t. �F (x)≤X x.

A third requirement is that �F must be a monotonic and idempotent map on X . For complete lattices there are simpler
ways to capture these requirements.

Proposition 5.11 (Best approximation). Given X:Po and F ⊆ |X |, the following properties are equivalent

1. F is closed w.r.t. sups computed in X.
2. F = f (Y ) for some f :Po(Y , X) preserving all sups.
3. F = {x|x= h(x)} for some h:Po(X, X) s.t. h(x)≤ x and h(x)≤ h2(x).

Moreover, h is uniquely determined by F , namely h(x)=�{y:F |y ≤X x}, thus we write �F for the unique h and call �F (x) the best
F -approximation of x.
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Proof. We prove a sequence of implications.

• (1) =⇒ (2). Let Y :Po be the subset F with the order inherited from X and f :Po(Y , X) the inclusion of F into |X |, then
f preserves sups, by the assumption (1).

• (2) =⇒ (3). Let f R be the right adjoint to f , which exists by Proposition 5.4, and h
�= f ◦ f R :Po(X, X). We prove

h(x)≤X x and h(x)≤X h2(x). Clearly, f R(x)≤Y f R(x) is true, therefore

=⇒ f ( f R(x))≤X x by f � f R

⇐⇒ h(x)≤X x by definition of h

By duality y ≤Y f R( f (y)) is true, therefore

=⇒ f R(x)≤Y f R( f ( f R(x))) by taking y = f R(x)
=⇒ f ( f R(x))≤Y f ( f R( f ( f R(x)))) by monotonicity of f
⇐⇒ h(x)≤X h2(x) by definition of h.

• (3) =⇒ (1). Suppose that ∀i:I.h(xi)= xi and that x=�{xi |i:I}, we have to prove h(x)= x. Clearly, h(x)≤ x is one of the
properties of h, thus it suffices to prove x≤ h(x).

∀i.xi ≤ h(xi) by assumption on xi
=⇒ ∀i.xi ≤ h(x) by xi ≤ x and monotonicity of h
⇐⇒ x≤ h(x) by definition of sup. �

Examples 5.12, 5.13 and 5.14 give sets of approximants for objects of the form C(S) and Y X , including the set of Scott
continuous maps. Scott continuity is an important property because of its relation to robustness (Theorem A.4) and com-
putability (computable maps must be Scott continuous).

Example 5.12. Let X be P(R), we give a decreasing sequence of subsets of P(R) satisfying the properties in Proposition 5.11.

1. C(R) ⊂ P(R), the cardinality of C(R) is 2ℵ0 , while that of P(R) is 22ℵ0 . However, the main reason for using C(R), is
that in the presence of imprecision it is impossible to distinguish a subset from its closure.

2. IR#⊥ ⊂ K(R)⊥ ⊂ C(R), these subsets have the same cardinality.
• K(S) is the set of compact subsets of the topological space S. When S is Hausdorff K(S)⊆ C(S), when S is compact

C(S)⊆ K(S). Since R is Hausdorff but not compact, we add ⊥ (i.e., R in P(R)) to get a complete lattice.
• IR is the set of intervals [x, x′] with x ≤ x′ . Topologically they are the non-empty connected compact subsets of R,

thus IR⊂ K(R). To get a complete lattice, we add also # (i.e., ∅ in P(R)).
3. IF#⊥ ⊂ f IR

#⊥ , where IF is the set of intervals with endpoints in a finite subset F⊂ f R, thus IF is finite.

Similar subsets of P(Rn) can be defined for any Euclidean space Rn .

Example 5.13. Consider the subset �(X)
�= { f | f 2 = f ≤ idX } of Po(X, X), which is isomorphic to the set of all F ⊆ |X |

satisfying one of the properties in Proposition 5.11. Categorically �(X) is the set of co-monads. Co-monads require only
f ≤ f 2 and f ≤ idX , but in a poset they imply f = f 2. We show that co-monads on a complete lattice X are closed
w.r.t. sups computed in X X , i.e., if ( f i:�(X)|i:I) and f =�{ f i |i:I}, then f ≤ f 2 ( f ≤ idX is immediate). In fact

f=�{ f i |i:I} by definition of f
≤�{ f 2

i |i:I} by the assumption f i:�(X)

≤�{ f 2|i:I} because f i ≤ f by definition of f
≤ f 2 by definition of sup.

Besides the adjunction given by Proposition 5.11, there is another adjunction involving the object �(X):Po, i.e., the subset

�(X) with the order inherited from X X , namely (P(|X |),⊆)
� pR ⊃#

p � �(X), where

• pR( f )
�= {x|x = f (x)} is the set of fix-points (the image) of f :�(X). The image of pR is the set of F ⊆ |X | closed

w.r.t. sups (computed in X).

• p(S)
�= λx:X .�{x′:S|x′ ≤ x} is �F :�(X) for the closure F of S w.r.t. sups.

Example 5.14. We consider subsets F ⊆ Po(X, Y ) = |Y X | of monotonic maps preserving sups of certain shapes, and prove
that all of them satisfy the properties in Proposition 5.11. More formally, we identify a shape with a poset D and define
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• The object X D :Po of D-diagrams (i.e., diagrams of shape D) in X:Po is the set of monotonic maps from D to X with
the point-wise order. Since sups are computed point-wise, X D is a complete lattice.

• The arrow �D :Po(X D , X) computing D-sups (i.e., sups of D-diagrams) is x:X D �→�{xd|d:D}. If D is the empty poset,
then X D = {∅} and �D∅ =⊥X . If D has a maximum #, then �D x= x(#).

• The subset Y X
D of Po(X, Y ) consisting of the maps preserving D-sups, i.e., the f :Po(X, Y ) s.t. ∀x:X D . f (�D x)=�D( f ◦ x).

For instance, f :Y X
∅ means that f (⊥X )=⊥Y , f :Y X

ω means that f preserves sups of ω-chains.

One can consider maps preserving D-sups for more than one shape by taking the intersection of Y X
D for different D .

For instance, additive maps preserve sups of every shape (but it suffices to consider flat posets), Scott continuous maps
preserve sups of directed posets (but it suffices to consider posets that have sups of finite subsets). One can also consider
the intersection of the set �(X) of co-monads on X with X X

D . It is obvious that maps preserving D-sups form a sub-category
of Po, because idX :X X

D and g ◦ f :Z X
D when f :Y X

D and g:Z Y
D .

We conclude the example by showing that Y X
D is closed w.r.t. sups in Y X , namely if ( f i:Y X

D |i:I), f =�{ f i |i:I} and x:X D ,
then f (�D x)=�D( f ◦ x):

f (�D x)=�{ f i(�{xd|d:D})|i:I} by definition of f and �D

=�{�{ f i(xd)|d:D}|i:I} by the assumption f i:Y X
D

=�{�{ f i(xd)|i:I}|d:D} by associativity and commutativity of�
=�{ f (xd))|d:D} by definition of f

=�D( f ◦ x) by definition of �D .

The following theorem gives the properties of two best approximations involving Scott continuous maps, which underpin
the results in Sec. 4 on the existence of best robust approximations.

Theorem 5.15. Every f :Po(X, Y ) has a best continuous approximation f �:Po(X, Y ), namely the biggest Scott continuous map in
Y X s.t. f � ≤ f . Moreover, id� = id and (g� ◦ f �)� = g� ◦ f � ≤ (g ◦ f )� .

Every h:Po(X, X) has a best continuous co-monad approximation h�:Po(X, X), namely the biggest Scott continuous map in
X X s.t. h� ≤ h and h� ◦ h� = h� ≤ idX . Moreover, id� = id and h� ≤ h� .

Proof. The existence of f � and h� follows from the fact that the subsets satisfying the properties in Theorem 5.11 are
closed w.r.t. intersections, therefore one can intersect the subsets Y X

D and �(X) given in Example 5.14 and 5.13. Their
properties are easy consequences of their definitions, and the fact that Scott continuous maps form a sub-category of
Po. �

We conclude this section with some basic notions and results on continuous lattices (see [17]) culminating in Theo-
rem 5.20, which provides a simple way for computing f � of f :Po(X, Y ) when X is a continuous lattice. First we need to
define the way-below relation and give its basic properties (for more details on the concepts introduced referred to [14,1]).

Proposition 5.16. Given a complete lattice X, define

1. x is way-below y (written x�X y)
�⇐⇒ for any directed poset D and z:X D , if y ≤X �D z, then ∃d:D.x≤X zd.

2. ↓↓X
y

�= {x|x�X y} denotes the set of elements that are way-below y.

The following properties hold (and are easy to prove):

1. ↓↓y is downward closed, i.e., x0 ≤ x1 � y =⇒ x0 � y.

2. ↓↓y is closed w.r.t. finite sups, i.e., x0, x1 � x =⇒ x0 � x1 � x and ⊥� x, and therefore is a directed subset of X.

3. if x≤ y, then ↓↓x⊆ ↓↓y.

Definition 5.17 (Continuous lattice). A complete lattice X is continuous
�⇐⇒ ∀x:X .x=�↓↓x.

[12] advocates the use of Domain Theory for the study of dynamical systems. In this context, when S is a compact
Hausdorff space the complete lattice C(S) is continuous, and moreover the Scott topology coincides with the Upper topology
(see Theorem A.4 and [12, Prop. 3.2 and 3.3]).

Example 5.18. In general � on C(S) is given by C ′ � C ⇐⇒ C ⊆ K c ⊆ C ′ for some compact subset K of S, where K c

denotes the complement of K .
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1. If S is a compact metric space, then C(S) is a continuous lattice and � is definable in terms of fattening, namely
C ′ � C ⇐⇒ ∃δ > 0.Cδ ⊆ C ′ .

2. If S is locally compact, then C(S) is a continuous lattice. Euclidean spaces Rn are locally compact, but not compact, and
the relation between � and fattening is more subtle, i.e., C ′ � C ⇐⇒ ∃δ > 0.Cδ ∪ B(0,1/δ)c ⊆ C ′ .

3. An infinite dimensional Banach space S is not locally compact and C(S) is not a continuous lattice, because its compact
subsets have empty interior, and therefore C ′ � C ⇐⇒ C ′ = S.

Every f :Po(X, Y ) is the sup �{[x, f (x)]|x:X} in Y X of monotonic step maps [x, y] �=
{

y if x≤X x′
⊥Y otherwise

.

When X is a continuous lattice, there is a similar result for Scott continuous maps, namely every Scott continuous

f :Po(X, Y ) is the sup �{�x, f (x)�|x:X} of continuous step maps �x, y�
�=

{
y if x�X x′
⊥Y otherwise

.

In general �x, y� ≤ [x, y] in Y X , and the equality holds exactly when x�X x (in this case [x, y] is also Scott continuous).
The following result shows that every continuous step map is Scott continuous, when X is a continuous lattice.

Proposition 5.19. Given a continuous lattice X and a complete lattice Y

1. If D is a directed poset, z:X D and x≤X �D z, then ∃d:D.x�X zd.

2. Continuous step maps �x, y�
�=

{
y if x�X x′
⊥Y otherwise

are Scott continuous.

Proof. 1. [14, Thm. I-1.9].
2. If D is a directed poset, z:X D and �x, y�(�D z) = y, then �x, y�(zd)= y for some d:D , by x �X �D z and the previous

property. �
Theorem 5.20. If X is a continuous lattice and Y is a complete lattice, then f �(x)=�{ f (b)|b �X x} for every f :Po(X, Y ) and x:X.

Proof. Since X is a continuous lattice, the continuous step maps �b, f (b)� are Scott continuous. Scott continuous maps are

closed w.r.t. sups computed in Y X , thus f ′ �=�{�b, f (b)�|b:X} is Scott continuous and f ′(x) =�{ f (b)|b �X x}. Finally,
f ′ = f � because f ′ has the properties characterizing f � , namely

• f ′ ≤ f . In fact, f ′(x)=�{ f (b)|b � x} ≤�{ f (x)|b � x} = f (x).
• If g Scott continuous and g ≤ f in Y X , then g ≤ f ′ . In fact,

g(x)= g(�↓↓x) because X is continuous
=�{g(b)|b � x} by g Scott continuous and ↓↓x directed
≤�{ f (b)|b � x} by the assumption g ≤ f
= f ′(x) by definition of f ′. �

6. Related notions

This section compares notions used in [15]—that are more familiar to the hybrid systems research community—with
those used in this paper, where we favor an abstract/qualitative view, based on topological spaces and posets, over a con-
crete/quantitative one, based on Euclidean or metric spaces.

We also favor a category-theoretic view, which focuses on arrows, mainly A:Po(C(S),C(S′)), rather than elements,
C :|C(S)| ∼= Po(1,C(S)). This allows: to decouple a hybrid system from arrows related to it (see Definition 3.1 and 3.6);
to consider arrows defined on complete lattices of hybrid systems (see Definition 5.7); to define notions, like robustness
(Definition 4.1), with a broader scope than [15].

For each notion in [15] that we deem relevant, we say on which page it is introduced, whether there is a corresponding
definition in [23] (for hybrid automata), and how it relates to notions used or introduced in this paper.

At the end of this section, we show how the construction �:Po(X X , X X ) in Remark 5.8 allows to define an arrow
computing the smallest closed subset C ⊇ I safely stable for H.

Solution (to a HS) [15, page 39–40]. After defining a HS (Definition 2.1) we say that for defining reachability its transition

relation suffices. If s
d

H
� s′ is a timed transition, then there exists a solution x:D → S to H with hybrid time

domain D = [0,d] × {0} s.t. s = x(0,0) and s′ = x(d,0).
The notions of hybrid time domain D and hybrid arc x:D → S (and when x is a solution to a HS H) are inad-

equate to cope with Zeno behaviors, moreover they are unnecessary to define most of the notions introduced in
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[15] (below we propose alternative definitions, that either use the simpler transition relation, or the safe reach-
ability and evolution maps). A hybrid time domain is called hybrid time trajectory in [23, Def. 2], and a solution
corresponds to an execution in [23, Def. 3].

Basic assumptions [15, page 43]. Most theorems in [15] are on HS satisfying the basic assumptions. If the convexity require-
ment is ignored, then H is compact =⇒H satisfies the basic assumptions =⇒H is closed.

We never use the basic assumptions. For our purposes, compact HS and closed HS on S suffice, and they
correspond to the standard notions of compact and closed subset (for the topological space S2 + S2).

Forward invariant set [15, page 48], invariant set in [23, Def. 8]. A subset S is forward invariant for H on S when every
solution x:D → S to H starting in S (i.e., x(t0,0):S) stays in S (i.e., ∀(t, j):D.x(t, j):S). If S is forward invariant,
then it is closed w.r.t. the transition relation H

� . The reverse implication holds, when S is a closed subset of S.

Thus, for closed subsets forward invariance can be defined in terms of the more elementary transition rela-
tion, in particular: RsH(I) is the smallest closed forward invariant subset S containing I , and the closed forward
invariant subsets for H are exactly the fix-points of the safe reachability map RsH , i.e., the sets S s.t. S = RsH(S).

Perturbation (of a HS) [15, page 49, 56]. The definition of Hσ (page 56), which subsumes that of Hδσ (page 49), uses the
closed convex hull, in order to satisfy the convexity requirement on the flow relation. If we ignore the convexity
requirement, take as σ the constant map s �→ δ, and assume that H is compact, then Hσ will be the δ-fattening
of H in Hc(S), provided one chooses a suitable metric on S2 + S2.

δ-fattening (Definition 4.1) is defined in any metric space, and allows to define perturbations of other entities
besides HS, while perturbations of a HS rely on more structure (because of the convexity requirement).

Stable subset [15, page 49], see also [23, Def. 9] ([9, Def. 6] defines stable subsets for topological transition systems).
A subset S of S is stable for H when for every ε there exists δ s.t. every solution x:D → S starting in B(S, δ) stays
in B(S, ε). One has that:
• S stable ⇐⇒ S stable
• S stable and closed =⇒ S forward invariant.
Safe reachability RsH allows to define a stronger property, i.e., S safely stable for H �⇐⇒ ∀ε.∃δ.RsH(Sδ) ⊆ Sε ,
equivalently S = RsH(S) and RsH is robust at S . When S is closed, one has a chain of implications:
• S safely stable =⇒ S stable =⇒ ∀ε.∃δ.RfH(Sδ)⊆ Sε .
The reverse implications fail. For instance, consider the HS HX on R with empty flow relation and jump relation
G = {(xm,n, xm,n+1)|m,n:ω}, where the double sequence xm.n satisfies the properties
1. 0 < xm,n < xm,n+1 < 1
2. xm,0 is the limit of (xm+1,n|n:ω), thus xm+1,n < xm,0
3. 0 is the limit of (xm,0|m:ω) and 1 is the limit of (x0,n|n:ω).

S
�= {0} is not safely stable, since RsHX (Sδ)= Sδ ∪ {xm,n|m,n:ω} ∪ {1}, but it is stable, since all nontrivial solutions

have the form x(0, j) = xi,n+ j , thus x(0,0) = xi,n < δ
�= xm,0 implies x(0, j) < δ. Therefore, stability fails to detect

that there is a sequence of m+ 1 Zeno behaviors starting from xm,0 and eventually reaching 1.
Pre-attractive subset [15, page 49]. A subset S is pre-attractive for H when there exists δ s.t. every solution x:D → S to H

starting in B(S, δ) tends towards S , i.e., ∀ε.∃n.∀(t, j):D.t + j > n =⇒ x(t, j):B(S, ε). If the hybrid time domain of
the solution x is bounded, i.e., there exists n0 s.t. ∀(t, j):D.t + j ≤ n0, then x tends towards S for trivial reasons.
For this definition a Zeno behavior x has an unbounded D , because there is no bound on j (while t has a bound).

Safe evolution EsH allows to define an analog of the pre-attractive property, i.e., S eventually attractive
�⇐⇒

∃δ.∀ε.∃n.∀t > n.EsH(Sδ)(t)⊆ Sε .
Eventually attractive is not implied nor implies pre-attractive. Every S is eventually attractive for HX above,

because EsHX (I) = {0} × RsHX (I), while {0} is not pre-attractive. On the other hand, {0} is eventually at-
tractive, but not pre-attractive, for the HS HY on R with flow relation F = {(0,0)} and jump relation G =
{(ym,n, ym,n+1)|m,n:ω}, where the double sequence ym.n satisfies the properties
1. 0 < ym,n+1 < ym,n
2. ym+1,0 is the limit of (ym,n|n:ω), thus ym+1,0 < ym,n
3. 0 is the limit of (ym,0|m:ω).
Starting from any ym,n there is a cascade of Zeno behaviors leading to 0, but a solution can only approach the first
Zeno point ym+1,0.

Robustness (w.r.t. perturbations of a HS) [15, page 56]. We could find only informal definitions of robustness, or theorems
where the notion is made precise but too specific (robustness of pre-asymptotic stability):
1. “One way to characterize robustness of pre-asymptotic stability of a compact set is to study the effect of state-

dependent perturbations on the hybrid system and show that, when the perturbations are small enough, the
pre-asymptotic stability is preserved” [15, Thm. 15].

2. “Another way is to consider constant perturbations and show that they lead to practical pre-asymptotic stability”
[15, Thm. 17].

If one considers stability instead of pre-asymptotic stability, then safe reachability Rs:Po(Hc(S)×C(S),C(S)) al-

lows to define S is robustly stable for H �⇐⇒ ∀ε.∃δ.Rs(Hδ, Sδ)⊆ Sε , equivalently S = Rs(H, S) and Rs is robust
at (H, S). Clearly, S robustly stable =⇒ S safely stable.
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Fig. 1. Trajectories and reachable states of HE (Expand). The set of states reachable from I = {m0} is on the left of the trajectory starting from m0.

In general, it may not exist the smallest closed subset containing I and safely stable for H. However, one could consider
the restriction A:Po(C(S0),C(S0)) of RsH:Po(C(S),C(S)) to a compact subset S0 s.t. S0 = RsH(S0), and re-define S safely
stable for H to mean S = A�(S), where A�:Po(C(S0),C(S0)) is the best robust approximation of A given by Corollary 4.4.

There is an alternative characterization of A, namely A = �(T ), where �:Po(X X , X X ) is �( f )
�= λx:X .ν(λy:X .x  f (y))

given in Remark 5.8, and T :Po(C(S0),C(S0)) is the transition map T (C)
�= {s′:S0|∃s:C .s H

� s′}.
One can apply � to other maps in Po(C(S0),C(S0)). For instance, �(A�) computes the smallest closed subset containing

I and safely stable for H. By applying � to yet another map one can compute also the smallest closed subset containing I
and robustly stable for H.

7. Figures and examples

We go through the hybrid systems introduced in Sec. 2 and for each of them we compare the sets computed by different
analyses. More precisely, given a HS H on S and a state s0 in the support S(H) of H, take as set of initial states I = {s0},
then define four subsets S f ⊆ Ss ⊆ Sr ⊆ S R of S:

• S f
�= RfH(I) set of states reachable in finitely many transitions.

• Ss
�= RsH(I) safe approximation of the set of states reachable in finite time. One should use I in place of I , but a

singleton is already closed.
To define Sr one must restrict RsH to a map in Po(C(S0),C(S0)), where S0 is a sufficiently large compact subset of S.
When H is compact, the canonical choice for S0 is S(H)= S(H).

• Sr
�= Rs�

H(I) approximation of Ss robust w.r.t. perturbations to I .
To define S R one must restrict Rs to a map in Po(Hc(H0)×C(S0),C(S0)), where H0 is a sufficiently large compact HS
on S and S0 = S(H0). The role of H0 is to capture the allowed perturbations to H, thus H0 ≤H in Hc(S), where H is
the closure of H.

• S R
�= Rs�(H, I) approximation of S ′r

�= Rs�

H(I) robust w.r.t. perturbations to H & I allowed by H0.

Figures adopt the following color coding for states and trajectories (colors appear only in the web version of this article):

• a bullet • indicates the initial state s0
• blue – S f and the part of a trajectory reachable in finitely many transitions
• green – Ss − S f and the rest of a trajectory not reachable in finitely many transitions, like Zeno points and beyond
• red – Sr − Ss , there is no analogue for a trajectory starting from s0.

7.1. Expand

HE = (F , G) of Example 2.6 is a compact deterministic HS on R

F = {(m,ṁ)|0≤m = ṁ ≤ M} G = ∅
whose behavior is depicted in Fig. 1. Let S0 = [0, M] and H0 = (F0, G0) with F0 = S0 × [−M, M] and G0 = ∅, then

• S f = Ss = Sr = S R = [m0, M] when 0 < m0 ≤ M
• S f = Ss = [0] ⊂ [0, M] = Sr = S R when 0=m0.

We now explain why making the set of reachable states robust w.r.t. perturbations to H does not make a difference in the
case 0 < m0 ≤ M . To approximate S R we take a small δ > 0 and define Iδ � I in C(S0) and Hδ �H in Hc(H0).

Let Iδ = [m0 − δ, M] and Fδ = {(m,ṁ)|0≤m ≤ M ∧m− δ ≤ ṁ ≤ M}. By taking 2 ∗ δ < m0 we ensure that Fδ(m)⊂ (0, M]
for any m:Iδ , therefore S R = Rs�(H, I)⊆ Rs(Hδ, Iδ)= [m0 − δ, M]→ Sr when δ → 0.
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Fig. 2. Trajectories and reachable states of HD (Decay). The set of states reachable from I = {m0} is on the left of the trajectory starting from m0.

Fig. 3. Trajectories of HB (bouncing ball). All trajectories start from (h = 0, v = v0).

7.2. Decay

HD = (F , G) of Example 2.7 is a deterministic HS on R

F = {(m,ṁ)|m > 0∧ ṁ =−m} G = {(0, M)}
whose behavior is depicted in Fig. 2. Its closure is compact but it is no longer deterministic. Let S0 = [0, M] and H0 =
(F0, G0) with F0 = S0 × [−M, M] and G0 = S0 × S0, then

• S f = (0,m0] ⊂ [0, M] = Ss = Sr = S R when 0 < m0 ≤ M
• S f = Ss = Sr = S R = [0, M] when 0=m0.

Ss = Sr = S R = S0, because Ss = S0 and these subsets cannot be bigger than the support of H0. This result does not change,
when H0 is replaced with a HS with a bigger support, but the proof is not as simple (see Sec. 7.1).

7.3. Bouncing ball

HB = (F , G) of Example 2.8 is a deterministic HS on R2

• F = {((h, v), (ḣ, v̇))|h > 0∧ ḣ = v ∧ v̇ =−1}
• G = {((0, v), (0, v+))|v < 0∧ v+ = b ∗ v} � {((0,0), (0, V ))}

its behavior depends on the coefficient of restitution b (see Fig. 3). The closure of HB is not compact and its support is
the closed subset {(h, v)|0 ≥ h}. However, compactness is irrelevant to define and compare S f and Ss . Let s0 = (0, v0) with

0 < v0 < V and S(u)
�= {(h, v)|0≥ h∧ E(h, v)= E(0, u)} be the set of states whose energy E(h, v)= h+ v2

2 is exactly E(0, u),
then the sets S f and Ss are (see Fig. 4):

1. S f = Ss =⋃
n S(bn v0) when b <−1

2. S f = Ss = S(v0) when b =−1 (elastic bounce)
3. S f =⋃

n S(bn v0)⊂ S f ∪ S(0)∪ (
⋃

n S(bn V ))= Ss when −1 < b < 0
4. S f = Ss = S(v0)∪ S(0)∪ S(V ) when b = 0 (anelastic bounce)

5. S f = S(v0)∪ S ′(b, v0)⊂ S f ∪ S(0)∪ S(V )∪ S ′(b, V )= Ss when 0 < b < 1, with S ′(b, u)
�= {(0,−bnu)|0≤ n} sequence of

instantaneous slowdowns
6. S f = Ss = S(v0) when b = 1
7. S f = Ss = S(v0)∪ S ′(b, v0) when 1 < b, now S ′(b, u) is a sequence of instantaneous accelerations.
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Fig. 4. Set of reachable states of HB (bouncing ball). The set I is always {(h = 0, v = v0)}. In case (a) there is an expanding sequence of parabolas
(−b)n v0 →+∞. In case (b) there are two shrinking sequences of parabolas (−b)n v0 → 0 and (−b)n V → 0.

To make HB compact, the simplest is to put an upper bound to the energy of the system, say E0 = E(0, V 0) with V 0 > V ,
and allow only b s.t. |b| ≤ 1, so that the energy cannot increase when the ball bounces. More precisely, we make HB

compact with support S0 = {(h, v)|0≤ h ∧ E(h, v)≤ E0} by taking

• F = {((h, v), (ḣ, v̇))|(h, v):S0 ∧ ḣ = v ∧ v̇ =−1}
• G = {((0, v), (0, v+))|0≤−v ≤ V 0 ∧ v+ = b ∗ v} � {((0,0), (0, V ))}.

To define S R we fix another compact HS H0 = (F0, G0) with support S0. The simplest is to take F0 = F and replace G with
a G0 independent of b, namely

• G0 = {((0, v), (0, v+))|0≤−v ≤ V 0 ∧ |v+| ≤ −v} � {((0,0), (0, V ))}.

The relations among Ss , Sr and S R , when |b| ≤ 1 and 0 < v0 < V < V 0, are

1. Ss = Sr = S(v0)⊂⋃{S(v)|v:[0, V ]} = S R when b =−1 (elastic bounce)
2. S f = Sr = S R =⋃

n S(bn v0)∪ S(0)∪ (
⋃

n S(bn V )) when −1 < b < 0
3. Ss = Sr = S R = S(v0)∪ S(0)∪ S(V ) when b = 0 (anelastic bounce)
4. Ss = Sr = S R = S(v0)∪ S ′(b, v0)∪ S(0)∪ S(V )∪ S ′(b, V ) when 0 < b < 1
5. Ss = Sr = S(v0)⊂ S(v0)∪ S(V )∪ {(0, v)| − v:[0, V ]} = S R when b = 1.

There is an informal explanation for S R in the case b = −1 (elastic bounce). After each bounce the ball may lose a bit
of energy, thus after sufficiently many bounces it may stop (minimum energy). After a kick the energy will reach the
maximum value allowed, and then it may decrease again after each bounce. Thus any level of energy in [0, E(0, V )] is
reachable, assuming 0 < v0 < V . More formally we define Hδ �H in Hc(H0) s.t. Hδ →H when δ → 0. Since H0 allows
only perturbations in G , we define Gδ (for δ > 0) as

{((0, v), (0, v+))|0≤−v ≤ V 0 ∧ |v+| ≤ −v ∧−v − δ ≤ v+} � {((0,0), (0, V ))}
When −v is small, i.e., 0 ≤ −v ≤ δ ≤ V , |v+| ≤ −v and the energy is ≤ δ2

2 . Otherwise, 0 < δ < −v , v+:[−v − δ,−v] and

the energy loss is ≤ V δ − δ2

2 .

Remark 7.1. It is important what H0 is chosen to capture the hard constraints of interest, because it can affect how S R is
computed. For instance, for the bouncing ball one may replace H0 with a more relaxed H′

0

• G ′
0 = {((0, v), (0, v+))|0≤−v ≤ V 0 ∧ |v+| ≤ V 0} � {((0,0), (0, V ))}

H′
0 has the same support of H0, but H′

0 < H0, because after a bounce the ball can increase its energy as far as it stays
below the upper bound E(0, V 0). This change results in a bigger subset S R when |b| = 1, namely

• S0 = S R when b =−1, i.e., any state in the support of H is reachable because of the more permissive perturbations
• S(v0)∪ S(V )∪ {(0, v)| − v:[0, V 0]} = S R when b = 1.

8. Conclusions and future work

The main contributions of this paper concern reachability analysis in the context of hybrid (and continuous) systems.
First, we have proposed safe reachability RsH(I), which computes an over-approximation of the set of states reachable

in finite time from the set I of initial states by the HS H, and compared it with the more naive reachability RfH(I), which
computes only an under-approximation.
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Second, and more importantly, we have addressed the issue of robustness of an analysis A cast as a monotonic map
between complete lattices of a particular form (namely hyperspaces of metric spaces). In some cases robustness amounts to
Scott continuity, and one can exploit the following facts:

• A monotonic map A:Po(X, Y ) between complete lattices has a best Scott continuous approximation A� ≤ A:Po(X, Y ).
• When X is a continuous lattice, A�(x) is the sup of {A(b)|b �X x}, i.e., it is computed by applying A to way-below

approximations of x.

While the importance of safe/sound analyses is widely recognized, the issue of robustness is mostly overlooked (one reason
being that for discrete systems it is not an issue). In our view, robustness has at least two immediate implications:

Modeling languages. There should be syntactic support to distinguish between hard and soft constraints on a HS H. Hard
constraints must be satisfied also by small perturbations Hδ . Thus, they identify the complete lattice (hyperspace)
X where H is placed, while soft constraints provide the additional information to identify H uniquely within X .
The distinction would be needed by tools that implement a robust analysis and can be ignored by other tools. In
[11,19] there is no explicit annotation for soft constraints, instead there is a re-interpretation of logical formula,
which injects imprecision up to δ in specific sub-formulas.

Finite model checking. Counterexample-guided Abstraction & Refinement (CEGAR) is a general way of analyzing a system
H with an infinite state space by leveraging finite model checking tools (see [6,5]). In the setting of abstract
interpretation, CEGAR amounts to approximating an analysis A:Po(X, X) with a finite analysis A′:Po(X f , X f ), i.e.,

X A � X X complete lattice

≥ γ sup preserving

X f

γ

∪

�

A′ � X f

γ

∪

�

X f finite lattice

Among these A′:Po(X f , X f ) there is a best one given by A f
�= γ R ◦ A ◦ γ .

If H is a HS on Rn with support included in a compact subset K , then there are at least three reachability
analyses Rs�

H ≤ RsH ≤ RfH:Po(X, X), where X is the continuous lattice C(K ). In general, these analyses differ,
and so do their best approximations on some finite lattice (counter-examples can be given using HE and HD in
Examples 2.6 and 2.7).

However, when X is a continuous lattice and X f is finite, an approximation A′:Po(X f , X f ) of A:Po(X, X) can

be turned into an approximation of A� , namely A′′(x)
�= A′(b) with b biggest element in X f s.t. γ (b)�X γ (x).

As future work we plan to address computability issues. More specifically, given a compact HS H0 on S with support S0, is
Rs�:Po(Hc(H0)×C(S0),C(S0)) computable? When S has a countable dense subset, all continuous lattices involved have
a countable base, and the question is mathematically well-posed.
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Appendix A. Proofs

Proof of Theorem 3.3. Ef(I) and Rf(I) are least prefix-points of monotonic maps on complete lattices of the form (P(S),⊆).
Thus, we can exploit the universal property of the least prefix-point X for a monotonic map F , i.e., F (Y )≤ Y =⇒ X ≤ Y .

1. Consider the monotonic maps F and F I on P(T× S):

F (S)
�= {(t + d, s′)|∃s.(t, s):S ∧ s

d� s′}, F I (S)
�= ({0} × I)∪ F (S).

Ef(I) is the least prefix-point of F I . Since F I0 (S)⊆ F I1 (S) when I0 ⊆ I1, a prefix-point for F I1 is also a prefix-point for
F I0 . Hence, we conclude that Ef(I0)⊆ Ef(I1).
Since I ⊆∪K when I:K , then Ef(I)⊆ Ef(∪K ). Now, let U = {Ef(I)|I:K }. To prove Ef(∪K )⊆∪U , observe that:
• F preserves unions, thus F (∪U )=∪{F (S)|S:U };
• ∀S:U .F (S)⊆ S , thus F (∪U )=∪U ;
• ∀I:K .∃S:U .{0} × I ⊆ S , thus {0} × (∪K )⊆∪U .
Therefore, ∪U is a prefix-point for F∪K .
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2. Consider the monotonic maps G and G I on P(S):

G(S)
�= {s′|∃s:S.s � s′}, G I (S)

�= I ∪ G(S).

Rf(I) is the least prefix-point of G I . By analogy with the previous point, one can prove that Rf is monotonic and
preserves unions.
Let S be a prefix-point of G I , i.e., G I (S)⊆ S . Then:
• I ⊆ S , because I ⊆ G I (S).
• G S (S)⊆ S , because G(S)⊆ G I (S) and G S (S)= S ∪ G(S).
By taking S = Rf(I), we conclude I ⊆ Rf(I)⊆ Rf(Rf(I))⊆ Rf(I).
To prove π(Ef(I))= Rf(I), observe that:
• ∀E:P(T× S).π(F I (E))= G I (π(E)). Hence, π(Ef(I))⊇ Rf(I).
• ∀S:P(S).G I (S)⊆ S =⇒ F I (T× S)⊆ T× S .
Therefore, Ef(I)⊆ T×Rf(I), and consequently, π(Ef(I))⊆ Rf(I).

3. Consider the monotonic maps F I on P(T×S), G I on P(S), Gt
J on P(R×S), whose least prefix-points are EfH(I), RfH(I),

and Rft(H)( J ), respectively. Since (t, s)
t(H)
� (t+d, s′) ⇐⇒ 0≤ d∧ s

d

H
� s′ , by Proposition 2.10, these maps are related

as follows:
• ∀E:P(T× S).F I (E)= Gt{0}×I (E), so EfH(I)= (Rft(H)({0} × I).

• ∀S:P(R× S).π(Gt
J (S))= Gπ( J )(π(S)), so π(Rft(H)( J ))⊇ RfH(π( J )).

• ∀S:P(S).Gπ( J )(S)⊆ S =⇒ Gt
J (R× S)⊆R× S .

As a result, Rft(H)( J )⊆R×RfH(π( J )), and π(Rft(H)( J ))⊆ RfH(π( J )). �
Proof of Theorem 3.8. Es(I) and Rs(I) are defined as least prefix-points of monotonic maps on complete lattices of the
form (C(S),⊆), C(S) is closed w.r.t. arbitrary intersections and finite unions computed in P(S), and the monotonic map
S �→ S from P(S) to C(S) preserves finite unions.

1. Es(I) is the least prefix-point of a monotonic map F ′I on C(T× S) given by:

F ′I (S)
�= ({0} × I)∪ {(t + d, s′)|∃s.(t, s):S ∧ s

d� s′},
and the properties of Es are proved similar to those of Ef , except for the need to restrict to finite unions.

2. Rs(I) is the least prefix-point of a monotonic map G ′
I on C(S) given by:

G ′
I (S)

�= I ∪ {s′|∃s:S.s � s′},
and the properties of Rs are proved by analogy with those of Rf . In particular, π(Es(I))⊆ Rs(I) follows from:

∀S:C(S).G ′
I (S)⊆ S =⇒ F ′I (T× S)⊆ T× S.

As a result, Es(I)⊆ T×Rs(I), and consequently π(Es(I))⊆ Rs(I).
3. If I:P(S) and S:P(T× S), then I ⊆ I:C(S) and F I (S)⊆ F ′

I
(S):C(T× S). Hence, Ef(I)⊆ Es(I):C(T× S), and consequently

Ef(I)⊆ Es(I).
The inclusion Rf(I)⊆ Rs(I) follows from Ef(I)⊆ Es(I), since:
• Rf(I)= π(Ef(I)), by Theorem 3.3.
• π(Es(I))⊆ Rs(I), by the previous point.

4. Consider the monotonic maps F ′I on C(T× S), G ′
I on C(S), and Gt

J on C(R× S), whose least prefix-points are EsH(I),

RsH(I) and Rst(H)( J ), respectively. Since (t, s)
t(H)
� (t + d, s′) ⇐⇒ 0 ≤ d ∧ s

d

H
� s′ , by Proposition 2.10, these maps

are related as follows:
• ∀E:C(T× S).F ′I (E)= Gt{0}×I (E), so EsH(I)= (Rst(H)({0} × I).

• ∀S:C(S).G ′
π( J )

(S)⊆ S =⇒ Gt
J (R× S)⊆R× S .

Hence, Rst(H)( J )⊆R×RsH(π( J )), and π(Rst(H)( J ))⊆ RsH(π( J )). �
A.1. Proofs related to robustness

In order to relate different properties of monotonic maps A:C(S1)→ C(S2), where S1 and S2 are metric spaces, we move
to the category Top of topological spaces, by considering suitable topologies on C(S).
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Definition A.1 (Topologies). Given a metric space S, let O(S) ⊆ P(S) be the topology induced by the metric, namely

O :O(S)
�⇐⇒ ∀x:O .∃δ > 0.B(x, δ)⊆ O , and for S:P(S) let B(S, δ)

�=⋃{B(x, δ)|s:S}:O(S) and ↑ S
�= {C :C(S)|C ⊆ S}. We define

four topologies on C(S), namely given U ⊆ C(S) we say that

• U is Alexandrov open
�⇐⇒ ∀C :U . ↑C ⊆ U .

• U is Upper open
�⇐⇒ ∀C :U .∃O :O(S).C ∈↑O ⊆ U .

• U is Robust open
�⇐⇒ ∀C :U .∃δ > 0. ↑B(C, δ)⊆ U .

• U is Scott open
�⇐⇒ ∀D ⊆ C(S).(

⋂
D):U =⇒ ∃D0 ⊂ f D. ↑ (

⋂
D0):U , where

⋂
D is the intersection of all subsets

in D , and D0 ⊂ f D means that D0 is a finite subset of D .

Alexandrov and Scott topologies are order-theoretic: Alexandrov topology is definable on (the carrier of) any poset
X = (|X |,≤X ) and the monotonic maps between two posets are exactly the continuous maps w.r.t. the corresponding
Alexandrov topologies; Scott topology (in the form given above) is definable on any complete lattice. We have specialized
their definitions to the complete lattice C(S) with carrier C(S) and ≤ given by reverse inclusion.

Vietoris topology, which can be decomposed in upper and lower Vietoris topologies, is definable on C(S) for any topo-
logical space S. We consider only the upper Vietoris topology and call it Upper topology for short.

Among the four topologies, the Robust topology is the only one which depends on the metric on S, the other depend
only on the topology on S induced by the metric. We show that the robust monotonic maps (Definition 4.1) are exactly the
continuous maps for the robust topology.

Theorem A.2. Given a map A:C(S1)→ C(S2) with S1 and S2 metric spaces, the following properties are equivalent:

1. A is monotonic and robust.
2. A is continuous w.r.t. the Robust topologies.

Proof. We exploit the following facts valid in any metric space:

(F1) B(B(S, δ), δ′)⊆ B(S, δ+ δ′).
(F2) S ⊆ S =⋂{B(S, δ)|δ > 0}.
(F3) B(S, δ)⊆ Sδ

�= B(S, δ)⊆ B(S, δ′) when δ < δ′ .

(1) =⇒ (2). Given U2 ⊆ C(S2) open (for the Robust topology), we have to prove that U1
�= A−1(U2)⊆ C(S1) is open. U1 is

downward closed, because U2 is downward closed and A is monotonic. Moreover, for every C :U1 we have to find δ > 0
such that ↑B(C, δ)⊆ U1:

• A(C):U2 and U2 open imply that ↑B(A(C), δ′)⊆ U2 for some δ′ > 0.
• Let ε be in (0, δ′). By (F3), we get A(C)ε ⊆ B(A(C), δ′).
• By robustness of A, there exists δ > 0 such that A(Cδ)⊆ A(C)ε .
• If C ′: ↑B(C, δ), then C ′ ⊆ Cδ , thus A(C ′)⊆ A(Cδ) by monotonicity of A.
• Therefore C ′:U1, i.e., A(C ′):U2, because A(C ′): ↑B(A(C), δ′)⊆ U2.

(2) =⇒ (1). First we prove that A is monotonic. More precisely, we show that C ⊆ D and A(C) � A(D) leads to a contradic-
tion. In fact, take s:A(C)− A(D) and let U2 = {D ′:C(S2)|s /∈ D ′}, then

• U2 is open, because s /∈ D ′ implies s /∈ B(D ′, ε) for some ε > 0.

• U1
�= A−1(U2) is open, because A is continuous and U2 is open.

• D ∈ U1 and C /∈ U1, by definition of U1.
• But U1 is downward closed, thus one get the contradiction C ∈ U1.

Then we show that A is robust at C , i.e., ∀ε > 0.∃δ > 0.A(Cδ)⊆ A(C)ε . Let U2
�= {C ′:C(S2)|∃ε′ > 0.B(C ′, ε′)⊆ B(A(C), ε)},

then U2 ⊆↑B(A(C), ε). We prove that U2 is open, i.e., ∀C ′:U2.∃δ > 0. ↑B(C ′, δ)⊆ U2:

• C ′:U2 implies B(C ′, ε′)⊆ B(A(C), ε) for some ε′ > 0.
• By (F1), B(B(C ′, δ), δ)⊆ B(C ′, ε′) when δ = ε′/2.
• Therefore, ↑B(C ′, δ)⊆ U2.

U1
�= A−1(U2) is open, because A is continuous and U2 is open. Since C :U1, there exists δ′ > 0 such that ↑B(C, δ′)⊆ U1. If δ

is in (0, δ′), then (F3) implies that Cδ ⊆ B(C, δ′). Hence, Cδ:U1 and A(Cδ):U2, which implies A(Cδ)⊆ B(A(C), ε)⊆ A(C)ε . �
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Lemma A.3. In a metric space the following implications hold:

1. U Scott open =⇒
2. U Robust open =⇒
3. U Upper open =⇒
4. U Alexandrov open.

Proof. We rely on (F1–F3), see the proof of Theorem A.2, to prove the implications:

• (1) =⇒ (2). If U is Scott open and C :U , let O n
�= B(C,2−n), we prove that ↑O n ⊆ U for some n.

Let Cn
�= O n and D

�= {Cn|n:ω}, then Cn ⊇ O n ⊇ Cn+1 and C =⋂
D:U , thus ↑Cn ⊆ U , for some n.

Since O n ⊆ Cn:U , then ↑O n ⊆↑Cn ⊆ U .
• (2) =⇒ (3). If U is robust open and C :U , then there exists δ > 0 for which ↑B(C, δ)⊆ U . Thus, O = B(C, δ):O(S) is such

that C ∈↑O ⊆ U .
• (3) =⇒ (4). If U is upper open, then U is the union of subsets of the form ↑O , thus it is Alexandrov open. �

Theorem A.4. In a compact metric space the Upper topology is included in the Scott topology. Therefore, Scott, Robust and Upper
topologies coincide.

Proof. When S is a compact metric space, the closed subsets coincide with the compact subsets. To prove that the Upper
topology is included in the Scott topology, it suffices to show that for any open subset O of S, the subset ↑O of C(S) is Scott
open. Let C be the complement of O and D = {Ki |i:I} an I-indexed family of closed subsets such that K = (

⋂{Ki |i:I} ⊆ O ,
then K ′

i = Ki ∩ C is another I-indexed family D ′ of closed subsets whose intersection is ∅. Since compact subsets have the
finite intersection property, there is J ⊂ f I such that

⋂{K ′
i |i: J } = ∅, or equivalently,

⋂{Ki |i: J }: ↑O .
The coincidence of the three topologies (Scott, Robust and Upper) follows immediately from the inclusions established

in Lemma A.3. �
Example A.5. We give a metric space S where the four topologies on C(S) differ. Let S = {x|x > 0} be the set of positive

reals with the usual metric d(x, y)= |y − x|, and define xn
�= 2−n and δn

�= xn+1. Then, C = {xn|n:ω} is a closed subset of S,
O =∪n B(xn, δn) is an open subset of S, and the following counter-examples show that the four topologies differ:

• ↑C is Alexandrov open, but it is not open in the other topologies.
• ↑ O is upper open, but it is not robust open, because C : ↑ O but there is no δ > 0 such that B(C, δ) ⊆ O , because

(0, δ)⊆ B(C, δ) but (0, δ) � O .
• ↑∅ = {∅} is robust open, because B(∅, δ)= ∅, but it is not Scott open, because Cn = {x|x ≥ 2n} are closed subsets of S

such that ∅ ⊂ Cn+1 ⊂ Cn , whose intersection is ∅.

Proof of Corollary 4.4 and 4.5. If S1 and S2 are compact metric spaces, then Theorem A.4 implies that a monotonic map
A:C(S1)→ C(S2), or equivalently an arrow A:Po(C(S1),C(S2)), is robust exactly when it is Scott continuous.

• By Theorem 5.15 every A:Po(C(S1),C(S2)) has a best continuous approximation A�:Po(C(S1),C(S2)).
• C(S1) is a continuous lattice with way-below relation � definable in terms of fattening, as shown in Example 5.18.

Therefore, one can use the characterization of A� in Theorem 5.20 and replace {b|b � C} with {Cδ |δ > 0}.
• By Theorem 5.15 every A:Po(C(S1),C(S1)), has a best continuous co-monad approximation A�:Po(C(S1),C(S1)). Since

the order on C(S1) is reverse inclusion, the co-monad properties become C ⊆ A�(C)= A2
�(C). �

References

[1] S. Abramsky, A. Jung, Domain theory, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science, vol. 3, Clarendon
Press, Oxford, 1994, pp. 1–168.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems,
Theoret. Comput. Sci. 138 (1) (1995) 3–34.

[3] A. Asperti, G. Longo, Categories, Types and Structures: An Introduction to Category Theory for the Working Computer Scientist, MIT Press, 1991.
[4] S. Awodey, Category Theory, Oxford University Press, 2010.
[5] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, M. Theobald, Verification of hybrid systems based on counterexample-guided abstraction refine-

ment, in: TACAS, Springer, 2003, pp. 192–207.
[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: Computer Aided Verification, Springer, 2000,

pp. 154–169.
[7] J.B. Conway, A Course in Functional Analysis, 2nd edition, Springer, 1990.
[8] P. Cousot, R. Cousot, Abstract interpretation frameworks, J. Logic Comput. 2 (4) (1992) 511–547.
[9] P.J.L. Cuijpers, On bicontinuous bisimulation and the preservation of stability, in: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.), Hybrid Systems: Computa-

tion and Control, in: Lecture Notes in Computer Science, vol. 4416, Springer, 2007, pp. 676–679.



E. Moggi et al. / Theoretical Computer Science 747 (2018) 75–99 99
[10] P.J.L. Cuijpers, M.A. Reniers, Topological (bi-) simulation, Electron. Notes Theor. Comput. Sci. 100 (2004) 49–64.
[11] W. Damm, G. Pinto, S. Ratschan, Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems, Internat.

J. Found. Comput. Sci. 18 (01) (2007) 63–86.
[12] A. Edalat, Dynamical systems, measures and fractals via domain theory, Inform. and Comput. 120 (1) (July 1995) 32–48.
[13] M. Fränzle, Analysis of hybrid systems: an ounce of realism can save an infinity of states, in: Computer Science Logic, Springer, 1999, pp. 126–139.
[14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and Its

Applications, vol. 93, Cambridge University Press, 2003.
[15] R. Goebel, R.G. Sanfelice, A. Teel, Hybrid dynamical systems, IEEE Control Syst. Mag. 29 (2) (2009) 28–93.
[16] T.A. Henzinger, P.-H. Ho, H. Wong-Toi, Algorithmic analysis of nonlinear hybrid systems, IEEE Trans. Automat. Control 43 (4) (1998) 540–554.
[17] K. Keimel, Domain theory its ramifications and interactions, in: The Seventh International Symposium on Domain Theory and Its Applications (ISDT),

Electron. Notes Theor. Comput. Sci. 333 (Suppl. C) (2017) 3–16.
[18] J.L. Kelley, General Topology, Springer, 1975.
[19] S. Kong, S. Gao, W. Chen, E. Clarke, dReach: δ-reachability analysis for hybrid systems, in: International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Springer, 2015, pp. 200–205.
[20] E.A. Lee, Cyber physical systems: design challenges, in: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing, ISORC

2008, IEEE, 2008, pp. 363–369.
[21] A. Platzer, Differential dynamic logic for hybrid systems, J. Automat. Reason. 41 (2) (2008) 143–189.
[22] R.R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing revolution, in: Proceedings of the 47th Design Automation

Conference, ACM, 2010, pp. 731–736.
[23] J. Zhang, K.H. Johansson, J. Lygeros, S. Sastry, Dynamical systems revisited: hybrid systems with Zeno executions, in: International Workshop on Hybrid

Systems: Computation and Control, Springer, 2000, pp. 451–464.


	Safe & robust reachability analysis of hybrid systems
	0 Introduction
	0.1 Contributions
	0.2 Background
	0.3 Summary

	1 Mathematical preliminaries
	2 Hybrid systems and topological transition systems
	3 Evolution and reachability
	3.1 Summary of inclusion relations

	4 Robustness
	5 A framework for approximability
	6 Related notions
	7 Figures and examples
	7.1 Expand
	7.2 Decay
	7.3 Bouncing ball

	8 Conclusions and future work
	Acknowledgements
	Appendix A Proofs
	A.1 Proofs related to robustness

	References


