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Abstract 

Concepts regarding the operation of the ascorbate–glutathione cycle and the associated water/water cycle in the 
processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are 
well established in the literature. However, our knowledge of the functions of these cycles and their component 
enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and devel-
opmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, 
the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have ‘moonlight-
ing’ functions. They are subject to post-translational modifications and have an extensive interactome, particularly 
with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascor-
bate–glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication 
within the different cellular compartments and integrate plant signalling pathways.

Keywords:   Foyer–Halliwell–Asada cycle, hydrogen peroxide, photosynthesis, redox signalling, ROS wave, superoxide, stress 
acclimation.

Introduction

It is almost 50 years since the ascorbate–glutathione cycle 
(sometimes called the Asada–Halliwell–Foyer cycle or Foyer–
Halliwell–Asada pathway; Fig. 1) was first described in chloro-
plasts (Foyer and Halliwell, 1976). This was together with the 
proposal that the function of this cycle was to protect redox-
sensitive proteins from uncontrolled oxidation by reactive ox-
ygen species (ROS), particularly hydrogen peroxide (H2O2). 
Thereafter, soluble ascorbate-specific peroxidases (APXs) were 
described for the first time (Groden and Beck, 1979; Kelly 
and Latzko, 1979). Intensive biochemical and molecular/ge-
netic research efforts in the following decades demonstrated 
that ascorbate, glutathione, and other components of this cycle 

can be found in every compartment of the plant cell (Noctor 
and Foyer, 1998). Although the importance of antioxidants, 
such as ascorbate and glutathione in human diseases, had long 
been recognized, it was only somewhat later that the inter-
actions between ascorbate and glutathione were considered 
in animal systems (Meister, 1994). Ascorbate and glutathione 
are the most abundant low molecular weight (LMW) antioxi-
dants in plant cells, and their primary functions are related to 
interactions with ROS and other reduction/oxidation- (redox) 
sensitive molecules. Together with peroxiredoxins (PRXs) and 
thioredoxins (TRXs), the ascorbate–glutathione cycle regu-
lates ROS accumulation in each compartment, with perhaps 
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the exception of the apoplast/cell wall compartment (Foyer 
and Hanke, 2022). These PRXs reduce not only H2O2 but also 
alkyl hydroperoxide and peroxynitrite (Liebthal et al., 2018), 
regulating the concentration of cellular peroxides. However, 
ascorbate and glutathione are multifunctional metabolites with 
diverse interactomes that facilitate a wide range of functions in 
the regulation of plant growth and development as well as de-
fence. Moreover, each of the four component enzymes, namely 
APX, monodehydroascorbate reductase (MDHAR), dehydro-
ascorbate reductase (DHAR), and glutathione reductase (GR), 
have subcellular isoforms that can serve different, sometimes 
‘moonlighting’, functions that remain poorly characterized and 
understood. Hence, the action of the ascorbate–glutathione 
cycle extends far beyond policing ROS signals, not least be-
cause this pathway serves to maintain the reduced states of the 
ascorbate and glutathione pools that fulfil important but di-
vergent roles in plant biology (Pellny et al., 2009; Pasternak 
et al., 2020; Zur et al., 2021). The following discussion provides 
a current overview of the relevant literature, highlighting the 
regulation and functions of different components of the cycle, 
with a particular focus on signalling and regulation. We also 
consider possibilities for other additional functions related to 
the individual roles of ascorbate and glutathione.

ROS processing and regulation of ROS 
signalling

Accumulating evidence suggests that ROS are essential metabo-
lite markers, or signals of living cells (Van Breusegem et al., 2018). 
During evolution, the management of oxygen metabolism and the 
associated production, accumulation, and degradation of ROS in 

each extracellular and intracellular compartment has become cen-
tral to every aspect of biology from energy metabolism to growth, 
development, and defence. Superoxide and H2O2 act as either 
electron donors (reductants) or acceptors (oxidants). They thus 
engage in electron transfer (redox) processes with cellular metabo-
lites and proteins. ROS are an integral part of the cell decision- 
making process in all aerobic cells, and hence overaccumulation of 
ROS can lead to growth arrest and cell death. However, the no-
tion that there are ‘low’ and ‘high’ levels of ROS in plant cells that 
have different functions is misleading because it suggests that low 
ROS levels are focused on signalling while high ROS levels are in-
volved in more negative reactions rather than signalling. In fact, all 
ROS molecules are potentially effective signalling molecules; no 
matter the level of accumulation, the capacity for signalling is lim-
ited only by the availability of interacting partners that can transfer 
the oxidative signal. There is little evidence that oxidative damage 
accumulates in plant cells to such an extent that it limits cellular 
functions. In many cases, ROS and oxidized lipids and proteins 
also function as signals that regulate gene expression to ensure 
appropriate acclimation or cell death responses. ROS accumula-
tion leading to an enhanced oxidative state is a key signature of 
plant responses to biotic and abiotic stresses such as drought, heat, 
salinity, and high light (Choudhury et al., 2017). Moreover, many 
aspects of plant development, such as the maintenance of stem 
cells and quiescence, and seed germination, involve an imposed 
‘oxidative state’, as discussed in detail below. Each subcellular com-
partment in plants contains its own set of ROS-producing and 
ROS-scavenging pathways, but relatively little is known about 
how the different components in such compartmentalized sys-
tems are coordinated. Choudhury et al. (2017) concluded that as 
long as plant cells maintain high enough energy reserves to re-
move ROS, these essential signals are beneficial to plants during 
abiotic stress, enabling them to adjust their metabolism and mount 
a proper acclimation response. The functions of the ascorbate–glu-
tathione cycle are powered by the pools of pyridine nucleotides, 
NAD(H) and NADP(H), as is ROS production by respiratory 
burst oxidase homologues (RBOHs) and other ROS-producing 
enzymes. These essential co-enzymes function as energy transduc-
ers, signalling molecules, and redox couples, the balance between 
the oxidized and reduced forms being important in the main-
tenance of cellular redox status, regulation of ion channels, and 
responses to environmental and metabolic challenges that deter-
mine cell fate (Noctor et al., 2006).

ROS signals fulfil important roles in the regulation of nu-
merous developmental processes from root development 
(Eljebbawi et al., 2021; Mase and Tsukagoshi, 2021), the tran-
sition to flowering (Huang et al., 2021), to leaf senescence 
(Zentgraf et al., 2022). They contribute to the elicitation of 
genetic and epigenetic responses that allow acclimation and 
adaptation to metabolic, developmental, and environmental 
triggers (Ramakrishnan et al., 2022). ROS and the ascorbate–
glutathione cycle thereby function synchronously to regulate 
plant growth and development, as well as defence. For example, 
ROS generation is the driver and first requirement for many 
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Fig. 1.  The role of the ascorbate–glutathione cycle (Asada–Halliwell–Foyer 
cycle) in regenerating the reduced forms of ascorbate and glutathione to 
maintain a wide range of biological functions. APX, ascorbate peroxidase; 
DHAR, dehydroascorbate reductase; GSH, reduced glutathione: 
GR, glutathione reductase; GSSG, glutathione disulfide; MDHA, 
monodehydroascorbate; MDHAR, monodehydroascorbate reductase.
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developmental processes, such as the cell cycle, pollen viability, 
microspore reprogramming towards sporophytic development, 
the regulation of female gametophyte patterning, and the 
maintenance of embryo sac polarity, as well as the prevention 
of self-pollonation (de Simone et al., 2017; Sankaranarayanan 
et al., 2020; Zhang et al., 2021; Zur et al., 2021). In such sys-
tems, the ascorbate–glutathione cycle, together with TRXs, 
PRXs, glutaredoxins (GRXs), and antioxidant enzymes, such 
as superoxide dismutase (SOD) and catalase (CAT), ensures ap-
propriate redox-mediated regulation, so that ROS, ascorbate, 
and glutathione can accumulate in the required compartment-
specific manner.

Cell-to-cell ROS signalling plays a pivotal role in activat-
ing local and systemic responses to environmental and devel-
opmental signals (Waszczak et al., 2018; Zandalinas et al., 2020, 
2021; Fichman and Mittler, 2021a, b). Auto-propagating waves 
of ROS, calcium, and electric signals function together to gen-
erate rapid systemic cell-to-cell communication (Wang et al., 
2019). Succesive waves of ROS accumulation and removal 
are, therefore, important not only in cell-to-cell communi-
cation in plants (Zandalinas et al., 2020, 2021; Fichman and 
Mittler, 2021a, b), but also for plant-to-plant communication 
(Szechyńska-Hebda et al., 2022), plant–microorganism interac-
tions (Zhou et al., 2019), signalling between mammalian cells, 
and also in isolated animal hearts, allowing coordinated acclima-
tion responses (Fichman et al., 2023). The cell-to-cell transmis-
sion of the ROS wave can, however, be blocked by the addition 
of antioxidants, such as CAT or inhibitors of NADPH oxi-
dase (also called RBOH proteins). This demonstrates that this 
system of cell-to-cell communication is policed by regulated 

production and destruction of ROS signals. The activation of 
RBOH proteins on the plasma membrane generates superoxide 
radicals in the apoplast, which are converted to H2O2, through 
either spontaneous dismutation or the action of SOD.

The process of cell-to-cell ROS signalling, which is called 
the ‘ROS wave’ (Fig. 2), is linked to cell-to-cell calcium and 
membrane potential signalling and is essential for systemic 
stress signalling and systemic acquired acclimation (Fichman 
and Mittler, 2020, 2021a, b). In this process, ROS production 
by the RBOHs, RBOHD and RBOHF, is triggered in the 
cells that are directly subjected to stress, resulting in a state of 
‘activated ROS production’. The leucine-rich repeat receptor-
like kinase HPCA1 (H2O2-induced Ca2+ increases 1) is re-
quired for coordination of ROS and calcium signals during 
the cell-to-cell propagation of ROS signals (Fichmann et al., 
2022). Once the state of activated ROS production reaches 
cells and tissues, other than those initiating the signal, it triggers 
acclimation mechanisms and enhances overall stress resilience 
(Fichman and Mittler, 2021a, b). Little attention has as yet been 
paid to how the ascorbate/gluathione cycle regulates the life-
time of ROS signals in any given cellular compartment. ROS 
processing and removal in activated cells is, however, an essen-
tial feature of the progression of the ROS wave.

The ascorbate–glutathione-dependent 
water/water cycle and its functions

The ascorbate–glutathione cycle is comprised of metabolites 
(ascorbate, glutathione, and NADPH) and enzymes, which 

Fig. 2.  The role of antioxidants in modulating the ROS wave pathway of systemic signalling. APX2, ascorbate peroxidase2; HPCA1, HYDROGEN-
PEROXIDE-INDUCED CA2+ INCREASES (HPCA)1; RBOHD, F, respiratory burst homologue protein D, F in Arabidopsis thaliana.
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regenerate the reduced forms of ascorbate and glutathione 
(Fig. 1). The first step of the pathway is the reduction of H2O2 
to water by the action of APX, using ascorbate acting as the 
electron donor. Oxidized ascorbate (monodehydroascorbate, 
MDA) can thereafter either spontaneously disproportionate 
to ascorbate and dehydroascorbate (DHA), or be reduced to 
ascorbate by the enzyme MDHAR, using the reducing power 
of NAD(P)H. In addition, the photosynthetic electron trans-
port chain may directly reduce MDHA to ascorbate (Miyake 
and Asada, 1994). DHA is reduced back to ascorbate by sev-
eral enzyme systems, as discussed below. However, in the classic 
formulation of the ascorbate–glutathione pathway (Foyer and 
Halliwell, 1976), DHA is reduced to ascorbate by the enzyme 
DHAR using reduced glutathione (GSH) as the reductant. The 
enzyme GR then reduces the oxidized form of glutathione, 
glutathione disulfide (GSSG), to GSH with NADPH as the 
reductant (Foyer and Halliwell, 1976).

The water/water cycle (WWC) is a logical extension of 
the activity of the ascorbate–glutathione cycle in chloroplasts 
(Asada, 1999), because the production and removal of H2O2 
to water is coupled to the activity of the photosynthetic elec-
tron transport (PET) chain (Foyer and Hanke, 2022; Fig. 3). 
The water-splitting activity of PSII facilitates the transfer of 
elections through the PET chain to produce reduced ferre-
doxin and NADPH, and also produces molecular oxygen. In 
turn, molecular oxygen can accept electrons from many of the 
electron carriers in the PET chain (Foyer and Hanke, 2022), 
a process that is called the ‘Mehler reaction’, or ‘pseudocyclic 
electron flow’. The univalent reduction of oxygen by the PET 
chain produces superoxide (O2·

–) radicals, largely at the sur-
faces of the thylakoid membranes. Superoxide produced on the 
stromal surfaces of the membranes is then rapidly converted 
to H2O2 by the action of thylakoid SODs. Thereafter, H2O2 is 
reduced to water by chloroplast APXs and the ascorbate–glu-
tathione cycle, and also by the action of 2-Cys peroxiredoxins 
(PRXs). They are re-reduced either by the chloroplast TRX 
system (Foyer and Hanke, 2022) or by GSH and GR. Taken 
together, these reactions form the WWC, in which two elec-
trons are used to produce H2O2 and two more electrons are 
required to metabolize H2O2 to water (Fig. 3). The WWC ul-
timately provides a mechanism for the dissipation of excess 
excitation energy and electrons, in which molecular oxygen 
is used as an alternative electron sink. This pathway may pro-
vide protection of PSII from photoinhibition, which still sup-
ports ATP production (Neubauer and Yamamoto, 1992). The 
WWC also plays a role in regulating the oxidation state of the 
chloroplast-targeted 2-Cys PRXs, which, together with spe-
cific atypical TRXs such as ACHT1–ACHT4 and TRXL2, are 
involved in the transfer of oxidative equivalents from H2O2 to 
target chloroplast proteins, such as those of the reductive pen-
tose pathway (Ojeda et al., 2018; Vaseghi et al., 2019; Yokochi 
et al., 2021). Similarly, the WWC plays a role in the regula-
tion of cyclic electron flow around PSI (CEF), which serves 
to balance the energy budget of photosynthesis (Strand et al., 

2015). In this system, H2O2 functions as a signal that activates 
the CEF pathway, while the ascorbate–glutathione pathway 
serves to modulate the signal. Likewise, the primary precursor 
of jasmonic acid (JA), 2-oxophytodienoic acid (OPDA), inter-
acts with 2-Cys PRX, which is suggested to act as a redox 
sensor through H2O2 processing and associated regulation 
of the TRX- and thiol-dependent regulation of enzymes of 
the Benson/Calvin cycle such as fructose 1,6-bisphosphatase 
(FBPase; Muthuramalingam et al., 2013; Liebthal et al., 2018). 
OPDA also binds to cyclophilin 20-3 (CYP20-3), which 
forms a complex with serine acetyltransferase 1 (SAT1). This, 
in turn, triggers the formation of a hetero-oligomeric cysteine 
synthase complex (CSC) with O-acetylserine(thiol)lyase B, a 
process that activates sulfur assimilation and the accumulation 
of sulfur-containing metabolites such as GSH (Watanabe et al., 
2021).

The 2-Cys PRXs operate through the formation of a 
homodimer, in which a disulfide bond connects a peroxi-
datic Cys (CP)175 from one monomer and is connected to 
the resolving Cys located on the second monomer. The ox-
idation of (CP)175 inhibits 2-Cys PRX activity. Reduction 
of the 2-Cys PRX dimers requires reductants such as GSH, 
TRXs, NADPH-dependent TRX reductase C (NTRC), 
and/or CYP20-3 (Liebthal et al., 2018). GSH binding reg-
ulates the conformational state of 2-Cys PRX, favouring 
monomerization (Liu et al., 2020). This suggests that GSH 
is an effective reducing agent for 2-Cys PRX that regulates 
the roles and functions of this redoxin in chloroplasts. Like 
2-Cys PRX, other PRXs can oxidize GSH via the action of 
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Fig. 3.  The water/water cycle allowing the dissipation of excess excitation 
energy and electrons providing an alternative electron sink for protection 
of PSII from inhibition and supporting ATP production. APX, ascorbate 
peroxidase; Fdox, oxidized ferredoxin; Fdred, reduced ferredoxin; O2·−, 
superoxide anion radicals; PRX, 2-Cys peroxiredoxins; Trxox, oxidized 
thioredoxin; Trxred, reduced thioredoxin.
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GRX (Rahantaniaina et al., 2013). The active site Cys resi-
dues of Prx2 can form stable mixed disulfides with reduced 
GSH (Peskin et al., 2016) in a glutathionylation reaction that 
is reversed by GRX1.

The light-dependent thiol-dependent regulation of 
enzymes, such as FBPase and the 46 kDa isoform of Rubisco 
activase, is essential for the efficient operation of photosyn-
thesis and carbon assimilation, as well as carbon partitioning 
and transport. This central system of photosynthetic regula-
tion is based on the redox modulation of Cys residues on 
proteins such as FBPase that have a high intrinsic reactivity. 
Cys residues have nucleophilic thiol side chains that are sus-
ceptible to oxidative modifications and are hence amongst the 
most reactive amino acids. The oxidation of Cys thiols leads 
to the formation of sulfenic acid (–RSOH), which can react 
with other reactive sulfur species to form mixed disulfides (–
RSSR–) with protein thiols, S-glutathione adducts (–RSSG) 
with glutathione, or persulfides (–RSSH) with hydrogen 
sulfide (Willems et al., 2021). The oxidation of protein Cys 
groups can be catalysed by enzymes, such as protein disul-
fide isomerases that introduce disulfide bridges during pro-
tein folding, or indirectly by thiol peroxidases via disulfide 
exchange reactions (Delaunay et al., 2002; Veal et al., 2002). 
These oxidation reactions are, however, reversible. The reduc-
tion reaction is catalysed by ‘redoxin’ enzymes, such as TRXs 
and GRXs that transfer reducing equivalents from the PET 
chain as well as from NAPDH, GSH, and ascorbate. Together, 
the ascorbate–glutathione cycle, and the redoxin systems, not 
only regulate but also protect protein thiols from overoxida-
tion to sulfinic (–RSO2H) and sulfonic (–RSO3H) acids. The 
latter oxidation reactions are essentially irreversible and hence 
lead to protein inactivation. Moreover, these redox reactions 
form the basis for the post-translational modulation (PTM) 
of a wide range of proteins that regulate not only metabo-
lism but also ROS signalling and protein–protein interactions, 
such as those of the chloroplast CP12-2/phosphoribulokinase 
(PRK)/glyceraldehyde 3-phosphate dehydrogenase (GAPB) 
ternary complex.

As mentioned above, the WWC is linked to OPDA sig-
nalling and GSH synthesis (Park et al., 2013). Moreover, the 
activity of γ-glutamylcysteine synthetase (γ-ECS), which 
catalyses the first step of the committed GSH synthesis 
pathway, is regulated by oxidation, both at the level of oxidant- 
induced de-repression of γ-ECS translation and at the post-
translational level by oxidation of enzyme thiol groups (Hicks 
et al., 2007; Noctor et al., 2012). The links between the WWC, 
GSH, and OPDA signalling are examples of the extensive 
crosstalk between the redox processing systems and hormone 
pathways that regulate plant defence systems. Similarly, redox 
changes associated with the ascorbate–glutathione cycle reg-
ulate retrograde signalling from chloroplasts and mitochon-
dria to the nucleus in order to regulate gene expression that 
modifies plant growth and defence responses (Mielecki et al., 
2020).

Enzyme localization, properties, and 
functions

The enzymes of the ascorbate–glutathione cycle are localized 
in different intracellular compartments (Table 1). Very low lev-
els of these enzymes have also been detected in the extracel-
lular cell wall/apoplastic space (Vanacker et al., 1998). APX1 
has also been localized in the nuclei, together with SOD and 
CAT (Liu et al., 2019; Foyer et al., 2020a). Recent evidence 
suggests that the compartmentation of many enzymes associ-
ated with ROS processing or redox regulation is not as fixed 
as earlier concepts would suggest, and redox and other PTMs 
may facilitate re-localization of proteins to fulfil moonlighting 
functions (Foyer et al., 2020b). The following discussion con-
siders the enzymes of the ascorbate–glutathione cycle within 
this context.

The APXs are haem-containing enzymes that belong to 
class I of the peroxidase–catalase superfamily (Lazarotto et al., 
2021). APXs are encoded by small gene families, with different 
isoforms targeted to the cytosol, plastids, mitochondria, and 
peroxisomes (Lazarotto et al., 2021). Some APX forms are as-
sociated with membranes, such as the plasmalemma, the per-
oxisomal membranes, and the thylakoid membranes, often 
together with MDHARs, while other APX forms are in the 
soluble phase. The APX forms differ in substrate affinities, 
dimer formation, and the presence of transmembrane domains. 
Moreover, the cytosolic APX of Oncidium orchid (OgcytAPX1) 
uses GSH as a substrate as well as ascorbate, but with different 
active sites (Chin et al., 2019). The Pro63, Asp75, and Tyr97 
residues are required for GSH oxidation by OgcytAPX1, 
whereas the corresponding site in AtAPX1 is composed of 
Asp63, His75, and His97, and has no GSH binding activity. 
In addition to OgcytAPX1, the recombinant cytosolic APX 
forms from maize, rice, and soybean also possess GSH oxida-
tion activity (Chin et al., 2019). Such interactions, like those 
linking GSH to the reduction of 2-Cys PRX, demonstrate that 
there are multiple additional levels of complexity to the ascor-
bate–glutathione cycle.

Some APX forms, such as Arabidopsis AtAPX1 (Kaur et al., 
2021) and the rice OsAPX2 (Hong et al., 2018), have chap-
erone functions. However, only the high molecular weight 
(HMW) complexes of AtAPX1 and OsAPX2 display chap-
erone activity, whereas the LMW forms exhibit predominantly 
PRX activity (Hong et al., 2018). These APX forms undergo 
structural and functional transitions between HMW and LMW 
forms. In addition, certain APX isoforms are highly sensitive 
to oxidative inactivation (Shikanai et al., 1998). Hence, 2-Cys 
PRXs and other PRXs are required to ensure H2O2 processing 
in organelles, such as chloroplasts that produce large amounts 
of this oxidant.

Like other enzymes of the ascorbate–glutathione cycle, 
APXs are also subjected to PTMs. For example, the peroxi-
dase activity of APX1 is regulated by S-nitrosation, tyrosine 
nitration, and S-sulfhydration either negatively or positively, 
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depending on the plant species (Begara-Morales et al., 2016; 
Aroca et al., 2018). The Arabidopsis APX1 protein has five Cys 
residues, of which two (Cys32 and Cys49) are S-nitrosated 
(Yang et al., 2015). The Cys32 residue is also the target for 
S-sulfhydration (Aroca et al., 2015), which could regulate the 
binding affinity of APX1 for ascorbate, resulting in increased 
PRX activity. Tyrosine nitration has been also suggested to 
inhibit APX1 activity in pea and tobacco (Clark et al., 2000; 
Begara-Morales et al., 2013). Moreover, protein phosphoryla-
tion catalysed by the calcium-dependent protein kinase, CPK 
28, activates APX2 activity through phosphorylation at Thr59 
and Thr164 (Hu et al., 2021). In contrast, a wheat kinase, called 
start 1.1, translocates to chloroplasts where it binds and phos-
phorylates tAPX, decreasing its activity and ability to remove 
H2O2 (Gou et al., 2015). Crotonylation of protein Lys residues 
is an important PTM that has been recently shown to regulate 
many plant processes (Contreras-de la Rosa et al., 2022). For 
example, crotonylation of Lys136 in the chrysanthemum APX 
increases enzyme activity to increase protection against low-
temperature stress (Lin et al., 2021).

Nitric oxide (NO) is an important regulator of ROS accu-
mulation in plants through the regulated enhancement of the 
activities of ROS-scavenging enzymes, such as APX, CAT, and 
SOD, for example during stress responses (Beligni et al., 2002; 
Xue et al., 2007; Keyster et al., 2011; Begara-Morales et al., 
2014). In the presence of molecular oxygen, NO undergoes 
an S-nitrosation reaction with GSH, forming GSNO, which 
leads to PTMs and nitration of proteins, such as APX (Correa-
Aragunde et al., 2015). While NO inhibits the activity of the 
cytosolic APX in tobacco Bright Yellow-2 suspension cells 
through S-nitrosation (de Pinto et al., 2013), S-nitrosation pos-
itively regulates the activity of the Arabidopsis cytosolic APX1, 
upon exposure to stress (Yang et al., 2015), and contributes to 

the suppression of cell death responses (Lin et al., 2011). NO 
also regulates H2O2 levels and hence the shelf life and nutri-
tional quality of pepper fruits through modulation of the dif-
ferent APX isozymes (González-Gordo et al., 2022). NO reacts 
with O2

− to produce peroxynitrite (ONOO−), a molecule that 
can nitrate lipids, nucleic acids, aromatic rings, and the tyrosine 
residues in proteins leading to tyrosine nitration. This selective 
PTM can regulate enzyme activity, as well as preventing or 
promoting tyrosine phosphorylation.

MDHARs are typical FAD monomeric enzymes that 
catalyse redox reactions using FADH as substrate to reduce 
MDHA to ascorbate (Zhou et al., 2021). MDHAR activity is 
crucial for enhancing the efficiency of the APX reaction in cel-
lular compartments where the activities of these enzymes are 
coupled. MDHARs have been divided into three classes: class 
I, chloroplastic/mitochondrial enzymes; class II, peroxisomal 
membrane-attached enzymes; and class III, cytosolic/peroxi-
somal enzymes (Tanaka et al., 2021). All plants have class II and 
III enzymes, which are the peroxisomal membrane-attached 
and cytosolic/peroxisomal isoforms, while some plants lack 
class I chloroplastic/mitochondrial enzymes. The chloroplast 
MDHAR forms are activated by TRXs. For example, the 
plastidial MDHAR form is activated by TRXy2, and the ac-
tivity of a recombinant plastid Arabidopsis MDHAR isoform 
(MDHAR6) increases in the presence of reduced TRXy, and 
not other plastidial TRXs (Vanacker et al., 2018).

In addition to MDHA, MDHARs can also use organic radi-
cals as substrates (Hossain et al., 1984). MDHARs recycle the 
oxidation products of other powerful antioxidants, such as phe-
nolic compounds: ferulic acid, quercetin, chlorogenic acid, and 
coniferyl alcohol (Sakihama et al., 2000). MDHAR6 reacts, for 
example, with the explosive 2,4,6-trinitrotoluene (TNT), gen-
erating superoxide (Johnston et al., 2015). Plasma membrane 

Table 1.  The subcellular localization of the enzymes of the ascorbate–glutathione cycle

Enzyme Isoforms Localization Species Reference

APX APX1, APX2, (APX6)
Stromal sAPX, Thylakoid tAPX
APX3, (APX4)

Cytosol
Chloroplast
Microsomes

Arabidopsis, Sugarcane
Arabidopsis
Arabidopsis

Kaur et al. (2021)
Liu et al. (2018)
Maruta et al. (2010)
Jardim-Messeder et al. (2022)
Narendra et al. (2006)

MDHAR MDHAR1, MDHAR4
MDHAR2, MDHR3
MDHAR5
MDHR6

Peroxisomes
Cytosol
Mitochondria
Chloroplast

Arabidopsis, cotton Lisenbee et al. (2005)
Zhou et al. (2021)

DHAR DHAR1
DHAR2, DHAR3

Peroxisomes? Cytosol?
Cytosol Chloroplast

Arabidopsis Terai et al. (2020)
Rahantaniaina et al. (2017b)

GR GR1
GR2

Cytoplasm Nucleus Peroxisomes
Mitochondria Plastids

Arabidopsis Li et al. (2022)
Delorme-Hinoux et al. (2016) 
Amr et al. (2010)
Marty et al. (2019)
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electron transport from ascorbate to MDHA has also been pro-
posed, in a process that involves a high-potential plant plasma 
membrane cytochrome b (Horemans et al., 1994). Moreover, 
NO scavenging by barley haemoglobin is facilitated by the 
MDHAR-mediated ascorbate reduction of methaemoglobin 
(Igamberdiev et al., 2006).

The overexpression of MDHAR genes has consistently 
been shown to increase ascorbate accumulation and in-
crease plant stress tolerance (Eltayeb et al., 2007; Kavitha et al., 
2010; Li et al., 2010; Yin et al., 2010; Eltelib et al., 2012; Yeh 
et al., 2019). In contrast, mutants lacking MDHAR do not al-
ways show changes in ascorbate accumulation. For example, 
the peroxisomal membrane-associated ascorbate-dependent 
electron transfer system involves APX as well as MDHAR. 
While the Arabidopsis peroxisomal membrane APX isoform 
(APX3) is dispensable for growth and development (Narendra 
et al., 2006), the seedling-lethal sugar-dependent2 mutant is 
deficient in the peroxisomal membrane MDHAR isoform 
(MDHAR4). MDHAR4 mutants also have lower ascorbate to 
DHA ratios, but have similar total ascorbate levels to the wild 
type (Eastmond, 2007). Taken together, these findings suggest 
that other system enzymes, in addition to MDHAR, may not 
be a rate-limiting step in ascorbate recycling.

The DHAR enzymes belong to the glutathione S-transferase 
(GST) superfamily and have a characteristic two-domain ar-
chitecture, comprised of a mixed α/β N-terminal domain 
containing the glutaredoxin motif (CXX[C/S]) and an all-
helical C-terminal domain (Littler et al., 2010). The active site 
comprises a glutathione-binding G-site and a hydrophobic 
substrate-binding H-site. The reaction probably proceeds 
via a ‘ping–pong’ mechanism, where DHA binds to the free 
reduced form of DHAR followed by binding of GSH (Ding 
et al., 2020).

The requirement and functions of the DHARs in ascor-
bate regeneration have, however, long been a matter of de-
bate (Morell et al., 1997, 1998; Foyer and Mullineaux, 1998). 
Genetic studies using DHAR overexpression, knockdown, 
and/or knockout lines supported the physiological importance 
of DHARs in ascorbate recycling (Chen et al., 2003; Chen and 
Gallie, 2004, 2006, 2008; Gallie, 2013; Noshi et al., 2016, 2017). 
For example, the multivitamin white corn variety with high 
DHAR activity has a 6-fold higher kernel ascorbate level than 
controls (Naqvi et al., 2009). Moreover, DHAR gene expression 
is also associated with enhanced abiotic stress tolerance (Broad 
et al., 2020). Loss‐of‐function mutations in the Arabidopsis 
cytosol-targeted DHAR2 form alone led to lower ascorbate/
DHA ratios but did not affect total ascorbate accumulation 
(Yoshida et al., 2006). Nevertheless, the physiological role of 
DHARs remains uncertain, largely because the Arabidopsis 
triple-knockout (dhar1 dhar2 dhar3) mutants that lack all three 
DHARs have negligible DHAR activity and display similar 
levels of ascorbate to the wild-type controls, with ascorbate/
DHA ratios as well as plant growth and development similar 
to the wild type (Rahantaniaina et al., 2017a, b). In addition, 

the absence of DHAR activity had no impact on the ascorbate 
profiles of the catalase-deficient mutant (cat2) that maintains 
a highly oxidized glutathione pool. DHAR activity was also 
required for the GGSG accumulation and cell death pheno-
types that are observed in the cat2 mutants under stress condi-
tions (Rahantaniaina et al., 2017a). Moreover, DHAR activity 
was required to maintain ascorbate recycling capacity under 
high light conditions in the phytoalexin-deficient 2-1 (pad2-1) 
mutants that have low glutathione accumulation (Terai et al., 
2020). Hence, multiple systems including MDHAR, DHAR, 
glutathione, and ferredoxin contribute to the generation of 
reduced ascorbate. For example, the CPYC-type GRXs ex-
hibit DHAR activity (Sha et al., 1997; Rouhier et al., 2003). 
Other as yet uncharacterized proteins may also have DHAR 
activity (Morell et al., 1997). Nevertheless, current evidence 
suggests that GSH is required for ascorbate regeneration under 
high light conditions (Terai et al., 2020). DHAR activity also 
maintained the ascorbate pool in mutants that have low ascor-
bate accumulation (Terai et al., 2020), and other recycling sys-
tems contribute to ascorbate recycling when ascorbate levels 
are high.

GRs are responsible for maintaining the cellular glutathione 
pools in the reduced state. As such, these flavoprotein oxido-
reductases are crucial regulators of plant development and the 
responses to environmental stress (Foyer et al., 1995; Noctor 
et al., 1998). GSH is a central signalling molecule in plants 
that functions together with the GRX and TRX systems to 
regulate numerous phytohormone-associated pathways (Rai 
et al., 2023). It also serves as a cofactor for various enzymes, 
such as GRXs and GSTs, which play crucial roles in cell de-
toxification pathways. A recent study also proposed that GSH, 
together with neodiosmin, is a signature metabolite for pattern- 
triggered immunity and effector-triggered immunity involv-
ing surface-localized pattern recognition receptors and  
intracellular nucleotide-binding leucine-rich repeat receptors 
(Lu et al., 2023).

Higher plant GRs are encoded by two genes: GR1 and 
GR2. While GR1 encodes a cytosolic, or peroxisomal, form of 
the enzyme, GR2, which contains a long N-terminal sequence, 
encodes a mitochondrial and chloroplastic form. The chloro-
plast form represents ~80% of the total GR activity. GR has 
also two Cys residues that form a redox-active disulfide bridge 
at the active site. Glutathione disufide binds to the active site to 
form a disulfide bond separately with a Cys residue and a His 
residue at the active site allowing reduction to GSH (Kataya 
and Reumann, 2010; Yousuf et al., 2012; Couto et al., 2016). 
Overexpression of the chloroplast form of GR significantly 
increases the GSH content of plants and increases tolerance to 
a range of abiotic stresses (Foyer et al., 1995; Li et al., 2005; Gill 
et al., 2013). The chloroplast-localized GR2 also fulfils essen-
tial roles in root apical meristem maintenance (Yu et al., 2013).

GRXs are thioltransferases that serve a number of impor-
tant roles in plants (Meyer et al., 2008, 2012, 2021). These 
small (12 kDa) redox enzymes catalyse not only the reduction 
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of disulfides, but also the reduction of mixed disulfides, in a 
process called deglutathionylation. Hence, they act as oxido-
reductases that control glutathionylation/deglutathionylation 
reactions. GRX functions depend on two distinct interaction 
sites for efficient redox catalysis (Begas et al., 2017). The first 
site interacts with the GSH moiety of glutathionylated disul-
fide substrates. The second site activates GSH as the reducing 
agent (Begas et al., 2017). There are five GRX subgroups that 
are classified according to their active site sequences, of which 
groups III and IV are specific to vascular plants. In Arabidopsis 
thaliana, group I proteins that have C[P/G/S]Y[C/S] in the 
catalytic site are localized in the cytosol and plastids and are 
encoded by six genes. The group I GRXs undertake oxidore-
ductase functions and are found in most organisms. The four 
group II (monothiol GRXs or CGFS GRXs) GRXs in A. 
thaliana are localized in the cytosol, plastid, nucleus, and mito-
chondria. The third type of GRXs have a Cys-Cys-X-Cys or 
Cys-Cys-X-Ser sequence at the active site and are specific to 
higher plants. They are also called ROXY GRXs (Zaffagnini 
et al., 2008; Ströher and Millar, 2012). There are 21 members 
of group III in A. thaliana that are localized in the cytoplasm 
and nucleus. Group IV proteins have a GRX domain followed 
by four CxxC repeats at the C-terminus (Navrot et al., 2006). 
Group V (CPF[C/S]) has six members that are found in the 
cytosol, mitochondria, and chloroplast.

Class II GRXs act as iron–sulfur (Fe–S) cluster bridging 
proteins. They function as maturation factors for the produc-
tion of Fe–S proteins (Rey et al., 2019). As such, they partic-
ipate in iron homeostasis and the maturation of Fe–S protein 
[2Fe–2S] clusters with interacting proteins. For example, the 
GRX [2Fe–2S] clusters form complexes with BOLA pro-
teins, in which the [2Fe–2S] cluster is ligated using the GRX 
conserved Cys, a Cys from GSH, and His or Cys residues on 
the BOLA protein. The function of the plastid GRXs as Fe–S 
cluster bridging proteins links them to the thylakoid mem-
brane functions and chlorophyll metabolism. Like PRXs and 
TRXs, the GRX proteins may serve functions in organelle to 
nucleus retrograde signalling pathways (Sevilla et al., 2023).

Moonlighting functions

Many of the proteins involved in the ascorbate–glutathione 
cycle reside in different intracellular compartments where they 
can have ‘moonlighting’ as well as enzymatic functions. APXs 
have a broad substrate specificity and possess chaperone activity, 
hence participating in various biological processes (Li, 2023). 
Of the eight AtAPX genes in A. thaliana, three encode cyto-
solic (cytAPXs: AtAPX1, 2, and 6) proteins, three microsomal/
peroxisomal (perAPXs: AtAPX3, 4, and 5) proteins, and two 
chloroplastic (chlAPXs: soluble stromal AtsAPX and thylakoid 
membrane-bound AttAPX) protein isoforms (Panchuk et al., 
2005; Granlund et al., 2009). Like the rice OsAPX2 protein 
(Hong et al., 2018), AtAPX1 has chaperone functions (Kaur 

et al., 2021). The LMW forms of AtAPX1 and OsAPX2 ex-
hibit peroxidase activity, but the HMW complexes also display 
chaperone activity.

The AtAPX4 and AtAPX6 (APX-L and APX-R) proteins 
lack essential catalytic residues, ASC-binding sites, and haem-
binding sites (Granlund et al., 2009). These proteins, which 
are generally encoded by a single gene, have been reclassified 
as two novel families of class I peroxidases (Lazzarotto et al., 
2015). The chloroplast-targeted AtAPX6 protein is also found 
in the cytosol and functions as a haem peroxidase that does 
not use ascorbate as a substrate to reduce H2O2 (Lazzarotto 
et al., 2021). APXs can also oxidize non-physiological aromatic 
substrates in vitro, such as p-cresol, o-dianisidine, and guaiacol, 
at rates comparable with ascorbate (Raven, 2003). For example, 
the soluble cytosolic coumarate 3-hydroxylase (C3H) enzymes 
of A. thaliana and Brachypodium distachyon can oxidize both 
ascorbate and 4-coumarate at comparable rates (Barros et al., 
2019).

No moonlighting functions have as yet been reported for 
MDHAR proteins, which can reduce a wide range of substrates 
in addition to DHA. However, the class II enzymes attach to 
the peroxisomal membrane and have essential roles in plant de-
velopment (Eastmond, 2007). The A. thaliana AtMDAR4 pro-
tein, which binds to the peroxisomal membrane, protects the 
SDP1 triacylglycerol lipase from oxidation, but the mechanistic 
reasons for this phenotype are unknown. The sdp2 mutants that 
lack the class II AtMDHAR4 enzyme have a seedling-lethal 
phenotype in the absence of exogenous sugar treatment. The 
siliques of mdar1-2(+/−) mdar4-5(−/−) double mutants have both 
normal and empty seeds, whereas those of the wild type and 
single mutants have only normal seeds, suggesting that the 
double knockout of both isoforms causes embryonic lethality 
(Tanaka et al., 2021).

Plant DHARs are dimorphic proteins that exist in soluble 
enzymatic and membrane-integrated forms. They share a struc-
tural glutathione S-transferase (GST) fold with human chlo-
ride intracellular channels (HsCLICs). HsCLICs are dimorphic 
proteins that exist in soluble enzymatic and membrane- 
integrated ion channel forms. AtDHAR1 is able to generate 
inward conductance in transfected mammalian cell membranes 
(Das et al., 2016) and the Pennisetum glaucum (Pg)DHAR is di-
morphic and has been localized in the plasma membrane (Das 
et al., 2023). Thus, DHAR can function as an oxidative stress-
regulated ion channel (Das et al., 2023).

Support for ascorbate functions in plants

Ascorbate is a multifunctional metabolite (Table 2) that regu-
lates plant growth and development (Foyer et al., 2020b). It is 
a major non-enzymatic antioxidant and ubiquitous ROS scav-
enger that is better (>100× faster) than GSH at scavenging 
superoxide and singlet oxygen. As such, it interacts with var-
ious redox regulatory signalling networks and plays a key role 
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in redox signal transduction, particularly in relation to abiotic 
stress tolerance. For example, ascorbate was found to have a 
specific and light-dependent effect on the expression of the 
gene encoding the chloroplast 2-Cys peroxiredoxin-A2, an 
effect that could not be substituted by GSH (Shaikhali and 
Baier, 2016). The concentration of ascorbate in A. thaliana cells 
is the lowest in the vacuoles (2.3 mM), with higher levels in 
the mitochondria (10.4 mM), chloroplasts (10.8 mM), and nu-
clei (16.3 mM). The highest ascorbate concentrations were 
found in the cytosol (21.7 mM) and peroxisomes (22.8 mM) 
(Zechmann, 2011; Zechmann et al., 2011). In comparison, the 
concentrations of ascorbate (0.002 mM) and DHA (0.36 mM) 
in the apoplast are relatively low (Booker et al., 2012).

Ascorbic acid can be as efficient as SOD in catalysing the 
removal of superoxide radical (Som et al., 1983). The rate con-
stant for the reaction between ascorbic acid and superoxide 
(at pH 7.4) using the xanthine–xanthine oxidase system was 
estimated to be 5.4 × 106 M–1 s–1 (Som et al., 1983). However, 
Gray and Carmichael (1992) reported that the rate constant for 
bovine erythrocyte Cu,Zn-SOD was kSOD=6.4 × 109 M–1 
s–1 which is 1000 times higher. Nevertheless, the lifetime of 
superoxide as a signalling molecule can be considered to de-
pend on the presence of SODs and ascorbate, which essentially 
police this molecule. Superoxide accumulation in plant stem 
cells such as those found in the shoot apical meristem (SAM) 
and the root apical meristem (RAM) is important in defining 
the identity of undifferentiated meristematic cells (Tsukagoshi 
et al., 2010; Zeng et al., 2017). Like SODs, ascorbate is largely 
absent from the quiescent centre of the RAM. The addition of 
ascorbic acid stimulates not only the activity of the quiescent 
centre cells but also cell proliferation in the entire root meri-
stem (Liso et al., 1998).

Ascorbate may also play a key role in policing organelle to 
nucleus communication and signalling pathways. For example, 
mutations in proteins such as the rice chloroplast-localized 
pseudouridine synthase (OSPUS 1-1) lead to the produc-
tion of albino seedlings under low temperatures because of 
aberrant chloroplast ribosome biogenesis (Wang et al., 2022). 
Overexpression of mitochondrial MnSOD also rescues the 

phenotype, as does the suppressor protein of ospus 1-1, which 
encodes a mitochondrial pentapeptide repeat (PPR) protein. 
Such findings suggest that there is coordinated superoxide 
signalling between the mitochondria and chloroplasts that 
regulates plastid development. The chloroplast ascorbate–glu-
tathione system, particularly the chloroplast APXs, has been 
found to regulate signalling related to stress experiences, such 
as low temperature stress, over time without the require-
ment of establishing cold acclimation (van Buer et al., 2016). 
Moreover, cold priming was found to modify chloroplast to 
nucleus signalling by thylakoid APX-mediated suppression of 
CEF mediated by the thylakoid NADH dehydrogenase com-
plex (Seiml-Buchinger et al., 2022).

Dry seeds are devoid of reduced ascorbate and APX ac-
tivity. They contain only DHA, suggesting that the ascorbate–
glutathione cycle does not function in dry seeds. Clearly the 
reduced ascorbate content of plant organs has to be main-
tained within certain thresholds, according to tissue require-
ments. Attempts to enhance ascorbate levels must therefore be 
approached with caution because artificially high ascorbate 
levels as a consequence of removing feedback controls were 
shown to impair reproductive development (Deslous et al., 
2021).

Ascorbate is also an essential enzyme cofactor that partici-
pates in the regulation of photosynthesis and metabolism. It 
is a specific cofactor for a large family of enzymes known 
as the Fe- and 2-oxoglutarate-dependent dioxygenases that 
catalyse the addition of a hydroxyl group to various substrates 
(Wei et al., 2021). Ascorbate is required for the maintenance 
of activity of Fe(II)/2-oxoglutarate-dependent dioxygenases 
via reduction of Fe(III). As such, ascorbate is involved in the 
synthesis of phytohormones and secondary metabolites. For 
example, ascorbate is required for opening the ring structure 
of 1-aminocyclopropane-1-carboxylic acid (ACC) by sup-
plying the electron to the active site of ACC oxidase, which 
catalyses the last step of ethylene biosynthesis (Smirnoff, 2018). 
Ascorbate has also been implicated in auxin catabolism and the 
synthesis of abscisic acid and gibberellins through its functions 
with different dioxygenases.

Table 2.  The functions of ascorbate in plants

Function Target Reference

ROS processing Removal of superoxide and hydrogen peroxide  
(e.g. produced in photosynthesis; Arabidopsis)

Awad et al. (2015); Karpinska et al. (2017); Foyer et al. (2020)

Antioxidant regeneration α-Tocopherol reduction Munne-Bosch (2005)

Electron donor/acceptor (PSI/PSII) (e.g. barley, Arabidopsis) Mano et al. (2004); Tóth et al. (2009)
Enzyme cofactor Peroxidase substrate (e.g. ascorbate peroxidase; poplar)

De-epoxidation (violaxanthin de-epoxidase; rice)
Hydroxylation (Fe- and 2-oxoglutarate-dependent dioxygen-
ases; ethylene, GA, ABA) (e.g. tomato, rice, Arabidopsis)
Flavonoid biosynthesis (Arabidopsis)

Miyake and Asada (1994); Mehlhorn et al. (1996)
Müller-Moulé et al. (2002); Saga et al. (2010)
Wei et al. (2021); Smirnoff (2018); Bulley et al. (2021);  
Ye and Zhang (2012)
Page et al. (2012)

Enzyme inhibitor Chloroplast antioxidant enzyme (Arabidopsis) Horling et al. (2003)
Flower development Anther/pollen development (e.g. orchid, Arabidopsis) Deslous et al. (2021)
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Ascorbate is the natural substrate for many types of plant 
peroxidases (Mehlhorn et al., 1996). In this way, ascorbate 
influences the accumulation of a wide range of phenolic com-
pounds, particularly in the cell wall/apoplastic compartment of 
plant cells. Ascorbate regulates the expression of genes involved 
in flavonol and anthocyanin precursor synthesis (Page et al., 
2012) such as PHENYLALANINE AMMONIA-LYASE1 
(PAL1), 4-COUMARATE:COENZYME A LIGASE3, 
CHALCONE SYNTHASE (CHS), as well as the MYB tran-
scription factor PAP1 and an ELONGATED HYPOCOTYL5 
(HY5) homologue HYH (Munné-Bosch et al., 2013). The low 
levels of leaf ascorbate in ascorbate-deficient mutants (vtc2-1 
and vtc2-4) causes, however, a significant decrease in leaf antho-
cyanin contents (Plumb et al., 2018).

Leaf ascorbate accumulation is modulated by the amount 
and quality of light. Leaf ascorbate accumulation is lowest at 
night and highest at the end of the day. Similarly, increases in 
the light red/far red ratios (a ‘shade’ phenotype) resulted in 
much lower leaf ascorbate and GSH contents than high red/
far red ratios (Bartoli et al., 2009; Foyer et al., 2020b). Blue 
light has been shown to activate the expression of the gene 
encoding GDP-l-galactose phosphorylase (GGP), which is the 
main controlling step of the l-galactose pathway of ascorbate 
synthesis (Bournonville et al., 2023). This protein resides in the 
cytoplasm and the nucleus, where it interacts with the PAS/
LOV photoreceptor protein (PLP) to mediate light-dependent 
control of ascorbate synthesis. PLP is a non-competitive in-
hibitor of GGP that is inactivated upon exposure to blue light 
(Bournonville et al., 2023). Light increases APX, MDHAR, 
and GR activities. Light-dependent regulation of APX and 
MDHAR activities of these enzymes occurs via PTMs as well 
as at the level of gene expression (Gulyás et al., 2023).

The Arabidopsis vtc2/vtc5 double mutants, which are unable 
to synthesize ascorbate, are not viable (Dowdle et al., 2007). 
Mutants that have a low ascorbate content have significant 
reprogramming of gene expression, including genes involved 
in hormone synthesis and signalling, as well as photosynthesis 
and defence (Kiddle et al., 2003; Pastori et al., 2003). These 
changes are accompanied by increases in the levels of salicylic 
acid (SA), pathogenesis-related proteins, and camalexin that 
demonstrate the activation of the ROS signalling branch of 
plant innate immunity (Pavet et al., 2005; Mukherjee et al., 
2010). In this way, ascorbate can exert a key role in plant im-
munity, as well as defence responses to abiotic environmental 
stresses (Pastori et al., 2003; Pavet et al., 2005; Venkatesh and 
Park, 2014; Akram et al., 2017) including salt stress (Shalata et al., 
2001). Ascorbate accumulation is also important in the regu-
lation of plant defences against biotrophic pathogens that rely 
on SA signalling such as Pseudomonas syringae and Peronospora 
parasitica (Pavet et al., 2005; Mukherjee et al., 2010) as well 
as phloem-feeding insects (Kerchev et al., 2013). In contrast, 
ascorbate deficiency enhances susceptibility to the necrotro-
phic pathogen Alternaria brassicicola, in which defence is medi-
ated by jasmonic acid and ethylene signalling (Botanga et al., 

2012). The application of exogenous ascorbate also acts as an 
inducer of disease resistance in plant interactions with different 
types of pathogens including viruses (Fujiwara et al., 2013). The 
mechanisms involved in such strategies are complex, because 
reduced ascorbate is highly susceptible to oxidation in aqueous 
solution and, moreover, it is likely to be oxidized by the ascor-
bate oxidase activities in the apoplast/cell wall compartments 
of the plant cell before it enters the cytoplasm. The role of 
ascorbate in programmed cell death (PCD) is related to its role 
in the control of the activation of the ROS signalling branch of 
innate immune responses (Pavet et al., 2005; Mukherjee et al., 
2010) Localized PCD, similar to that occurring during hyper-
sensitive responses to plant pathogens, is observed in the leaves 
of ascorbate-deficient mutants (Pavet et al., 2005). Increased 
ascorbate synthesis, resulting from supplying l-galactono-
1,4-lactone, delays PCD during kernel maturation in durum 
wheat, with a consequent postponement of dehydration and 
improvement in kernel filling (Paradiso et al., 2012).

Ascorbate may also influence plant epigenetic pro-
cesses (Ramakrishnan et al., 2022; Seiml-Buchinger et al., 
2022). Ascorbate is a cofactor for the ten−eleven transloca-
tion (TET1−TET3) family of proteins in mammalian cells, 
which are responsible for the removal of cytosine methyla-
tion in DNA (Zhithovich, 2020). Ascorbate drives the active 
removal of this transcription-repressive mark by enhancing 
the activities of TET enzymes. The TET enzymes are Fe(II)-
dependent dioxygenases that catalyse a series of consecutive 
oxidations of 5-methylcytosine. No TET-like enzymes have 
as yet been identified in plants, although 5-methylcytosine 
oxidation products, particularly 5-hydroxymethylcytosine 
(5hmC), have been found in plants (Mahmood and Dunwell, 
2019). However, superoxide may influence the activities of 
proteins that contain the [Fe–S] clusters that mediate the reg-
ulation of DNA demethylation in a manner that is regulated 
by ascorbate.

Ascorbate fulfils a number of important roles in the reg-
ulation of photosynthesis, particularly in the acclimation of 
plants to high light (Müller-Moulé et al., 2014; Karpinska et al., 
2017). In addition to its participation in the WWC, ascorbate 
is also required for the regeneration of lipid-soluble antioxi-
dants, particularly tocopherols and tocotrienols (vitamin E), 
which protect the polyunsaturated fatty acids in the thylakoid 
membranes from oxidation to chromanoxyl radicals by sin-
glet oxygen. These radicals are converted back to vitamin E 
by the reducing power of ascorbate, or by reaction with carot-
enoids. Ascorbate is also required for the conversion of violax-
anthin to zeaxanthin in the light-dependent xanthophyll cycle, 
which is a key component of the thermal energy dissipation 
mechanisms measured by the non-photoenergy quenching 
component of Chl a fluorescence (Müller-Moulé et al., 2002). 
Knockout mutants of the chloroplast envelope ascorbate trans-
porter AtPHT4;4 are compromised in thermal energy dissi-
pation (Miyaji et al., 2015). Moreover, ascorbate is a potent 
specific inhibitor of the expression of 2-Cys PRX A and other 
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chloroplast antioxidant enzymes (Horling et al., 2003; Baier 
et al., 2004). This influences chloroplast to nucleus signalling 
pathways via the redox-sensitive transcription factor Rap2.4a 
(Shaikhali et al., 2008). Conversely, the expression of chloro-
plast APX and MDHAR is induced in lines defective in 2-Cys 
PRXs (Baier et al., 2000). Ascorbate is finally also able to do-
nate, as well as accept, electrons from the PET chain, acting as 
an alternative electron donor for PSII (Mano et al., 2004; Tóth 
et al., 2009).

While ascorbate has been largely discounted as a signifi-
cant factor in NO metabolism (Wang and Hargrove, 2013), 
the ascorbate-mediated regulation of flowering in plants, such 
as in Oncidium, acts through the NO-mediated flowering-
repression pathway (Kumar et al., 2016). Arabidopsis low ascor-
bate mutants have long been known to show early flowering 
(Barth et al., 2006), a trait that is linked to the altered expres-
sion of genes, such as flowering locus T (FT) and CONSTANS 
(CO) that regulate flowering (Kotchoni et al., 2009). Similar 
effects on flowering have been reported for plants with altered 
APX or ascorbate oxidase (AO) activities (Pnueli et al., 2003; 
Pignocchi et al., 2006). Moreover, the exogenous application of 
ascorbate or its precursor l-galactono-1,4-lactone delays flow-
ering (Shen et al., 2009).

Support for glutathione functions

Reduced glutathione (γ-glutamyl-cysteinyl-glycine: GSH) is 
one of the most abundant LMW non-protein thiols in plants. 
GSH reacts with superoxide and H2O2, but this reaction is rel-
atively slow compared with ascorbate (Winterbourn, 2016). 
Nevertheless, GSH is an essential metabolite with a wide range 
of important functions in plant biology (Noctor et al., 2012; 
Hasanuzzaman et al., 2017; Aslam et al., 2021; Dorion et al., 
2021; Dumanović et al., 2021). The glutathione redox couple 
(GSH/GSSG) functions together with other redox-active 
couples, such as NADPH/NADP+ and TRX-SH/TRX-SS, 
to maintain cellular redox homeostasis and propagate redox 
signals (Foyer and Noctor, 2011; Considine and Foyer, 2021; 
Le Gal et al., 2021).

GR activity ensures that plant cells maintain very high 
GSH:GSSG ratios. Decreases in GSH:GSSG ratios stimulate 
the reversible formation of mixed disulfides between pro-
tein sulfhydryl groups and GSSG (i.e. S-glutathionylation), as 
well as GSH synthesis. S-Glutathionylation of proteins results 
in structural and functional modifications in redox-sensitive 
enzymes, that can, for example, regulate PET and plant im-
mune responses (Grek et al., 2013). The 2-Cys PRX proteins 
are glutathionylated by GSSG, a process that favours dimeriza-
tion and inactivates their molecular chaperone activities (Park 
et al., 2011). OPDA signalling also modulates GSH-dependent 
protein glutathionylation in a manner that regulates PET effi-
ciency, as well as defence gene expression.

GPXs are, therefore, considered as part of the glutathione/
ascorbate cycle. Plant GPX protein sequences have high 

sequence similarities to mammalian phospholipid hydroper-
oxide GPX4 (Faltin et al., 2010), containing three conserved 
non-selenium Cys residues at the active sites. However, they 
catalyse the reduction of H2O2 using TRX and GRX as the 
electron donor rather than GSH. They are, therefore, more 
correctly called thiol peroxidases than GPXs (Bela et al., 
2015). The plant GPX protein family consists of multiple iso-
enzymes located in different subcellular compartments that 
have distinct expression patterns with respect to tissues and 
developmental stages (Gao et al., 2014). These enzymes play 
an important role in protection against environmental stress 
(Zhang et al., 2019). For example, transgenic plants overex-
pressing GPX genes have better stress tolerance (Diao et al., 
2014; Zhang et al., 2019). Some GSTs also have GPX activity. 
These enzymes can detoxify lipid hydroperoxides and thus 
participate in antioxidative defence (Dixon et al., 2005; Ding 
et al., 2020). Plant GSTs are finally mostly cytosolic enzymes, 
and they can represent up to 2% of soluble proteins (Pascal 
and Scalla, 1999).

As discussed above, GRXs play important but 
non-overlapping roles in iron trafficking and the biogenesis of 
iron-containing cofactors (Berndt et al., 2021). For example, 
GRX17 is required for the maturation of cytosolic and nu-
clear Fe–S proteins, with both foldase and a redox-dependent 
holdase functions in cluster biogenesis that are important 
for stress tolerance (Martins et al., 2020). GRXs participate 
in the regulation of plant growth and development, as well 
responses to environmental triggers. For example, the class III 
GRXS3/4/5/8 proteins function downstream of cytokinins 
in Arabidopsis to negatively regulate primary root growth in 
response to nitrate (Patterson et al., 2016). These GRXs me-
diate cytokinin-dependent responses, acting downstream of 
type-B response regulators that mediate the transcriptional 
responses to cytokinin to inhibit root growth in response to 
high nitrogen. (Patterson et al., 2016). In particular, AtGRXS8 
represses the transcriptional and developmental responses of 
the primary root to nitrate, by interfering with the activity 
of the TGA1 and TGA4 transcription factors (Ehrary et al., 
2020).

GSH interacts with NO, forming S-nitrosoglutathione, 
which can sequester iron in LMW compounds named mono- 
and dinitrosyl iron complexes. GSNO functions as a mobile 
reservoir of NO, which is regulated in cells by the activity 
of GSNO reductases that modulate NO levels in plant cells 
(Sakamoto et al., 2002; Corpas et al, 2013). Protein S-nitrosation 
is reversed by TRXs and S-nitrosoglutathione reductases 
(glutathione-dependent formaldehyde dehydrogenases). GSH 
works together with TRXs in a range of other processes, such 
as the redox control of PCD. A thiol-redox switch mechanism 
involving TRX and GSH mediates the propagation of apop-
tosis signals and acts as a redox checkpoint in mammalian cells 
(Benhar, 2020) In this system, the nitration of various proteins 
controls PCD in a manner that is reversed by TRX and GSH 
(Benhar, 2020).
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Conclusions and perspectives

While a major function of the ascorbate–glutathione cycle 
is the policing of H2O2 signalling in the different subcellular 
compartments and also the intensity of the cell-to-cell ROS 
signalling wave, it also maintains the essential and multifac-
eted functions of ascorbate and GSH in plants. For example, 
ascorbate and GSH support the activities of different en-
zyme systems that fulfil important functions in plant growth 
and development. Moreover, ascorbate functions as a much 
more efficient superoxide scavenger than GSH and hences 
polices superoxide-dependent activities and signalling. The di-
verse functions of ascorbate and glutathione in plant biology 
require that the enzymes of the ascorbate–glutathione cycle 
do not always operate in synchrony. Clearly, the reduction of 
MDHA and DHA does not always require GSH, particularly 
in compartments in which the reduction of these metabolites 
by other systems is rapid, such as occurs in the vicinity of the 
PET chain. Similarly, the transport systems for the reduced and 
oxidized forms of ascorbate and glutathione facilitate the ex-
change of these metabolites between different compartments 
in a manner that remains poorly characterized. Thus, a number 
of factors including competing reactions, and the regulation 
of metabolite synthesis, degradation, and compartmentation 
determine whether GSH turnover is coupled to ascorbate 
turnover. The factors that integrate the pathways of ascorbate 
and GSH synthesis, recycling, and degradation remain poorly 
understood, although the compartmentation of these different 
processes is likely to be an important control point. While our 
understanding of the regulation of the enzymes of the pathway 
has greatly increased, some aspects such as the moonlighting 
functions remain to be fully elucidated.

While the functions of the ascorbate–glutathione cycle are 
well characterized in some organelles such as the chloroplasts 
and peroxisomes, virtually nothing is known about the roles of 
ascorbate and glutathione in the nucleus. Accumulating evidence 
suggests that superoxide and H2O2 are produced in the nucleus, 
where they fulfil important regulatory functions (Diaz-Vivancos 
et al., 2015; de Simone et al., 2017 García-Giménez et al., 2017). 
For example, superoxide accumulation is required to maintain 
shoot meristem cells and the undifferentiated meristematic cells 
in the root (Zeng et al., 2017; Zhao et al., 2023, Preprint). Little 
is known about how the levels of superoxide are regulated to 
maintain cell fate within the stem cell niche, but modulation of 
SOD and the ascorbate–glutathione cycle are important in the 
control of this system. In particular, the roles of superoxide and 
SOD in plant nuclei are poorly documented. In breast cancer 
cells, acetylation converts SOD2 from a mitochondrial antioxi-
dant to a nuclear histone demethylase to promote cell stemness 
and promotes cancer cell evolution (Coelho et al., 2022). In this 
situation, FeSOD functions as a H3 histone demethylase that 
requires H2O2 as a substrate (Coelho et al., 2022). The nuclei 
of plant cells are rapidly oxidized in response to stresses, such as 
high temperatures (Babbar et al., 2021).

The metabolites and proteins that contribute to ROS pro-
duction in the nucleus remain to be identified. However, the 
direct impacts of stress-induced oxidation of nuclei have sig-
nificant implications for current concepts of redox sensing and 
regulation, as well as associated signal transduction pathways 
(Sevilla et al., 2023). The control of nuclear thiol–disulfide 
redox states by nucleoredoxins and TRX1 remains, however, 
largely uncharacterized (Kneeshaw et al., 2017). Similarly, how 
the nuclear glutathione and ascorbate pools influence the regu-
lation of cell cycle proteins is also still not clear (Diaz-Vivancos 
et al., 2015; de Simone et al., 2017).

In conclusion, the ascorbate–glutathione cycle sits at the heart 
of redox biology and interacts on multiple levels with the wider 
network of oxidants, ROS processing proteins, and antioxidants 
that regulate every aspect of plant biology. There is now a huge 
literature on the ascorbate–glutathione cycle, including new and 
important findings that add context and complexity to cycle 
functions. The wider significance of the ascorbate–glutathione 
cycle is only now becoming apparent, as new signalling mecha-
nisms, systems, and pathways are identified.
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