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Abstract Energetic electron dynamics in the Earth's radiation belts and near‐Earth plasma sheet are
controlled by multiple processes operating on very different time scales: from storm‐time magnetic field
reconfiguration on a timescale of hours to individual resonant wave‐particle interactions on a timescale of
milliseconds. The most advanced models for such dynamics either include test particle simulations in
electromagnetic fields from global magnetospheric models, or those that solve the Fokker‐Plank equation for
long‐term effects of wave‐particle resonant interactions. The most prospective method, however, would be to
combine these two classes of models, to allow the inclusion of resonant electron scattering into simulations of
electron motion in global magnetospheric fields. However, there are still significant outstanding challenges that
remain regarding how to incorporate the long term effects of wave‐particle interactions in test‐particle
simulations. In this paper, we describe in details two approaches that incorporate electron scattering in test
particle simulations: stochastic differential equation (SDE) approach and the mapping technique. Both
approaches assume that wave‐particle interactions can be described as a probabilistic process that changes
electron energy, pitch‐angle, and thus modifies the test particle dynamics. To compare these approaches, we
model electron resonant interactions with field‐aligned whistler‐mode waves in dipole magnetic fields. This
comparison shows advantages of the mapping technique in simulating the nonlinear resonant effects, but also
underlines that more significant computational resources are needed for this technique in comparison with the
SDE approach. We further discuss applications of both approaches in improving existing models of energetic
electron dynamics.

1. Introduction
One key element in substorm magnetosphere dynamics is plasma sheet injections into the inner magnetosphere
(Angelopoulos et al., 2008; Baker et al., 1996; Birn et al., 1997; Gabrielse et al., 2012; Nakamura et al., 2002).
Simulations of the energetic particle transport during such injections require modeling of large‐scale magnetic
field reconfiguration and particle responses to a wide variety of kinetic processes, such as wave‐particle resonant
interactions and scattering by the magnetic field gradients. The most advanced approach here is the test‐particle
modeling in electromagnetic fields of global (magnetosphere) magnetohydrodynamic (MHD) or hybrid simu-
lations (e.g., Ashour‐Abdalla et al., 2005; Birn et al., 2004; Peroomian & El‐Alaoui, 2008). This approach can
well resolve meso‐scale electromagnetic field structures, like plasma injection fronts (e.g., Wiltberger
et al., 2015), and can reproduce main details of energetic electron (Ashour‐Abdalla et al., 2011; Birn et al., 2014,
2022; Liang et al., 2014; Pan et al., 2014; Sorathia et al., 2018; Zhou et al., 2018) and ion (Birn et al., 2015, 2017;
Peroomian & Zelenyi, 2001; Ukhorskiy et al., 2018) transport and energization. MHD simulations with suffi-
ciently high spatial resolution can reproduce magnetic field gradients around injection (dipolarization) fronts and
magnetotail current sheets, and thus may adequately describe electron scattering by magnetic field‐line curvatures
(Desai et al., 2021; Eshetu et al., 2018, 2019). Moreover, global hybrid simulations resolving ion kinetics (Lin
et al., 2014; Lu et al., 2016, 2017) can reproduce kinetic Alfven wave dynamics (Cheng et al., 2020; Lin
et al., 2017), making it possible to simulate the plasma sheet electron and ion acceleration by field‐aligned
transient electric fields (i.e., the main ion‐kinetic feature of plasma injections (Chaston et al., 2012, 2015;
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Ergun et al., 2015; Hull et al., 2020)). Although schemes to include electron kinetics into global simulations are
under development and verification (e.g., Alho et al., 2022; Chen et al., 2017; Walker et al., 2018), neither
existing global MHD nor global hybrid simulations can resolve electron‐scale waves, and thus cannot describe the
wide range of electron resonant phenomena associated with plasma injections (see discussion in Artemyev,
Neishtadt, & Angelopoulos, 2022; Malaspina et al., 2018; Mozer et al., 2015; Ukhorskiy et al., 2022).

It is actually rather challenging to incorporate wave‐particle resonant interactions into test particle simulations of
plasma injections, because of their vastly different timescales. Figure 1 shows a schematic of the four main types
of electron motions: cyclotron rotation with the timescale of τg ∼ 10

− 3 s, bounce motion between magnetic
mirrors with the time scale of τb ∼ 10

− 1 s (for 100 keV electrons), earthward transport with the time‐scale of
τD ∼ 10

3 s, and azimuthal motion around the Earth with the time‐scale of τϕ ∼ 10
4 s (for 100 keV electrons). The

ratio of the timescales of the fastest and the slowest motions can be τϕ/τg ∼ 10
7 or τD/τg ∼ 10

6. Individual wave‐
particle interaction, for example, via cyclotron resonance, occurs over ∼τg, and thus such interactions may not be
directly incorporated into test particle simulations of the plasma injections, which occur over ∼τD.

A possible solution of this problem was proposed by Elkington et al. (2018, 2019), who suggest that wave‐particle
interactions can be incorporated as stochastic perturbations of electron test orbits (see also Chan et al., 2023;
Michael et al., 2023). The simplified version of this approach combines test particle equations of motion and
continuous stochastic differential equations (SDEs), which are characteristics for the Fokker‐Plank diffusion
equation (Tao et al., 2008; Zheng et al., 2014). The Fokker‐Plank equation is used in the quasi‐linear theory
(Andronov & Trakhtengerts, 1964; Kennel & Engelmann, 1966; Vedenov et al., 1962), which describes electron
scattering by low intensity waves (see Albert, 2001, 2010; Frantsuzov et al., 2023; Karpman, 1974, for discus-
sions on the wave intensity limitations in inhomogeneous background magnetic field, like in the Earth's
magnetosphere). Applications of the quasi‐linear diffusion approximation has been well developed for the Earth's
magnetosphere (Lyons & Williams, 1984; Schulz & Lanzerotti, 1974), and the main parameters of this
approximation, the diffusion rates, are widely evaluated and used for the observed wave characteristics in the
magnetotail (e.g., Ni et al., 2011, 2012, 2016; Panov et al., 2013; Zhang et al., 2015) and inner magnetosphere (see
reviews by Artemyev, Agapitov, et al., 2016; Li & Hudson, 2019; Shprits et al., 2008; Thorne et al., 2021, and
references therein).

The main limitation of the quasi‐linear models is the requirement of a small wave intensity. A significant portion
of most intense electromagnetic whistler‐mode waves (Tyler et al., 2019; Wilson et al., 2011; Zhang et al., 2018,
2019), electrostatic whistler‐mode waves (Agapitov et al., 2014, 2015; Cattell et al., 2008, 2015; Cully
et al., 2008), and electromagnetic ion cyclotron waves (e.g., Tonoian et al., 2022; Wang et al., 2017) can exceed
their threshold amplitudes and likely resonate with electrons nonlinearly. Such nonlinear resonant interactions

Figure 1. Schematic of four main time‐scales of electron motion during plasma sheet injections into the inner magnetosphere.
Four main time‐scales: electron gyroperiod τg = mc/eB ∼ 10− 3 s (with a typical magnetic field magnitude of B = 10 nT),
electron bounce period τb ∼ 4LCS/v0 ∼ 10

− 1 s (with the current sheet thickness being LCS = 1RE and v0 being the thermal
velocity of 100 keV electrons), τD ∼ Lx /vx ∼ 10

3 s is electron transport time by plasma flows (vx ∼ 100 km/s), τϕ = 2πR/
vϕ ∼ 10

4 s is the electron azimuthal drift period (the radial distance of the injection region is assumed to be R = 6RE and the
electron energy is 100 keV).
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include effects of phase bunching and phase trapping (see Albert, 1993; Inan & Bell, 1977; Itin et al., 2000;
Karpman et al., 1975; Nunn, 1971; Solovev & Shkliar, 1986), which can significantly modify the characteristics
of wave‐particle interactions (see reviews by Albert et al., 2013; Artemyev, Neishtadt, Vainchtein, et al., 2018;
Shklyar & Matsumoto, 2009, and references therein). Nonlinear effects can be incorporated into the kinetic
equation (i.e., modified Fokker‐Plank equation) for electron distribution functions (e.g., Artemyev, Neishtadt,
et al., 2016; Artemyev, Neishtadt, Vasiliev, & Mourenas, 2018; Hsieh & Omura, 2017; Omura et al., 2015), but
the corresponding characteristic equations will be different from those in the SDE approach. The main difference
is the probability distribution function of pitch‐angle/energy jumps due to resonant interactions: nonlinear effects
cannot be described by Gaussian probability distributions that are often adopted to model the diffusive scattering
within SDE approach. Recently, an alternative to SDE approach was proposed in (Artemyev, Neishtadt, Vain-
chtein, et al., 2018; Zheng et al., 2019), where a non‐Gaussian probability distribution of pitch‐angle/energy
jumps has been incorporated into equations of motion for resonant electrons. This approach resembles the
generalization of the classical mapping technique (e.g., Chirikov, 1979; Khazanov et al., 2014; Zaslavskii
et al., 1989) to systems with a finite probability of very large pitch‐angle/energy jumps due to phase trapping (see
Artemyev et al., 2020). The mapping technique can reproduce many observed effects of nonlinear wave‐particle
interactions (e.g., Artemyev, Zhang, et al., 2022; Zhang et al., 2022) and in principle can be incorporated into test‐
particle codes (Artemyev, Neishtadt, & Angelopoulos, 2022). Therefore, both SDE and mapping technique can be
used to include wave‐particle resonant interactions into models of energetic electron dynamics in global elec-
tromagnetic fields provided by MHD/hybrid simulations. The mapping technique should generalize the SDE
approach, but it is yet to be investigated whether the mapping equations can describe diffusive scattering and
nonlinear resonant effects with the same accuracy level. The mapping technique usually adopts analytical
equations to model pitch‐angle/energy jumps, which do not include diffusive scattering (Artemyev et al., 2020).
Recently Lukin et al. (2021) has generalized the mapping technique for the entire probability distribution function
of pitch‐angle/energy jumps, but it remains to be verified for electron cyclotron resonances with whistler‐mode
waves.

In this paper, we combine two approaches from Artemyev et al. (2020) and Lukin et al. (2021) to construct the
mapping technique that operateswith the probability distribution function of pitch‐angle/energy jumps for electron
cyclotron resonances with whistler‐mode waves. We also compare results from this newly developed mapping
technique to those from the SDE approach, which operates by a single characteristic of such probability distri-
bution functions of pitch‐angle/energy jumps—distribution variance, which dictates the diffusion rate. We
examine twowave intensities: small intensity for the diffusive interaction, when SDE andmapping are expected to
provide the same results, and large intensity with nonlinear wave‐particle interactions, when the mapping tech-
nique is validated by full test particle simulations. Therefore, this paper demonstrates the approaches to incorporate
the long‐term effects of quasi‐linear and nonlinear wave‐particle interactions into global scale test‐particle models.

The rest of the paper starts with introducing basic characteristics of electron resonant interactions with whistler‐
mode waves in the dipole magnetic field (see Section 2). Then in Section 3, we introduce the main property of
electron ensemble dynamics—the probability distribution function of energy/pitch‐angle jumps in a single
resonance. This distribution is used to introduce SDE approach (in Section 4) and mapping technique (in Sec-
tion 5). Results obtained from SDE and mapping approaches are compared with test particle simulations in
Section 6. Finally, we discuss the applicability of both methods and briefly summarize our conclusions in
Section 7.

2. Resonant Electron Interactions With Whistler‐Mode Waves
We examine the interaction of relativistic electrons (rest mass me, charge − e, speed of light c) with field‐aligned
whistler‐mode waves moving in the dipole magnetic field B0(λ), where λ is the magnetic latitude. Electron dy-
namics in such a system can be described by the following Hamiltonian (Albert, 1993; Vainchtein et al., 2018):

H =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m2ec4 + c2p2z + 2IxΩ0(λ)mec2
√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2IxΩ0(λ)
mec2

√
eBw(λ)
k(λ)

cos(ϕ + ψ) (1)

where (z, pz) and (ψ, Ix) are two pairs of conjugate variables, the field‐aligned coordinate and moment, and
electron gyrophase and magnetic moment. The electron cyclotron frequency Ω0(λ) is defined as
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Ω0(λ) = Ωeq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√

cos6(λ)
(2)

where Ωeq = eB0(0)/mec is the equatorial cyclotron frequency determined by the radial distance from the Earth to
the equatorial crossing of the magnetic field line, that is, L‐shell. In the dipole field, the magnetic latitude, λ, is
related to the field‐aligned coordinate z as:

dz
dλ
= REL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√
cos(λ) (3)

where RE is the Earth radius. Note that in Hamiltonian (Equation 1), the magnetic moment, Ix, conjugate to the
gyrophase, ψ, should be normalized in such a way that IxΩ0 has a dimension of energy.

The second term in Hamiltonian (Equation 1) describes the wave contribution to the electron dynamics. The wave
amplitude Bw is modeled as:

Bw(λ) = εB0(0)f (λ), f (λ) = {
tanh(cλ (λ − λ0)), λ≥ λ0
0, λ< λ0

(4)

where ɛ parameter controls

Bω/B0(0)

Bw/B0(0), function f(λ) determines the wave latitudinal profile that agrees with the wave generation around the
equator, that is, wave amplitude growth within the generation/amplification region Δλ, which is controlled by the
value of cλ: Δλ ∼ 1/cλ, followed by saturation (see typical Bw(λ) profiles from statistical models in Agapitov
et al., 2013, 2018). Note that we assume the waves only exist in one hemisphere, z> 0, because the wave field and
wave propagation equations are symmetric in two hemispheres (z → − z does not change the system equation).
This assumption allows us to simplify the calculations, because in this case the wave‐particle interaction occurs
only during a quarter of the bounce period when the particles move northward from the equator.

The wave phase is given by equation ϕ̇ = k(λ)ż − ω, where the wave frequency ω is constant and the wave
number k(λ) is determined by the cold plasma dispersion relation (Stix, 1962):

ck(λ) = Ωpe(λ)(
Ω0(λ)
ω

− 1)
− 1/2

(5)

The plasma frequency Ωpe is given by the empirical function (Denton et al., 2006)

Ωpe(λ) = Ωpe,eq cos − 5/2(λ) (6)

with the equatorial values Ωpe,eq given by the empirical function (Sheeley et al., 2001) Ωpe,eq/Ω0(0) ≈ L.

Wave phase ϕ linearly depends on time, ∂ϕ/∂t = ω = const, and thus Hamiltonian (Equation 1) has an integral of
motion h (see, e.g., review by Shklyar & Matsumoto, 2009):

h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m2ec4 + c2p2z + 2IxΩ0(λ)mec2
√

− ωIx (7)

In the absence of wave perturbation, Bw = 0, particle energy mec
2(γ − 1) and equatorial pitch‐angle

αeq = arcsin(2IxΩ0(0)/mec2 ( γ2 − 1)) are conserved; here

γ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (
pz
mec

)

2

+
2IxΩ0(λ)
mec2

√
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is the gamma factor. Wave‐particle resonant interactions can change particle's energy and equatorial pitch‐angle
(change Ix), but due to the conservation of h(γ, Ix) waves move electrons along a specific curve in the energy,
pitch‐angle space. Therefore, for a fixed value of h (i.e., when all particles have the same initial h), the wave‐
particle resonant interaction becomes a 1D problem, and we may just examine energy changes, whereas
changes of equatorial pitch‐angle (or Ix) can be determined from h = const.

To obtain basic characteristics of wave‐particle resonant interactions, we integrate electron equations of motion
(Hamiltonian equations) with fourth order Runge‐Kutta scheme with an adaptive time step (1/20 of the local
electron gyroperiod). Throughout the rest of the paper, we use the following dimensionless variables:

H → Hmec2, pz = pmec, Ix → Ix
mec2

Ωeq
, t → t/Ω0(0), z → z

c
Ωeq

(8)

Thus, the dimensionless Hamiltonian and integral of motion h take the following forms

H =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + p2z + 2IxΩ0(λ)
√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2IxΩ0(λ)

√ εf (λ)
k(λ)

cos(ϕ + ψ) (9)

h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + p2z + 2IxΩ0(λ)
√

− ωIx (10)

where Ω(λ) → Ω(λ)Ω0(0). To demonstrate the result, we use the following parameters throughout: h = 3/2,
λ0 = 5°, and cλ = 180/π. Each integration starts from the equatorial plane (λ = z = 0) and stops there after Nres
resonant wave‐particle interactions. Since waves only exist in the northern hemisphere at a fixed frequency, and
propagate along magnetic field lines (i.e., resonate with electrons through the first‐order cyclotron resonance
only), each electron bounce period corresponds to one wave‐particle interaction on a time scale of a quarter
bounce period. Effects of multiple resonances within one bounce period (e.g., due to oblique wave propagation or
wave frequency variation with time, see Artemyev et al., 2021; Hsieh & Omura, 2023; Shklyar & Matsu-
moto, 2009) can be incorporated into this approach by including additional wave terms into Equation 9.

Depending on the wave magnitude, there are two possible regimes of wave‐particle resonant interactions:
diffusive scattering and nonlinear resonant interactions. Figure 2 shows the profiles of electron energy evolution
with time for both regimes (all electrons have the same initial energy and pitch‐angle, but random initial gyro-
phases). For small wave amplitudes: (a) the interaction is linear and energy evolution with time is stochastic. After
each wave‐particle interaction, the electron energy undergoes a small (compared to electron initial energy)
positive or negative jump with almost equal probabilities to increase or decrease the energy. This process (with
normalized diffusion coefficients) can be approximated by the Wiener stochastic process, that is, the evolution of
electron distribution function can be described by the Fokker‐Planck equation or, equivalently, by SDEs. For
large wave amplitudes: (b) electron dynamics cannot be described with the diffusive approach. Most of the time,
particle energy undergoes small negative jumps (but positive jumps are also possible, see Albert et al., 2022) and
there is a nonzero probability of large positive jumps, caused by particle phase trapping.

3. Probability Distributions of Energy Jumps
To quantify variations of electron energy due to wave‐particle resonant interactions, we use test particle simu-
lations and evaluate the distributions of energy jumps as a function of initial energy E0, ΔE(E0). Figure 3 shows
such distributions for several initial electron energies and two different magnitudes of the wave field. For each
histogram, we integrated trajectories of Np = 32,768 test particles with random initial gyrophases and the same
initial energy and h values. Each integration includes one bounce period (i.e., a single resonant interaction). For
small wave amplitudes (panels (a–d)), electron energy jumps are small and randomly (but symmetrically)
distributed around zero. For sufficiently high wave amplitudes (panels (e–h)), there appear nonlinear resonant
effects: most of the electrons lose their energy due to the phase bunching with ΔE< 0, while a small population of
phase trapped particles (panels (g–h)) gain a significant portion of energy with ΔE > 0 comparable to their initial
energy, E0. Changes of the electron pitch‐angle (and Ix) are directly determined by the energy changes due to the
conservation of the integral of motion (Equation 7). Therefore, the probability distribution of ΔE(E0) fully
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characterizes the evolution of electron distribution function and can be used as a basic input for the SDE approach
or mapping technique. Note that for intense, but very low‐coherent waves, the probability distribution function of
ΔE(E0) will be symmetric relative to ΔE(E0) = 0, and thus will largely resemble distributions from panels (a–d)
(see An et al., 2022; Frantsuzov et al., 2023; Gan et al., 2022; Zhang et al., 2020).

Figure 2. Examples of electron energy dynamics for the system with diffusive scattering (a) and nonlinear resonant effects (b). All electrons have the same initial energy
and pitch‐angle, but random initial gyrophases. Energy is plotted versus number of resonant interactions (i.e., number of electron bounce periods).

Figure 3. Examples of ΔE probability distributions for systems without nonlinear resonant effects (a–d) and with nonlinear resonant effects (e–h). In panels (e, f), we
show simulation results for E0 without trapping: a small population of ΔE > 0 is due to the positive phase bunching effect (see Albert et al., 2022). In panels (g, h), we
show simulation results with phase trapping; the inserted panels show the expanded view of the population with large ΔE > 0.

Journal of Geophysical Research: Space Physics 10.1029/2023JA032163

LUKIN ET AL. 6 of 17

 21699402, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JA

032163 by U
niversity O

f B
irm

ingham
 E

resources A
nd Serials T

eam
, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4. Stochastic Differential Equations
In the limit of small wave field amplitudes, the wave‐particle resonant interaction is diffusive (e.g., Allanson
et al., 2022; Kennel & Engelmann, 1966; Lyons & Williams, 1984; Schulz & Lanzerotti, 1974, and references
therein). Note that in inhomogeneous magnetic field, these interactions are diffusive even for monochromatic
waves (see Albert, 2010; Shklyar, 2021). Therefore, for such systems one can use the Fokker‐Planck equation to
describe the evolution of the electron distribution function f(χ) of the velocity vector χ:

∂f (χ ,t)
∂t

= − ∑
N

i=1

∂
∂χi

(μi(χ ,t)f (χ ,t)) +∑
N

i=1
∑
N

j=1

∂2

∂χi∂χj
(Dij(χ ,t)f (χ ,t)) (11)

where t is time, μ(χ(t), t) is an N‐dimension vector of the drift coefficient, D is an N × N matrix of diffusion
coefficients (Albert, 2018; Lyons & Williams, 1984; Schulz & Lanzerotti, 1974). Instead of solving the Fokker‐
Planck equation, we can use the corresponding Ito SDEs to integrate trajectories of quasi‐particles (Tao
et al., 2008; Zheng et al., 2014):

χ(t + Δt) = χ(t) + μ(χ(t),t)Δt + σ(χ(t),t)dWt (12)

where Δt is the time step over which we calculate the change of χ, σ(χ(t), t) is anN×N‐dimension matrix related to
the diffusion coefficients written in such a way that D = 1

2σσT , Wt is an N‐dimension standard Wiener process;

dWt =
̅̅̅̅̅
Δt

√
N, where N is a vector of standard normal random values, Ni ∼ N(0, 1).

The term quasi‐particlesmeans that we do not directly integrate the equations of motion, but treat the change of χ
as a stochastic process and approximate it by Equation 12. As a result, two quasi‐particles having equal initial
conditions χ0may have different trajectories χ(t) (in the numerical integration of Equation 12, one can fix the seed
of the pseudo random generator to preserve the sequence of random numbers and make the results repeatable). We
will examine electron distributions in the energy space, and thus the Ito Equation 12 can be rewritten in the
following form

E(t + Δt) = E(t) + μE (E(t))Δt +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2DE (E(t))

√
dWt (13)

This equation describes the energy evolution for fixed h given by Equation 10, that is, for a monochromatic wave
we may reduce the energy, pitch‐angle evolution to the energy‐only evolution and calculate the associated pitch‐
angle changes from h conservation. For generic wave spectra, there are three diffusion rates (energy, pitch‐angle,
and mixed energy‐pitch‐angle), and thus we would need to solve a system of equations for the energy and pitch‐
angle evolution (see detail in Tao et al., 2008). Note that if we rewrite the Fokker‐Planck equation in terms of
energy, additional coefficients of variable transformation from velocity (momentum) to energy and pitch‐angle
(Lamé coefficients) should be added (e.g., Glauert & Horne, 2005), but the Ito equation will still have the
same form.

The main limitation of this approach is the requirement on small energy changes ΔE for each wave‐particle
interaction, that is, it is only applicable for systems without nonlinear effects of phase trapping. Equation 13
includes the drift μE(E0) and bounce averaged diffusion DE(E0) coefficients, which can be estimated using the
distribution of energy jumps ΔE(E0):

DE (E0) =
1

2τb (E0)

⎛

⎜
⎝
1
Np

∑

Np

i=1
Δ(Ei)2 (E0) − (

1
Np

∑

Np

i=1
ΔEi (E0))

2⎞

⎟
⎠ (14)

For the drift term, we use

μE (E0) =
dDE (E0)
dE0

(15)
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which keeps the divergence‐free form of the Fokker‐Planck equation (Allanson et al., 2022; Lemons, 2012;
Lichtenberg & Lieberman, 1983; Sinitsyn et al., 2011; Zheng et al., 2019). Note that using such estimates of drift
and diffusion coefficients, we implicitly assume that the ΔE(E0) distributions are symmetric relative to the mean
ΔE value. Figures 4a and 4b show the numerically obtained ΔE distributions (black) and their fittings to sym-
metric Gaussian distributions (this fitting outputs the variance ∼DE(E0)). However, this assumption may be
violated even in the case of small wave amplitudes (see Figure 3c), when we can over‐ or underestimate the drift
and diffusion coefficients. We will discuss the corresponding uncertainties in Section 6. Figure 4c shows the drift
and diffusion coefficients as a function of the electron initial energy E0.

Each electron bounce period corresponds to a single wave‐particle interaction (as commented above), and thus the
time step of integration Δt in Equation 13 should be set equal to τb(E0). The main advantage of the SDE approach
(and also of the mapping technique, which will be discussed in Section 5), in comparison with the test particle
approach, is the significant reduction of computational time for long‐term simulations (see also discussions in
Lukin et al., 2021): we integrate trajectories of quasi‐particles with a time step equal to the bounce period,
considering only the effects of wave‐particle interactions and do not trace particles during adiabatic paths of their
motion. So at each step of integration, we recalculate the electron energy as

Ei+1 = Ei + μE (Ei)τb (Ei) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2DE (Ei)τb (Ei)

√
Ni

where Ni ∼ N(0, 1) is the standard normal random number.

Panels (d, e) in Figure 4 show examples of the electron energy profiles calculated by direct integration of the
Hamiltonian equations or using the SDE approach. Particles having equal initial conditions will have different

Figure 4. Panels (a, b) show ΔE distributions (in black), obtained after a single wave‐particle interaction, and Gaussian distributions with the same variance (in red).
Panel (c) shows the energy diffusion rate and drift term versus initial energy. Panels (d, e) show examples of 10 trajectories of long‐term electron energy dynamics
(∼300 resonances) for a system without nonlinear resonant effects.
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trajectories from these two approaches, due to randomness of resonant interactions, but statistical properties of the
evolution of the electron ensemble should be the same. We have verified this property by a set of simulated
evolution of the electron ensembles (not shown).

5. Mapping Technique
For high wave amplitudes, the SDE approach is no longer applicable, because of the nonlinear effects of wave‐
particle interactions. In this case, the Wiener stochastic process cannot describe the evolution of electron energy
as there is a finite probability of large energy jumps caused by the phase trapping. For such systems, the Ito SDE
can be generalized by introducing a new stochastic process accounting for the phase trapping and phase bunching.
This process can be represented by a series of mapping functions depending on electron energy (the changes of
pitch‐angle are related to energy changes through the integral of motion (Equation 7)).

Figure 5a shows the distribution of energy jumps for the wave amplitude ɛ = 10− 3 and initial electron energy
E0 = 257 keV. For this particular energy, there is no electron phase trapping: the resonant latitude for this energy
and h (which determines the equatorial pitch‐angle) corresponds to zero probability of electron trapping, because
wave intensity increases slower along the resonant trajectory than the background magnetic field inhomogeneity
(see detailed equations determining the trapping probability in the Appendix of Vainchtein et al., 2018, and in
references therein). Hence the procedure to construct the mapping function is straightforward: using this dis-
tribution, one can calculate the cumulative function of energy jumps F(ΔE, E0) ∈ [0, 1] (right vertical axis in
Figure 5a) and then use the inverse function ΔE(U) = F− 1(U, E0), U ∈ [0, 1] as the generator of electron energy
jumps for each wave‐particle interaction.

Figure 5. Panels (a, b) show ΔE distributions and the corresponding cumulative probability distribution function (only on panel (a)). Panel (c) shows the probability of
electron phase trapping versus the initial energy. Panels (d, e) show examples of 10 trajectories of long‐term electron energy dynamics (∼300 resonances) for a system
with nonlinear resonant effects.
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Figure 5b shows the distribution of energy jumps for an initial electron energy of E0 = 350 keV. There is a small
probability of electron phase trapping in this case, thus we can divide the ΔE distribution into bunching (|ΔE|/
E0 ≪ 1) and trapping (ΔE/E0 ∼ 1) parts, and then calculate corresponding cumulative functions: Fb(ΔE, E0) and
Ft(ΔE, E0). Note that this separation of ΔE distribution into two parts is not necessary, but it simplifies the
calculations by allowing a linear interpolation for the cumulative function. There is a gap of ΔE between two parts
of ΔE distribution, that is, for the case shown in Figure 5b the electron energy cannot change by the value between
∼4 and ∼95 keV (prohibited values of ΔE in this case). If we would not separate the ΔE distribution into two
parts, this ΔE gap will require a separate treatment. Using trapping ΔE distributions, we may estimate the
probability of electron trapping ptrap(E0) (shown in Figure 5c) as a function of the initial electron energy:

ptrap (E0) =
N(ΔE(E0)/E01̃)

Np
(16)

where Np is the total number of particles used to construct the ΔE(E0) distribution and N(ΔE(E0)/E0 ∼ 1) is the
number of trapped particles.

We use the subscript b for the bunching part of the ΔE(E0) distribution and also for the entire ΔE(E0) distribution
if the probability of trapping is equal to zero. Then the generalization of the Ito SDE is straightforward: we can
replace the Wiener process in Equation 13 with the constructed mapping functions. At each integration step, we
generate two uniform random numbers u1, u2 ∈ U(0, 1) and recalculate electron energy as

Ei+1 = Ei +
⎧⎨

⎩

F− 1t (u2,Ei), u1 ≤ ptrap (Ei)

F− 1b (u2,Ei), u1 > ptrap (Ei)
(17)

Note that the gap between ΔE distributions due to phase trapping and bunching (see Figure 5b) depends on system
parameters (mostly on the wave field model) and, for example, for the system with small wave‐packets, the
energy of phase‐trapped electrons could not be far away from the initial energy (e.g., Omura et al., 2015). In this
case, there is no need to divide the distributions into bunching and trapping parts and thus only one cumulative
function, F(ΔE, E0), needs to be constructed. In this case, the computation scheme slightly simplifies: at each
iteration one needs to calculate a single, uniform random number u ∈ U(0, 1) and the energy change can be
calculated in the same manner: Ei+1 = Ei + F− 1(u, Ei).

Figures 5d and 5e show several profiles of electron energy as a function of the number of wave‐particle reso-
nances, calculated by integration of the test particle trajectories and using the mapping technique, respectively.
Both approaches show very similar electron energy dynamics: long‐duration electron drift to smaller energy due
to the phase bunching and rare large jumps to higher energy due to the phase trapping. Note that for both SDE and
mapping techniques, we still need to use test particles to calculate the initial distributions of ΔE(E0), but having
these distributions (requiring statistics of single wave‐particle interactions), we can use the simplified integration
scheme with a time step equal to the bounce period.

6. Method Validation
For small wave amplitudes, we can apply all three methods (test particles, SDE, and mapping) to simulate the
evolution of the electron distribution function, and these three methods are expected to give the same results. The
test particles approach is expected to be more precise, because it does not rely on the constructed ΔE distribution
and is based on the full set of equations of motion. The main advantage of SDE and mapping techniques is their
computational efficiency in long‐term simulations, so they can be less accurate, but should still describe the main
features of the evolution of electron distributions and their results should statistically repeat those from the test
particles approach. Figure 6 (left panels) shows the evolution of the electron distribution function for a small wave
amplitude (ɛ = 10− 4) at four time instants. Hereinafter Np = 32,768 test particles are used to compute the changes
of the distribution functions for all mentioned approaches. Without nonlinear resonant effects, both SDE and
mapping technique show results that are consistent with the test particle simulation. In this case, the evolution is
diffusive (as expected for quasi‐linear theory) and shows a spread of the initially localized electron phase space
density peak. The difference between SDE and the test particle simulation, most clearly seen around E∼ 420 keV,

Journal of Geophysical Research: Space Physics 10.1029/2023JA032163
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is due to the overestimation of the diffusion coefficients. We evaluate diffusion coefficients as a half of the
variance of ΔE distributions, and thus we assume that ΔE distributions are symmetric relative to the mean value.
However, even in the case of low‐amplitude waves (see, e.g., Figure 3c) this assumption may not work, which will
result in an overestimation of the diffusion rate. The mapping technique does not require any assumptions about
ΔE distributions, and thus it performs better even in the case of low‐amplitude waves.

Figure 6 (right panels) shows the evolution of the electron distribution function for a large wave amplitude
(ɛ = 10− 3) at four time instants. For such intense waves, the SDE approach becomes inapplicable, but we can still
compare results of test particle simulations and the mapping technique. The mapping technique accounts for
nonlinear resonant effects (e.g., phase trapping) and describes well the evolution of electron distributions. After
several wave‐particle resonant interactions (see top right panel of Figure 6), the main electron population
propagates to lower energies due to the phase bunching, while a small population becomes trapped by waves and
gains energy. During the drift of the main population to the smaller energies, the probability of particle trapping
increases (see Figure 5c) and more particles become trapped and accelerated. Accelerated particles appear in the
resonant latitudes where no more phase trapping is possible, and thus these particles start losing their energy due
to the phase bunching. Around the time when the main population (at the initial peak of electron phase space

Figure 6. Evolution of the electron energy distribution for a systems without nonlinear resonant effects (left panels) and with nonlinear resonant effects (right panels).
Gray color shows the initial distribution, black color shows test particle simulation results, red color shows results obtained with stochastic differential equation, and
blue color shows results for the mapping technique. Time (in seconds) is calculated under the assumption of a single resonant interaction per bounce period, τb(E), where
τb is evaluated at L‐shell = 6 and for equatorial pitch‐angles derived from Equation 7.
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density) reaches the left boundary of the allowed energies, the processes of phase bunching and phase trapping
statistically compensate each other. This results in formation of a plateau in the distribution function (see the
bottom right panel in Figure 6). Such an evolution of the electron distribution is consistent with theoretical
predictions for the system with multiple nonlinear resonances (Artemyev et al., 2019).

The main uncertainty of the mapping technique arises at the edges of the simulation domain due to the finite grid
size (discretization) in the ΔE distribution. In this approach, we treat the electron energy change as a probabilistic
process and in Equations 13 and 17, electrons can reach the energy E < Emin outside of the simulation domain. In
the subsequent calculations, therefore, we will use the mapping functions corresponding to the energy Emin to
calculate electron energy change. This underestimates the probability of positive and overestimate probability of
negative energy jumps, so that particles can stay at the edges of the energy grid for a long time. The SDE approach
also suffers from this boundary effect. This problem can be eliminated by introducing boundary conditions, for
example, reflective boundaries, or by normalizing the ΔE distribution around boundaries (see discussions in the
Appendix of Artemyev et al., 2021).

7. Discussion and Conclusions
In this study we compare two approaches that incorporate the wave‐particle resonant effects into test particle
simulations: SDE approach and mapping technique. Both approaches simplify the characterization of wave‐
particle interactions and reduce resonant effects to a ΔE distribution of energy jumps during a single interac-
tion; in particular, SDE further simplifies this description and operates only by the second moment (variance) of
this distribution. The comparison shows that these two approaches provide the same results for the system with
low‐amplitude waves, whereas electron nonlinear resonant interactions with intense waves may be only described
well by the mapping technique. Note that the diffusion approximation is not only applicable to low intensity
waves, but also to systems with very intense, low‐coherent waves where the resonance overlapping results in
destruction of nonlinear effects (An et al., 2022; Frantsuzov et al., 2023; Gan et al., 2022; Tao et al., 2013; Zhang
et al., 2020). Let us discuss advantages and limitations of this technique.

The mapping technique is based on ΔE distributions, which for fixed system parameters depends only on the
initial electron energy E0, that is, we deal with 2D distributions of energy (or pitch‐angle) jumps, F(ΔE, E0),
which are used as described in Section 5. These distributions can be determined with any required accuracy from a
set of short‐term test particle simulations. However, in realistic space plasma systems, we deal with some
ensemble of waves that can be described by the distribution of wave amplitudes and frequencies, Pw (Bw,ω) ; for
reasonable discretization levels and available statistical wave data sets, this wave distribution usually consists of
∼102–103 different pairs of (Bw, ω) (see, e.g., Artemyev, Zhang, et al., 2022; Zhang et al., 2022). Therefore, for
the mapping technique, we would need to evaluate 102–103 realizations of 2D F(ΔE, E0) distributions. Additional
system dimensions can be introduced due to the dependence of Pw (Bw,ω) on the geomagnetic activity and
geophysical coordinates (MLT, L‐shell). Therefore, although the mapping technique essentially reduces com-
putations relative to the full test particle simulations, this approach requires significant resources for simulation of
electron dynamics during long‐term global events (where wave and background characteristics can vary
significantly), for example, geomagnetic storms. More suitable application of the mapping technique is simu-
lations of localized (spatially and temporally) events, like plasma sheet injections (Artemyev, Neishtadt, &
Angelopoulos, 2022) or strong precipitation bursts (Artemyev, Zhang, et al., 2022; Zhang et al., 2022). For global
simulations with SDE, which substitute 2D F(ΔE, E0) distributions by 1D diffusion coefficients DEE(E0), should
be much more realistic, although this approach does not account for nonlinear resonant effects.

Both the SDE approach and mapping technique assume the evaluation of F(ΔE, E0) distributions before simu-
lating the electron dynamics, and thus such distributions are usually evaluated for a prescribed background
magnetic field. This simplification may work for the inner magnetosphere, where the background dipole field
does not vary too much (see Ni et al., 2011; Orlova & Shprits, 2010, for discussions on when this assumption does
not work well), but cannot be well justified for plasma injections characterized by rapid, significant variations of
the magnetic field configuration (see discussion in Ashour‐Abdalla et al., 2013; Birn et al., 2022; Sorathia
et al., 2018). The background magnetic field configuration determines the resonant condition and thus should
control the efficiency of electron scattering by waves. In principle, the effect of the magnetic field reconfiguration
can be included into SDE and mapping approaches, but this would require the evaluation of F(ΔE, E0) distri-
butions for multiple magnetic field configurations, which is usually unlikely with available computational
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resources. A possible solution will be to analytically evaluate F(ΔE, E0) distributions (e.g., Artemyev et al., 2021;
Vainchtein et al., 2018), but this solution requires more developed theoretical models of wave‐particle resonant
interactions including effects of wave‐field deviations from a simple plane wave model (see discussions in
Artemyev et al., 2023; Mourenas et al., 2018). So far such effects have been evaluated (e.g., Allanson et al., 2021;
An et al., 2022; Gan et al., 2022; Tao et al., 2011; Zhang et al., 2020) and incorporated into F(ΔE, E0) distributions
(e.g., Hsieh et al., 2020, 2022; Kubota & Omura, 2018) only via numerical integration of a large test particle
ensemble.

Both the SDE approach and mapping technique are based on numerical evaluations of the probability distribution
function of energy jumps, F(ΔE, E0). Although we have adopted the plane wave approximation in this study, the
procedure of F(ΔE, E0) evaluations is independent of such approximations and F can be calculated for more
realistic modes of wave‐packets (see observations and simulations in Zhang et al., 2018, 2021). This general-
ization for the finite wave‐packet size is quite important for constraining the efficiency of nonlinear resonant
effects (see, e.g., An et al., 2022; Kubota & Omura, 2018; Zhang et al., 2020). Therefore, in the next step, one
would need to incorporate realistic distributions of whistler‐mode wave‐packet sizes.

Data Availability Statement
No data sets were used in this work.
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