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A B S T R A C T 

Since its discovery, carbon nanotube(CNT) was proposed as an ideal reinforcement material 

for metal matrix composite for its high strength, excellent electrical and thermal conductivity. 

CNT reinforced aluminum matrix composite has attracted most attention at the beginning of 

21
st
 century due to the need for advanced lightweight alloys for aerospace, automotive and 

defense industries. However, few researchers have successfully incorporated pristine and 

undamaged CNT into matrix to enhance the properties of the composite. Both traditional and 

novel powder metallurgical routes have been explored, nevertheless, challenges like the poor 

distribution of CNT in Al matrix, the agglomeration of CNTs and the damage of essential 

CNT tubular structure impeded the full translation of CNT potential into various matrix. To 

achieve a uniform dispersion of CNT without damaging the CNT structure, the authors have 

applied a novel wet shake-mixing method which combined the advantages of ultrasonication, 

turbular mixing and ball milling to fabricate an homogenous Al–0.5 wt. % multi-walled 
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carbon nanotube(MWNT) composite. The original structure and morphology of MWNTs and 

aluminum powders were well preserved even after all the processing procedures in the 

as-produced powders. This is confirmed by scanning electron microscopy and X-ray 

diffraction analysis, particle size distribution and the Raman spectra of the as-produced 

composite powders.  

 

Keywords: 

Composite materials; Metal matrix composites; Raman Spectra; Dispersion; Mixing 

                                                                            

1. Introduction 

Composite materials consist of a bulk matrix material and one or more reinforcement phases, 

combining the desired properties of different constituents, which significantly break the 

performance limitation of traditional monolithic materials systems and remarkably expand the 

horizon of signal transmission, biomedicine, aerospace and automobile industries[1]. For 

these industries, aluminum(Al) is the most widely applied metal due to its abundance, low 

price, good corrosion resistance and, more importantly, low density, which leads to a 

combination of good specific strength and light-weighted structure for increased fuel 

efficiency[2]. There is an increasing demand for Al-based systems with higher specific 

strength and specific modulus properties to cater for the development of modern aircrafts and 

vehicles that can be operated at higher speed, temperature and longer distance before 

maintenance[3]. Carbon nanotube (CNT), by its virtue of extraordinary mechanical properties, 

thermal stabilities and excellent electrical conductivity [3, 4] was proposed as a promising 
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reinforcement for aluminum matrix composite for both structural and functional applications. 

It is reported that multi-walled carbon nanotube(MWNT) possessed the highest specific 

strength(48000 kN·m/kg) of all materials, exhibiting five times Young’s modules (~1TP) and 

up to one hundred times tensile strength (~150GPa) than the best known steel of the same 

weight [5]. Also, the superb electrical conductivity[6] of carrying an electric current density of 

4 × 10
9
 A/cm

2
, which is 1000 times greater than that of copper, makes CNT an ideal material 

for electrical and signal transmission. Moreover, the excellent chemical[7] and thermal 

stability (stable up to 2527K in vacuum) of CNT contribute to its prospect application in 

extreme conditions 

 

Thus, a number of researchers[8-14] had tried to develop various methods of incorporating 

CNTs into Al matrix to increase specific strength, stiffness, thermal and electrical 

conductivities[15]. Liao and Tan[16] attempted low energy ball milling to disperse 0.5 wt.% 

CNT in Al matrix. After continuously milling the mixture for 4h at a speed of 200 rpm (agate 

ball to powder weight ratio 5:1), micro CNT clusters can still be found among the Al powders. 

These CNT aggregates are resulted from the strong van der Waals force along the long and 

thin tube in which the length-to-diameter ratio of CNT is up to 1.32×10
8 

: 1[17]. Obviously, in 

order to achieve the full potential of reinforcements, CNTs need to be uniformly distributed in 

Al matrix. Otherwise, the existence of agglomerates will lead to lower density, more voids in 

the bulk materials and finally deteriorate the overall properties as the wetting angel between 

CNT and aluminium is very big that CNT agglomerates would impede the diffusion between 

aluminium particles and leave more pores in the bulk composite thus decrease the density. Liu and 
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colleagues[18] utilized high energy ball milling to blend Al-0.5 wt. % CNT at a speed of 300 

rpm (ball to powder weight ratio 8:1) for 8-12h. They did not observe any CNT bundles in the 

matrix but the existing visible individual CNT was seriously shortened or damaged. It is clear 

that the seamless cylinder shape of CNT is vital for keeping its exceptional properties. No 

doubt that losing the structure means losing its strength and stability. Furthermore, the 

morphology of Al particle plays an important role in the dispersion of CNT and densification 

process. For example, the anchoring of CNT on to Al metal powder requires a particle 

morphology with a large surface area according to Jiang’s research[19]. Whereas coarse and 

irregular shape particles have poor compaction and sintering ability which subsequently result 

in severe porosity, low density and weak bonding. 

 

Apparently, it is critical to obtain a homogeneous mixture of CNT and Al with the structure of 

individual constituents intact before the production of bulk CNT reinforced Al composite for 

functional and structural applications [20]. Although high energy mechanical alloying is an 

effective way to disperse CNT in the metallic matrix, the damage of CNT after processing 

limits the overall properties of composite to a certain level. Hence, in the current work, a 

novel approach has been explored to fabricate an Al-0.5 wt. % MWNT composite that can 

preserve the CNT and Al particles in their original state, which is significantly beneficial to 

the subsequent powder compaction, consolidation and overall properties of the composite. 

Scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analysis and 

Raman spectroscopy were utilized to track the micro-structural evolution of CNT and Al 

constituents and validate the uniform distribution and structural retention of CNT in the 
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as-produced composite.  

                                                                            

2. Experimental 

2.1. Materials 

An argon gas atomized, spherical shape aluminum powder, with a size range of up to 10 um 

produced by the Aluminum Powder Company Ltd, Alpoco was selected as the matrix 

constituent in order to increase the surface area to attach more MWNT in the aluminium 

matrix. Multi-walled carbon nanotube (MWNT), 140 ± 30 nm in diameter and 7 ± 2 um in 

length synthesized by chemical vapor deposition (CVD) method, were purchased from 

Materials and Electrochemical Research Corporation (M.E.R. Corporation) as the 

reinforcements in the composite.  

2.2. Materials Processing 

It is critical to employ an appropriate mixing technique to obtain homogeneous dispersion of 

reinforcements in the composite. In the current work, the authors combined ultra-sonication, 

magnetic stirring and shake-mixing to manufacture an Al-0.5 wt. % MWNT composite, in 

which MWNT s are evenly distributed in the aluminum matrix. The detailed fabrication 

procedures are depicted in Fig. 1. Firstly, 0.5 g of MWNT was added into 150 mL of ethanol 

in a 1L glass beaker, which was then put into an ultrasonic bath (James Products Limited, 

model: Sonic 4500). The solution was sonicated for 4 h by a Colour Direct ultrasonic machine 

(model: CD-M06 031) to separate pristine CNT bundles into individual tubes by high 

frequency agitation(power: 180 watt, frequency: 42,000Hz). Meanwhile, 0.5 g of polyvinyl 
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butyral (PVB) was dissolved in 150mL of ethanol and then 99.5 g of Al powders were added 

into the as-produced transparent PVB-ethanol slurry. After magnetic stirred the 

Al-PVB-ethanol mixture for 2 h at a speed of 400 rpm, ideally the surface of Al particles was 

evenly covered by a thin layer of PVB molecules, which reduced the surface tension of Al and 

help to absorb MWNT on Al particles[22].  

 
 

Fig. 1. Schematic illustration of the processing procedures for MWNT/Al composites. 

 

Afterwards, the as-prepared 150 ml PVB coated Al-ethanol suspension was poured into the 

150 ml MWNT-ethanol solution for further magnetic stirring for another 4 h at a speed of 500 

rpm to homogenously disperse MWNTs in Al matrix. In case of any MWNTs agglomerating 

together in the stirring process, the as-produced Al-0.5 wt.% MWNT slurry mixture together 

with 15 of stainless steel ball bearings (diameter: 10 mm, ball to powder ratio: 3:5) was 

transferred into a plastic bottle. A TURBULA Shake-Mixer (Model: T2F) was used to mix 

this mixture for 10 min at a speed of 101 rpm. As the shake-mixing is more powerful than 

simple magnetic stirring but less violent than high energy ball milling, it promotes the 

uniformity of the composite mixture while keeping the MWNT and Al particles in the original 

state. Eventually, the as-blended slurry mixture was dried at 140 °C for 12h and shake-mixed 

for another 10 minutes to break down the powder lumps into uniform composite powders. 

Subsequently, the MWNT/Al composite powders were compacted into cylinders at 475 MPa 

and were sintered at 630°C for 1h in argon atmosphere. 
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2.3. Materials Characterization 

A Philips XL-30 and a JEOL 7000 field emission scanning electron microscope (FESEM) 

were employed to track the size, shape and morphology of Al and MWNT during the 

processing as well as the distribution of MWNT in Al composite. X-ray diffractometer (Inel 

EQUINOX 3000) and Raman spectroscopy (Renishaw inVia confocal Raman microscope) 

were employed to characterize the crystal structure and bonding nature of the constituents 

respectively. The particle size distribution of MWNT reinforced Al matrix was assessed 

HELOS/KR- VIBRI/L particle size analyzer. 

                                                                               

3. Result and discussion 

3.1. Materials 

 

Fig. 2. (a) SEM image of raw MWNT clusters; (b) high magnification SEM image of pristine MWNTs and 

(c). high resolution TEM image of MWNT
1
.  

 

The morphology of pristine multi-walled carbon nanotube is showed in the secondary electron 

images Fig. 2(a) and Fig. 2(b). It can be seen from Fig. 2(a) that the MWNTs are randomly 

woven together to give ball-shaped bundles which have diameters of around 25 um. These 

clusters are the biggest challenges of manufacturing effective MWNT-Al composites that 

many researchers found MWNTs agglomerates[7, 16, 23-25] of different sizes in the metal 

matrix after various of processing including hot extrusion[7], mechanical alloying[11], hot 

                                                             
1
 The TEM image of MWNT is provided by Materials and Electrochemical Research Corporation. 
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pressing[15], plasma spray[26] and hot rolling[23]. The higher magnification image of 

MWNTs is showed in Fig. 2(b). It is obvious that MWNTs were in straight and long tubular 

shape which has fewer tendencies to agglomerate than curved and entangled MWNTs 

according to Esawi and his colleagues research[8]. A high resolution transmission electron 

microscope (HRTEM) image of MWNT showing the multi-layer microstructure is presented 

in Fig. 2(c).  

 

 

Fig. 3. (a) SEM micrograph of raw aluminum powders; (b) SEM micrograph of an individual aluminum 

particle under higher magnification. 

 

Fig. 3(a) and Fig. 3(b) illustrate the size, shape and topography of the pristine aluminum 

powders. It is evident from Fig. 3(a) that the sizes of raw aluminum particles are under 10 um 

and the shapes of these particles are irregular which is good for the anchoring of MWNTs 

onto the Al powder surface. Also it can be seen from Fig. 3(b) that the pristine Al powders 

have smooth surfaces which is beneficial for compaction due to the smoother surface has a 

lower surface friction coefficient that ease the friction between particles as well as the friction 

between particles and die walls. This will consequently lead to the increase of density, reduce 

of porosity and finally improve the overall properties of the composite[27]. 

3.2. Mixtures 

Fig. 4(a) and Fig. 4(b) show the SEM image of the 4h-ultrasonicated MWNT and 

2h-magnetic-stirred Al-0.5 wt. % PVB-0.5 wt. % MWNT mixture respectively. As can be 

seen from Fig. 4(a), after being ultra-sonicated in ethanol for 4h, MWNTs were almost 
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disassembled but due to their own electrical charges MWNT have a strong tendency to 

agglomerate together and some small nodes were formed . The individual MWNT, having no 

distinct structure damage, is significantly beneficial to the following processing with Al 

powders and achieving better properties in the final composite. Some researchers failed to 

disperse MWNT agglomerates in metal matrix because the van der Waals force between the 

long and thin tubes is too strong to be separated. Besides, the mobility of MWNTs in matrix is 

decreased by relatively large Al particles which block the free moving paths of MWNTs and 

became an obstacle to the disassembling and uniform dispersion of MWNT. In contrast, the 

authors of this paper utilized the small aluminium particles which had relatively less 

resistance to the unfastening and unlocking of MWNT bundles. As can be seen in Fig. 4(b), 

some small MWNT clusters were found in Al matrix of the 2h-magnetic-stirred MWNT and 

PVB-coated Al powders. This is because the suspended individual MWNT was bound by the 

PVB in the solution thus the small MWNT agglomerates were formed. To solve this problem, 

further action was taken to unlock and disperse the MWNT bundles. 

 

Fig. 4. (a) SEM image of 4 h-ultrasonicated MWNT; (b) SEM image of 2 h-magnetic stirred Al-0.5 wt.% 

PVB-0.5 wt.% MWNT mixture; (c) SEM image of 4h magnetic stirred Al-0.5 wt.% PVB-0.5 wt.% MWNT 

mixture; (d) SEM image of 30 min-shake-mixed Al-0.5 wt.% PVB-0.5 wt.% MWNT mixture.  

 

Fig. 4(c) and Fig. 4(d) show the 4h-magnetic stirred and further 30min-shake-mixed 

composite powders, separately. As shown in Fig. 4(c), even after 4h magnetic stirring, 

MWNT agglomerates were still remained but in smaller proportion and still visible in the Al 

matrix. This suggests the magnetic stirring is not efficient in completely de-agglomerating the 
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MWNT bundles. To thoroughly resolve the problem of MWNT clusters, the mixture along 

with 15 stainless ball bearings was transferred to a TURBULA shake-mixer for 30min 

blending and the as-blended powders is showed in Fig. 4(d). It is apparent that no MWNT 

agglomerates were found in the Al matrix, which indicates the homogenous distribution of 

MWNTs. Furthermore, the long tubular MWNTs were visibly intact and the smooth surfaces 

of Al particles were retained without any change of the particle size, which is good for the 

following compacting, sintering and good final mechanical properties. 

 

 

Fig. 5. (a) SEM image of dried Al-0.5 wt.% PVB-0.5 wt.% MWNT mixture; (b) SEM micrograph of dried 

Al-0.5 wt.% PVB-0.5 wt.% MWNT mixture under higher magnification; (c) SEM micrograph of the 

as-produced Al-0.5 wt.% MWNT composite powders. 

 

Fig. 5(a) and Fig. 5(b) show the morphology of the dried Al-0.5 wt. % PVB-0.5 wt. % 

MWNT mixture. It is distinctly seen that micro-sized (around 500um in Fig. 5. (a)) aluminum 

powders were agglomerated under the binding impact of PVB and the nature of fine powders. 

The as-blended mixture formed irregular shaped granules(or secondary particles[28]) in Fig. 

5(b) are detrimental to die-filling, compaction and pore-filling process during sintering. To 

solve this problem, the dried composite mixture with 15 stainless steel ball bearings was 

blended again in a dry argon atmosphere on the TURBULAR shake-mixer for 10 min. The 

final as-blended composite powders were displayed in Fig. 5(c). It is clear that MWNTs(as 

indicated by white arrows), of the same shape and length as pristine MWNTs, were 

individually dispersed among undeformed Al powders. This demonstrated that MWNT and Al 

kept their original nature (size, shape and morphology) in the as-produced Al-0.5 wt. % 
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MWNT composite powders. What’s also worth noticing is that no welded Al particles were 

found in the matrix which is a serious a topic for Al powders when high energy ball milling is 

employed. In the authors’ previous work[29], high energy mechanical alloying was used to 

disperse MWNT in pure Al matrix for various time length. The 1h-ball-milled and 

5h-ball-milled Al-1 wt. % MWNT were severely flattened and welded, the particle size 

increased 10 times and the flake shape powders is useless for industries production due to its 

poor flowability, compactability and sintering ability. 

 

 

Fig. 6. Particle size distribution of the pristine aluminum powders and the as-produced Al-0.5 wt. % 

MWNT powders. (a) and (c) are the cumulative distribution and frequency distribution of the raw 

aluminium respectively; (b) and (d) are the cumulative distribution and frequency distribution of the 

as-produced Al-0.5 wt. % MWNT individually. 

 

Fig. 6. presents the particle size data of the pristine Al and the as-produced Al-0.5 wt.% 

MWNT composite powers. In powder metallurgy industry, particle size distribution and mean 

particle size are two critical factors that affect the structure and the final properties of products. 

As can be seen that the size of as-produced composite particles (Fig 6.b) increased as 

compared to the as-supplied Al powders(Fig. 6a). This is due to relative low stiffness and 

strength of pure aluminium powders and the plastic deformation induced by the collision 

impact of ball bearing in the TURBULAR shake-mixer flattened the aluminium particles. The 

binding effect of PVB may also contribute to the increase of particle size.  
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According to F. Thümmler and R. Oberacker[28], when the cumulative distribution of 

powders reaches 50%, the corresponding median particle size Z50 is defined as the particle 

size of the sample. The line graph Figs. 6. (c) and 6. (d) show the cumulative distribution of 

raw aluminium and as-produced Al-0.5 wt.% powders respectively. It is obvious that after 

processing, the median particles size[27] Z50 for as-produced composite powders reached 

15.10um, as compared to that of pristine Aluminum(9.92um).  This proves the fine particle 

size of aluminium is preserved after the processing but slightly shifted to larger size.The 

increase of the particle size is because aluminium particles are very light and soft, under the 

collision of relatively heavier stainless steel ball bearings, the aluminium particles are prone 

to deform. After certain period of milling, the Al particles are deformed and flattened, in 

which the dimension increase is along one direction and this of the other direction is relatively 

reduced. 

 

Fig. 7. XRD spectra of pristine aluminum powder, raw MWNT and as-produced Al-0.5 wt. % MWNT 

powder. 

 

Fig. 7 shows the XRD spectra of pristine aluminum powders, raw MWNT and as-produced 

Al-0.5 wt. % MWNT powder. As can be seen from the XRD spectra (Fig. 7) that multi-walled 

carbon nanotube showed a strong characteristic peak at around 26° while the as-produced 

Al-0.5 wt. % MWNT powders showed a similar XRD peaks to that of the pure Al powder. It 

is worth noticing that no carbon peak was found in the as-produced Al-MWNT composite 

powder which may due to the limited detective range of XRD and the small amount (0.5 
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wt. %) of MWNT in the composite. Also, XRD peaks of aluminium(marked by black 

triangles in Fig. 7) were picked in the pure MWNT group which is due to the low weight of 

carbon atom that X-ray penetrated the MWNT layer and hit the aluminium sample holder thus 

released some diffraction signal of aluminum. 

The grain size of powders was measured by Williamson-Hall equation[30, 31]:  

 

       
 λ

 
                                      (1) 

where K is the shape factor, λ is the wavelength of Cu Kα radiation, β is the full width at half 

maximum (FWHM) , θ is the diffraction angle and ε is the strain. The calculated grain size of 

the raw Al and as-produced composite powder is 1.26um and 1.30um respectively. This 

suggests the grain size did not change significantly which is beneficial for achieving relatively 

high strength and stiffness in the bulk materials.  

3.3. Compacted composite 

The compressiblity of powders is a critical parameter for large scale industrial manufacture. 

Generally, powders with good compressiblity yields products with good density and requires 

less processing after compaction which saves the cost of production as well as shorten the 

manufacture cycle. In the current paper, both raw aluminium and as-produced composite 

powders was cold compacted by a 30 tones hydraulic press. The green density(measured by 

Achimedes method), which is the density of the green compact or preform, and the relative 

density were shown in Table 1. As can be seen from Table 1 that despite the change of mean 

particle size the density of Al-0.5 wt. % composite powders, comparing to that of pristine 
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aluminium powders, did not deteriorate after processing and addition of MWNT. In contrast, 

the green density and relative density of the compacted as-produced composite slightly 

increased due to the lubrication effect of PVB. 

 

Table 1 The density and Raman shift ratio of pure aluminum and MWNT/Al composite 

 

3.4. Sintered composite 

 

Fig. 8. (a) SEM image of MWNTs homogenously dispersed in the sintered Al composite; (b) SEM image 

of individual MWNT in the sintered Al composite under high magnification. 

 

Fig. 8(a) shows the SEM image of MWNTs (marked by white arrows) found in the compacted 

and sintered Al-0.5 wt. % MWNT matrix. As can be seen, MWNTs were evenly distributed in 

the Al matrix after mixing, compaction and even sintering. According to other researchers 

work, if the cylinder structure of CNT is damaged or CNT is deformed into amorphous carbon 

they are vulnerable to react with aluminum forming Al4C3 and subsequently no CNT can be 

observed. Evidently in Fig. 8(a), several MWNTs were uniformly dispersed in the metal 

matrix which proves both the homogeneity and the undamaged, pristine structure of MWNT. 

More direct evidence of the retention of CNT structure after processing is shown in Fig. 8(b) 

in which an individual MWNT, of the same diameter as the pristine MWNTs, was found in 

the sintered Al matrix after grinding and polishing. This proves that MWNT survived the 
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processing. 

 

 

Fig. 9. Raman spectra of the pristine MWNTs and the as-produced Al-0.5 wt. % MWNT composite 

powder.  

 

The Raman spectra of raw MWNTs and as-produced Al-0.5 wt. % MWNT composite 

powders are shown in Fig. 9. Apparently, there are two strong peaks in the spectra namely D 

band and G band. The merge of peak at around 1335 cm
-1

 is due to the vibration of carbon 

atoms with disordered structure (vacancies, dopants, defects or amorphous carbon) which is 

called D band[32], while G band at 1570 cm
-1

 represent the vibration of graphite carbon 

atoms [33]. Hence, the increase of structure damage will lead to the intensity increase of D 

band. From Fig. 9, the Raman spectrum profile of the as-produced Al-0.5 wt. % MWNT 

powders showed almost the same shape as that of the pristine MWNT which proves MWNTs 

preserved the micro tubular structure. Furthermore, the structure change of MWNT can be 

quantitative analyzed with the intensity ratio: ID/IG where ID and IG represent the peak 

intensity of D band and G band respectively. If the defects in MWNT increases, the peak 

intensity of D band will increase, therefore the ID/IG increases. The calculated ID/IG of raw 

aluminium powders is 0.34 while this of the as-produced composite powders is 0.38, which is 

much better than high energy ball milling that increase the ID/IG from 1.17 to 1.30 and 1.61 

after 4h and 8h milling[18] respectively. Raman spectra indicated no additional defects were 

introduced by the processing method based on similar ID/IG ratio before and after mixing 
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which meansthe MWNT structure is preserved after processing as ultra-sonication, magnetic 

stirring and shake-mixing did not introduce direct impact of high energy into MWNT or 

aluminium matrix. The slightly increase of ID/IG may be due to the collision of ball bearings 

in the shake-mixer that moderately damage some MWNTs. Also, the reason for the 

broadening of the Raman peak is due to the attachment of PVB molecules on the surface of 

both MWNT and aluminium particles. The bonds in the PVB especially carbon-carbon bond 

would produce some signals and make some noise for the Raman spectra. In addition, the 

polymerization degree and the length of each PVB molecule is different which leads to the 

difference of scattering level. The detailed enhancing effect of MWNT in the aluminium 

matrix is currently under investigation by the authors.  

3.5. Processing Comparison 

Attracted by CNT’s extraordinary properties, a wide range of techniques were attempted by 

researchers to incorporate different percentage of CNTs into metal matrix. Table 2 lists several 

typical experiments of previous studies as well as the processing results of present author. J.Z. 

Liao et al.[16] tested the low energy ball milling of 0.5 wt. % CNT with Al powders for 4h but 

CNT agglomerates were clearly observed in the Al matrix, which is due to the lack of 

sufficient energy to untie CNT bundles. A. M. K Esawi et al.[23] added 0.5 wt. % CNT into 

aluminium powders and blended by no milling media mixer-shaking at 46rpm and no milling 

media planetary milling at 300 rpm. However, CNT agglomerates were still found in the 

as-produced powders, which is because no milling media was added leading to the absence of 

collision and shear force to impact the CNTs. R. Pérez-Bustamante et al.[12] and Z.Y. Liu et 
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al. [18] both chose high energy ball milling with ball bearings as milling media to disperse 0.5  

wt. % CNT into aluminium matrix for long periods of time(5-30h and 8-12h respectively). 

Although, CNTs were found homogenously distributed in the matrix, the secondary electron 

images in Pérez-Bustamante’s study showed some CNTs were shortened and uncapped while 

Liu calculated and noticed the ID/IG ratio of CNT Rama spectra was increased after ball 

milling which is also an indication of CNT structure damage as explained before.  

 

To thoroughly solve this problem, the present authors combined the advantages of 

ultra-sonication, magnetic stirring and mixer-shaking, using PVB to bind the separated 

MWNT on to aluminum particles and further homogenized by the medium energy striking of 

ball bearing. 0.5 wt. % MWNT was successfully dispersed into fine aluminum powder matrix 

without modifying the structure and morphology of MWNT and aluminum. It is worth 

noticing that T. Kuzumaki et al.[7] stirred 3.0 and 6.0 vol. % in ethanol at 300rpm for 0.5h 

and observed some CNT bundles. This is due to the lack of binder which adhere CNT to 

aluminum surface and reduces the surface tension between CNT and aluminum particle. Thus 

the dispersed CNT tended to agglomerate together once the stirring stopped. In the study of 

J.Z. Liao et al. [16], although binder(PEG) was employed, the CNT agglomerates was not 

dissembled before mixing with PEG and Al, which leading to the attachment of CNT bundles 

instead of individual CNT to aluminum surface. Also, it should be aware that according to J.Z. 

Liao et al.[24]’s another experiment and other researchers’ experience, high loading of CNT 

leaded to the formation of agglomerates and impeded densification process. The uniform 

distribution of high concentration of MWNT into metal matrix is necessary to be explored in 
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the future.  

 

Table 2 Various experiment methods and corresponding results in the present paper and other literature 

 

 

                                                                                            

4. Conclusions 

0.5 wt. % multi-walled carbon nanotubes reinforced Al composite powders were successfully 

fabricated by a novel wet shake-mixing technique without introducing significant deformation 

or defects to the MWNT. SEM analysis showed that, in the as-produced composite powder, 

the Al particles retain its fine size and smooth surface while MWNTs were evenly dispersed in 

the Al powders. Also, the as-produced Al – 0.5wt.% MWNT composite powder kept the same 

compressibility as pure aluminium powders. More importantly, intact individual MWNT is 

observed in the sintered bulk Al – 0.5wt.% MWNT composite and the ID/IG ratio of Raman 

spectra of MWNT kept constant which indicated that MWNT preserved the cylinder structure 

which is essential for the improvement of overall properties of the composite.  
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Figure 1 
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Figure 2 (a) 
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Figure 2 (b) 
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Figure 2 (c) 
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Figure 3 (a) 
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Figure 3 (b) 
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Figure 4 (a) 
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Figure 4 (b) 
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Figure 4 (c) 
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Figure 4 (d) 
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Figure 5 (a) 
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Figure 5 (b) 
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Figure 5 (c) 
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Figure 6 (a) 
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Figure 6 (b) 
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Figure 6 (c) 
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Figure 6 (d) 
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Figure 7 
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Figure 8 (a) 
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Figure 8 (b) 
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Figure 9 
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Table 1 The density of pure aluminum and MWNT/Al composite 

 
Green Density 

(g/cm
3
) 

Theoretical Density  

(g/cm
3
) 

Relative Density 

(g/cm
3
) 

Raw Al 2.31 ± 0.03 2.70 85.62 ± 1.1% 

Al– 0.5 wt.% CNT 2.36 ± 0.05 2.69 87.73 ± 1.9% 
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Table 2 Various experiment methods and corresponding results in the present paper and other literature 

 Matrix 
CNT 

Concentration 
Processing Result 

Authors of this paper Al 0.5 wt. % Wet-shake mixing Intact CNT and 

uniformly dispersion 

T. Kuzumaki et al.[7] Al 3 or 6 vol. % 

(2.1 or 4.3 wt. %) 

Stirred in ethanol 

at 300 rpm for 0.5h 

CNT agglomeration 

and no obvious 

reinforcing effect 

J.Z. Liao et al.[23] Al 0.5, 1.0 and 2.0 

wt. % 

Can rolling High loading of CNT 

formed agglomerates 

and impeded 

densification 

A. M. K. Esawi et al. 

[22] 

Al 0.5, 1.0 and 2.0 

wt. % 

1. No milling 

media 

mixer-shaking at 

46rpm 

CNT agglomeration 

2. No milling 

media planetary 

milling at 300rpm 

CNT agglomeration 

J.Z. Liao et al.[16] Al 0.5 wt. % 1. Low energy ball 

milling for 4h 

CNT agglomeration 

2. PEG assist 

Milling 

CNT agglomeration 

R. Pérez-Bustamante 

et al.[12] 

Al2024 0.5 - 5.0 wt. % High energy ball 

milling for 5, 

10, 20 and 30 h 

CNT damaged 

(shortened and 

uncapped) 

Z.Y. Liu et al. [18] Al 0.5 wt. % Ball milling at 300 

rpm for 8-12h 

ID/IG ratio increased 

(damage of CNT 

structure) 
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H I G H L I G H T S 

 

 Multi-walled carbon nanotube were homogenously dispersed in aluminum  powders. 

 The structure of MWCNT was intact and well preserved even after mixing. 

 The aluminum particles kept original fine size in the as-produced composite powders. 

 Wet shake-mixing technique is an effective method to incorporate CNT to Al matrix. 


