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ABSTRACT 

 

Laminins are key basement membrane molecules that influence several biological activities and are 

linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one , one 

, and one  chain, followed by their assembly into a polymer-like sheet at the basement membrane. 

Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance 

experiments, we studied self-association of three laminin (LM) N-terminal fragments -1 (hLM -

1N), -5 (hLM -5N) and -3 (hLM -3N) originating from the short arms of the human laminin 

 heterotrimer. Corresponding studies of the hLM -1N C49S mutant, equivalent to the larval 

lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association 

behaviour, an observation that provides a plausible explanation for the inability of laminin bearing 

this mutation to fulfil functional roles in vivo, and hence for the deleterious pathological 

consequences of the mutation on lens function. 

 

KEYWORDS: 

Analytical Ultracentrifugation, CD Spectroscopy, Dynamic Light Scattering, Extracellular Matrix, 

Laminin Short Arms, Protein Self-association, Surface Plasmon Resonance 

 

HIGHLIGHTS: 

 Biophysical analysis of N-terminal domains of laminin -1, -5 and -3 to study their self-

association behaviour 

 Enhancement of the self-association by the equivalent of the lethal C56S mutation in 

zebrafish laminin -1. 
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1. Introduction 

 

 Laminins (LM) are highly glycosylated basement membrane proteins built from one , one 

 and one  chain that are linked covalently by disulfide bonds between coiled-coil domains 

(Cooper et al., 1981; Kurkinen et al., 1983; Aumailley, 2013) and assemble into 18 isoforms 

(Durbeej, 2010; Hohenester and Yurchenco, 2013). Each subunit comes in a variety of states; there 

are five isoforms for  (denoted 1 to 5), three different types for  (1 to 3) and three variants 

for  (1 to 3) (Miner and Yurchenco, 2004). A common feature of the three types of laminin 

chains is the presence of an N-terminal short arm containing two globular domains (domains LN 

(formerly VI) and L4a/LF/L4 (formerly IV), followed by a series of laminin-type epidermal growth 

factor-like domains (Aumailley et al., 2005)  as represented schematically in Fig. 1. Exceptions are 

the laminin 4 and a spliced version of laminin 3 (3A) that lack the N-terminal short arm (Miner 

and Yurchenco, 2004). The N-terminal short arms merge into the laminin long arm, a three-stranded 

left-handed coiled coil. The  laminin chain continues in a tandem array of five laminin globular 

(LG) domains after the coil (Colognato and Yurchenco, 2000). Basement membrane assembly 

begins with the polymerization of laminin into a cell-associated network (Yurchenco et al., 2004). A 

key step in this process that is mediated by the N-terminal domains of the three short chains of the 

laminin -heterotrimer has been described as the “three arms interaction model” (Hohenester and 

Yurchenco, 2013). The current work focuses on two truncated forms of the N-terminal region of the 

LM -short arm, designated LM -1N and LM -5N, that comprise the globular LN domain and 

three (-1) or four (-5) LEa domains, and also on a corresponding segment of the LM -short arm, 

(designated LM -3N), that includes the globular LN domain and six LEa domains. Their location 

within the laminin -heterotrimer is indicated in Fig. 1.  

 Interest in LM -1 stems from its involvement in a number of physiological and 

pathological processes (Durbeej, 2010). Ning et al. (2014) demonstrated that the absence of LM -1 

results in increased proliferation of mesangial cells in the kidney and increased TGF-1 mediated 

Smad2 phosphorylation. LM α-1 is required for the development and organization of the cerebellum 

and for the migration of granular cells (Heng et al., 2011; Ichikawa-Tomikawa et al., 2012). An 

ablation of LM -1, which is an essential component of laminin-111 heterotrimer that forms a 

highly specialised and thick extra-embryonic Reichert’s membrane is embryonic lethal (Miner et 
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al., 2004). The subunit also regulates neuronal polarity and directional guidance (Wolman et al., 

2008), and is required for lens development in zebrafish (Zinkevich et al., 2006). A mutation in C56 

to serine of LM -1N in zebrafish leads to defects with the development of lens, cornea, and retina 

resulting in lens degeneration and focal cornea dysplasia  a mutation also causes death of larvae by 

12 days (Semina et al., 2006). This cysteine as well as other cysteine residues are conserved across 

species as signified by sequence alignment (Supplementary Fig. 1).  

 LM -5 influences several biological processes including tissue patterning, organogenesis 

and embryogenesis, and its absence has been linked to limb defects in mouse (Spenle et al., 2013). 

Recently, its role in mouse placental labyrinth development and formation has been demonstrated 

(Kim et al., 2012). It is also crucial for the establishment and maintenance of the glomerular 

filtration barrier in murine kidneys (Miner and Li, 2000; Goldberg et al., 2010), as well as for 

murine lung development (Nguyen et al., 2005). Overexpression of LM -3 in colorectal cancer has 

been linked with chemoresistance of cancer patients (Fukazawa et al., 2015). The E210K mutation 

in LM -3 leads to a junctional epidermolysis bullosa (Mellerio et al., 1998) which was later shown 

to be rescued by supplementing wild-type LM -3 (Robbins et al., 2001). 

 In view of their structure similarities and involvement with other laminin chains in vivo to 

form the laminin -heterotrimer (Fig. 1), some self-association of isolated N-terminal fragments 

of the LM -1 chain might reasonably be expected to occur in the absence of their partners; but on 

this point there is conflicting evidence. The earlier evidence of such self-association obtained from 

surface plasmon resonance studies of murine LM -1N (Odenthal et al., 2004) has been refuted in a 

subsequent size-exclusion chromatography study (Purvis and Hohenester, 2012). Here, we present 

the results of physicochemical studies on the human LM -1N, LM -5N and LM -3N that 

support the earlier finding (Odenthal et al., 2004) by revealing a common tendency of these 

genetically engineered N-terminal regions of short arms to self-associate. The dynamic light 

scattering (DLS), analytical ultracentrifugation (AUC) and surface plasmon resonance (SPR) data 

have also suggested that the extent of self-association is enhanced by incorporating the equivalent 

of the deleterious C56S mutation of zebrafish (Semina et al., 2006), thereby suggesting that 

elimination of the C56C72 disulphide bridge (corresponding to C49C65 in human LM -1N) 

induces a structural change that in turn may prevent proper assembly of laminin heterotrimers 

containing the LM -1 chain and therefore its export.  
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2. Results and Discussion 

 

 As a prelude to our hydrodynamic studies, we checked the size and purity of expressed and 

purified preparations of recombinant N-terminal domains of human laminin short arms, hLM -1N, 

hLM -5N, and hLM -3N (Fig. 1) by SDS-PAGE. We also included a mutant form of the hLM -

1N short arm with serine substituted for cysteine 49 (C49S) in our study because of the deleterious 

effect of the corresponding mutation (C56S) on laminin function in zebrafish (Semina et al., 2006). 

 

2.1. Extent of laminin short arm glycosylation 

 

 We examined the extent of short-arm N-glycosylation by monitoring the effect of PNGase F 

treatment on the molecular mass deduced from SDS-PAGE (Fig. 2). For the native and C49S 

mutant forms of hLM -1N the deglycosylation treatment led to faster migration, a finding 

consistent with the presence of 2 potential sites for glycosidic attachment; and a similar situation 

applies to hLM -5 (5 potential sites). However, from the corresponding studies of the hLM -3N 

variant it would appear that this part of the laminin heterotrimer might not be glycosylated (1 

potential site). Inspection of Table 1 reveals that deglycosylation has decreased the apparent 

molecular masses (M) of the hLM -1N and hLM -5N to values more in keeping with those 

calculated from the amino acid sequences. On the other hand, the general agreement between all 

three estimates of the molecular mass M for the hLM -3N confirms the essential absence of 

glycosidic modification on this polypeptide.  

 Also shown in Table 1 are values of the partial specific volume ( v ) calculated for the 

polypeptide and the glycoprotein  parameters required for molecular mass estimation from 

sedimentation velocity and dynamic light scattering studies. In that regard the value for the 

glycoprotein ( v GP) has been calculated from the expression  

 

   GPCPGPPPGP MvMMvMv /)(        (1) 

 

where MGP refers to the SDS-PAGE estimate of molecular mass for the glycoprotein, and MP to the 

calculated value for the undecorated polypeptide: v P, the polypeptide partial specific volume, has 

been calculated from the amino acid composition by the program SEDNTERP (Laue et al., 1992) 
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and a value of 0.63 mL/g has been assigned to v C, the partial specific volume of the carbohydrate 

decoration. Despite being significant, the extent of glycosylation of the hLM -1N and hLM -5N 

only has a minor influence on partial specific volume (final two columns of Table 1). 

 

2.2. Evidence for secondary structure differences between laminin fragment variants  

 

 Differences in secondary structure between the laminin fragment variants have been 

revealed by circular dichroism (CD) studies. All of the spectra exhibit a distinctive minimum at 206 

nm and a maximum or shoulder at about 196 nm (Fig. 3)  features that signify the existence of -

helical and/or -pleated sheet regions within the three-dimensional protein structures. However, 

there are quantitative differences between the secondary structures of hLM -1N, hLM -5N and 

hLM -3N. In that regard the nearly identical forms of the CD spectra of wild-type hLM -1N and 

its C49S mutant signify that the mutation has not induced a significant change in the secondary 

structure content. 

 

2.3. Reversible self-association of short arm fragments 

 

 Indirect evidence for the self-association of laminin short arm fragments was obtained by 

Odenthal et al. (2004), who employed surface plasmon resonance to demonstrate interaction of 

fragments with immobilized partners on a biosensor chip. However, this finding conflicts with those 

from a subsequent study (Purvis and Hohenester, 2012) in which size exclusion chromatography 

(SEC) was used to investigate the self-association of a species in solution rather than its interaction 

with a chemically modified (immobilized) counterpart. Here we employ two additional procedures, 

dynamic light scattering (DLS) and sedimentation velocity ultracentrifugation, to comment further 

on the macromolecular state of laminin short arm fragments in solution. 

 Although the quantity monitored in DLS is the translational diffusion coefficient (D), the 

Zetasizer software supplied with the Malvern instrument employs the StokesEinstein relationship 

to convert D into the Stokes radius Rh, i.e. the radius of an equivalent hydrodynamic sphere. 

Previous studies have shown that a stable, nonassociating species exhibits a negative concentration 

dependence of Rh (Scott et al., 2011), which accords with positive concentration dependence of the 

diffusion coefficient measured by DLS (Harding and Johnson, 1985). In compliance with the 

minimum requirement for solute homogeneity with respect to molecular size, the volume weighted 
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Stokes radius distributions for laminin fragments in Trischloride buffer, pH 8.5, I 0.17 M (see 

Materials and Methods for composition), were invariably unimodal and symmetrical. However, as 

is evident from Fig. 4, the values of Rh (in nm) deduced from the peaks for many of these 

distributions exhibit a positive dependence upon concentration (c)  the characteristic of a solute 

species undergoing rapid reversible self-association. For example, the DLS results for wild-type 

hLM -1N () conform with the linear relationship Rh = 4.20 ( 0.05) + 0.22 ( 0.08)c (_____), 

which also provides a reasonable description of results for the C49S mutant (). Similarly, a linear 

dependence, Rh = 4.9 ( 0.1) + 0.10 ( 0.05)c, describes the results for hLM -5N () . Although 

the corresponding best-fit description (_ _ _) of the hLM -3N data () would suggest positive 

concentration dependence, no significance can be attached to the slope because the uncertainty ( 1 

SD) therein matches its magnitude. Therefore, these results have been averaged to obtain an 

estimated hydrodynamic radius of 6.2 ( 0.2) nm for the hLM -3N (solid line through the data in 

Fig. 4). 

 Analyses of sedimentation velocity distributions essentially echo the DLS findings in that 

the observation of a progressive shift of the c(s) distributions (Schuck, 1998; Dam and Schuck, 

2004) with increasing hLM -1N concentration (Fig. 5A) also signifies the self-association of this 

fragment under the current conditions (pH 8.5, I 0.17 M): an estimate of 3.27 ( 0.03) for 
o

ws ,20  is 

obtained from the ordinate intercept of an essentially linear concentration dependence of s20,w
(inset 

to Fig. 5A). Combination of this value of 
o

ws ,20  with the corresponding limiting hydrodynamic 

radius )( o

hR  of 4.2 ( 0.05) nm (Fig. 4) in the expression 

 

 )1/(6 ,20,20,20 w

o

w

o

hwA vsRNM          (2) 

 

[where 20,w and 20,w are the viscosity and density, respectively, of water at 20 C; and where NA is 

Avogadro’s number] yields a molecular mass of 56 ( 1) kDa that matches the estimate of 57 kDa 

obtained by SDS-PAGE (Table 1). 

 The quantitative similarity observed between the concentration dependencies of Rh 

distributions for wild-type hLM -1N and the C49S mutant (Fig. 4) does not extend to their 

sedimentation coefficient behaviour (Fig. 5B). Although the mutant hLM -1N also exhibits a 
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positive dependence of s on ci that is commensurate with rapid self-association, the presence of a 

second peak implicates participation of a larger oligomeric state in the association phenomenon. 

Whereas a unimodal reaction boundary (as in Fig. 5A) is the predicted outcome of rapid, reversible 

dimerization, bimodality of the reaction boundary can be encountered with systems exhibiting self-

association beyond dimer (Gilbert, 1959). Indeed, the c(s) profiles presented in Fig. 5B resemble 

those predicted boundary forms. At low concentrations the predicted pattern is a unimodal reaction 

boundary with a sedimentation coefficient approximating that of monomer, the upper-limiting size 

of which is governed by the stoichiometry (n) and strength of self-association. For a two-state self-

association (nA  An) with n greater than 2, the predicted consequence of increasing the solute 

concentration is thus the appearance of a second, partially resolved reaction boundary whose area 

and migration rates both increase with concentration. Although the patterns in Fig. 5B are 

qualitatively consistent with such predicted behaviour, the faster peak could conceivably reflect 

stable dimer formation via a disulfide bridge between the unpaired cysteine residue in monomers of 

the C49S mutant  a possibility seemingly precluded by the essential identity of SDS-PAGE 

profiles under reducing and non-reducing conditions (Supplementary Fig. 2). In either event the 

C56S mutation has introduced a second mode of self-association involving a higher oligomeric 

state. 

 The sedimentation velocity distributions for wild-type hLM -5N resemble qualitatively 

their counterparts for wild-type hLM -1N by being unimodal and exhibiting positive sc 

dependence (Fig. 5C). Combination of the extrapolated value of 3.82 ( 0.05) S for o

ws ,20  with the 

corresponding hydrodynamic radius )( o

hR  of 4.9 ( 0.1 nm) in Eq. (2) yields a monomer molecular 

mass of 74 ( 2) kDa, which is again in reasonable agreement with the SDS-PAGE estimate of 73 

kDa for the glycoprotein. 

 In keeping with the DLS results for hLM -3N (Fig. 2B) the unimodal sedimentation 

velocity distributions for this species (Fig. 5D) exhibit little concentration dependence. However, 

the asymmetry of the profile at the highest protein concentration (0.6 g/L) is a predicted 

characteristic of the reaction boundary for a reversibly associating protein (Gilbert, 1959). 

Qualitative support for the concept that hLM -3N may also undergo self-association (albeit weaker 

than that for the other laminin short arms) comes from the combination of the average value of 3.56 

( 0.12) S for s20,w with the average Stokes radius of 6.0 ( 0.2) nm to obtain a molecular mass 
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estimate of 85 ( 6) kDa  a value much higher than the sequence value of 68 kDa for this 

unglycosylated polypeptide chain (Table 1). Consequently, despite failure to observe the positive 

sc dependence that allowed unequivocal identification of the hLM -1N and hLM -5N as self-

associating systems, we conclude that the hLM -3N may also undergo weak self-association under 

the same buffer conditions (pH 8.5, I 0.17 M). 

 The present hydrodynamic evidence for the self-association of laminin short arm fragments 

needs to be reconciled with an earlier report (Purvis and Hohenester, 2012) that disputed its 

existence  a claim based on the observation that individual short arm fragments (approx. 1 mg/mL) 

eluted as single monomeric peaks in zonal size-exclusion chromatography on Superdex 200. Such 

failure to detect any self-association reflects the insensitivity of zonal size-exclusion 

chromatography because of the progressive dilution and hence oligomer dissociation that occurs 

during passage of the reaction zone down the column (Winzor, 1966; Brumbaugh and Ackers, 

1968). Indeed, no concentration dependence of Rh or s20,w would have been detected in the present 

study at concentrations of 0.1 mg/mL or lower (Figs. 4 and 5)  values likely to be pertinent to the 

elution profiles shown in Fig. 2A of Purvis and Hohenester (2012). A more definitive assessment of 

the self-association characteristics would have been obtained by frontal size-exclusion 

chromatography (Winzor, 2003). 

 

2.4. Comparison of wild-type and mutant hLM -1N self-association by SPR 

 

In these surface plasmon resonance experiments hLM -1N and its C49S mutant were coupled to 

separate NTA-chips via their His tags in order to ensure a uniform orientation of immobilized 

ligand on the biosensor surface. The consequent advantage of uniform ligand orientation is, of 

course, offset by the need for elimination of metal ions from the applied analyte solutions (by the 

inclusion of EDTA) to avoid displacement of immobilized ligand from the sensor chip. In view of 

the demonstrated inhibitory effect of Ca
2+

 removal on the interaction between laminin short arm 

fragments (Odenthal et al., 2004), SPR experiments with hLM -1N attached in random orientation 

to a CM5 chip were also performed to ascertain that qualitatively similar results were obtained in 

the Ca
2+

-containing buffer used for all of the solution studies. 

 The SPR time-courses presented in Figs. 6A and 6B reflect experiments entailing the 

passage of a range of concentrations of laminin short arm fragment over NTA biosensor chips to 
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which the same fragment had been attached. For either laminin short arm fragment (wild-type or 

mutant) the flow of analyte across the biosensor chip leads to a fairly rapid increase in response, and 

a corresponding decrease upon substitution of buffer as the flowing solution. Despite the absence of 

Ca
2+

 ion in these SPR experiments, the traces presented in Fig. 6 attest to rapid and reversible 

interaction of soluble fragment with its immobilized counterpart on the sensor chip. Routine 

analysis of those time-courses in terms of 1:1 stoichiometry (O'Shannessy et al., 1993) yield 

apparent dissociation constants of 200 nM and 74 nM for the uptake of wild-type and mutant 

fragments respectively. Although these values do not refer to the corresponding interaction in 

solution, they do afford a qualitative assessment of relative extents of fragment self-association. 

This observation of a 3-fold stronger interaction for the C49S mutant is clearly in keeping with the 

above sedimentation velocity findings (Fig. 5B). 

 Similar conclusions stem from the corresponding SPR studies with the NTA biosensor chips 

replaced by their CM5 counterparts to allow the inclusion of calcium ion (2 mM) in the buffer 

system. The lower KD of 120 nM for wild-type hLM -1N under these conditions (Fig. 6C) 

signifies enhanced self-association in the presence of metal ion; and it must be noted that the ratio 

of dissociation constants in the presence and absence of Ca
2+

 underestimates the extent of that 

enhancement because of a comparison between a KD for interaction with uniquely orientated 

immobilized ligand in the absence of metal ion and an averaged value obtained in the presence of 

Ca
2+

 for the binding of analyte to immobilized ligand in a random array of orientations. These 

findings are thus consistent with earlier observations that the immobilization of his-tagged short arm 

fragments to NTA-coupled microspheres for xMAP–Luminex binding assays in the presence of 

Ca
2+

 consistently lead to the return of smaller dissociation constants than those obtained by SPR on 

CM5 sensor chips [see Table II of Odenthal et al. (2004)].  

 In keeping with the SPR results obtained for the hLM -1N mutant in the absence of metal 

ion, the studies on the CM5 chip have signified tighter interaction between this analyte and its 

immobilized counterpart in the presence of Ca
2+

 (Fig, 6D). Indeed, the four-fold enhancement of 

interaction (KD = 30 nM cf 120 nM) for the mutant is very similar to the three-fold effect (74 nM cf 

180 nM) seen in the metal-free environment. Although such quantitative interpretation of the 

relative KD values must be qualified by statistical considerations (see the legend to Fig. 6 for 
2
 

values), the results presented in Fig. 6 suffice to provide additional qualitative support for the 
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concept of laminin short arm self-association in the absence of components from the other short 

arms that comprise the  heterotrimer. 

 

3. Summary 

 

Laminin -, - and γ- chains form a heterotrimeric molecule inside the cell, which is then secreted 

outside. The laminin N-terminal domains (LN) of -, - and γ- chains are key components required 

for further interactions of laminin heterotrimers (McKee et al., 2007). The laminin heterotrimer 

assembly begins with non-covalent but specific interactions between the C-terminal long arm of - 

and γ- chains (Beck et al., 1993; Macdonald et al., 2010) followed by the formation of disulphide 

bridges that stabilize the assembly between these two chains (Hunter et al., 1992; Antonsson et al., 

1995; Kumagai et al., 1997). The LM  chain then interacts with the complex of LM  and γ chain 

that is essential for the secretion of γ heterotrimers (Kumagai et al., 1997; Yurchenco et al., 

1997). 

 Our study reveals hydrodynamic evidence for the self-association of three laminin fragments 

(hLM -1N, hLM -5N and hLM -3N) of the laminin αβγ heterotrimer short arms. Bioinformatics 

prediction suggests that the N-terminal region of hLM -3N has a single glycosylation site, 

compared to hLM -1N and hLM -5N chains, however we observe no significant difference 

between PNGaseF digested -3N and undigested -3N. Although the glycosylation for hLM -1N 

and hLM -5N is confirmed by the PNGaseF digestion (Fig. 2), this difference in extent of post-

translational glycan attachment does not seem to play any significant role in self-association of 

these N-terminal fragments in that hLM -3N also undergoes weak self-association (Fig. 5D). In 

similar vein the LEa domains do not seem to play a significant role in the self-association process in 

that hLM -3N (with 6 LEa domains), hLM -1N (3 LEa domains), and hLM -5N (4 LEa 

domains all undergo reversible self-association (Figs. 5A, C, D). Such self-association, first 

detected by SPR studies on murine LM -1N (Odenthal et al., 2004), should not be construed as 

evidence for the biological significance of this phenomenon, but rather as a consequence of the 

presence on the monomer surface of amino acid residues with potential for noncovalent interaction 

with similarly disposed residues on the surface of other monomers. In the current experiments on 

isolated short arm fragments this additional noncovalent interaction necessarily involves self-

association, but in the biological context it would entail heterologous association involving ,  and 
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 chains involved in heterogeneous association with similarly disposed regions on the other chains 

comprising the  heterotrimer  the feature responsible for their functional roles in the assembly 

of laminin, its incorporation into the basic membrane structure, and the provision of matrix sites for 

the attachment of extracellular ligands. In that regard the extended self-association to higher order 

oligomers that was observed for the C49S mutant of hLM -1N signifies structural changes 

resulting from disruption of the C49-C65 disulphide bridge that may well be related to the inability 

of laminin bearing the corresponding mutation (C56S) to fulfil those functional roles in zebrafish, 

and hence to the deleterious pathological consequences of the mutation on lens function (Semina et 

al., 2006; Pathania et al., 2014). 

 Apart form stabilizing the interactions between LM  and γ chains, the disulphide bonds are 

also crucial to maintain the tertiary structure of the globular LN domains located at the N-terminus 

of individual chains. Therefore, the deleterious pathological consequences in zebrafish may, of 

course, also reflect the disruption of a disulphide bridge that is important for the tertiary structure of 

LN domain. Because there is currently no high-resolution information available for the hLM -1N, 

homology models calculated with Phyre2 (Kelley and Sternberg, 2009), HHpred (Soding et al., 

2005) and M4T (Fernandez-Fuentes et al., 2007) servers and template pdb files - 4AQS (Carafoli et 

al., 2012), 4PLO (Xu et al., 2014), 3ZYJ (Seiradake et al., 2011), and 2Y38 (Hussain et al., 2011), 

have been used to reveal that the cysteine residue in question (C49) is involved in one of three 

disulphide bridges in the LN domain. Fig. 7 presents that homology model for hLM -1N (Phyre2 

program) displaying two disulphide bridges in blue as well as the third one between C49 (red) and 

C65 (magenta). Mutation of C49 to S49 not only disrupts the bridge between C49 and C65 but may 

also introduce structural changes that alter the distribution of hydrophobic groups on the monomer 

surface, and lead to enhance hydrophobic self-association to potential for interaction between 

adjacent hLM -1N monomers. The mutation-induced enhancement of hLM -1 self-association is 

therefore regarded as an indicator of the change in monomer tertiary structure that may inhibit its 

incorporation into the laminin  heterotrimer. The embryonic lethality due to mutations in LM , 

 and γ chains has been previously reported (Huang et al., 2003; Miner and Yurchenco, 2004; Kao 

et al., 2006). Since laminin 111 is the first laminin heterotrimer found during embryogenic 

development and a key component for the basement membrane assembly that affects a number of 

cellular signalling pathways, it is not surprising that mutations such as LM -1 C49S (C56S in 
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zebrafish) affecting laminin 111 functions lead to embryogenic lethality. However, it is still open 

whether laminin 111 bearing the C49S mutation exhibit an altered secretion due to inability to form 

this laminin heterotrimer or whether it inhibits proper laminin assembly into a polymer-like sheet. 
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4. Materials and Methods 

 

4.1. Expression and purification of N-terminal fragments of recombinant human laminin short arms 

 

 The corresponding coding sequences of the human laminin N-terminal domains of -1, -5 

and -3 chains, LM -1N (wild-type and C49S mutant), LM -5N and LM -3N were amplified by 

PCR from different human cDNAs. The following primers were used: human LM -1 forward 5’-

aaagctagccggcagagaggcctgtttcctg-3’ and reverse 5’-tttggatccttaggagacacaggtcgggt-3’; human LM 

-5 forward 5’-aaagctagcacgggaggaggcgggcggcggct-3’ and reverse 5’-

tttggatccgggctggcagccggggccgtaga-3’; human LM -3 forward 5’-

acagctagcacaacaagcctgctcccgtggg-3’ and reverse 5’-tttagatctggctcggcatcctgtggccacg-3’. The C49S 

mutation was introduced into the LM -1 coding sequence by overlap PCR. Each construct was 

cloned into a modified pCEP-Pu expression vector carrying a 5’-BM40 signal and a C-terminal 

double strep II tag. The sequenced plasmid were transfected into HEK 293 cells and all four laminin 

N-terminal fragments were then purified from the collected cell culture supernatants by affinity 

chromatography on a Strep-Tactin Sepharose column (IBA, Germany) using 2.5 mM desthiobiotin 

in 40 mM Tris/HCl (pH 8.0) supplemented with 150 mM NaCl as eluent. After evaluating the purity 

of each laminin fragment by SDS-PAGE in Tricine buffer (Schägger, 2006), the purified 

preparations of hLM -1N (wild-type and C49S mutant), hLM -5N and hLM -3N were dialyzed 

against the Trischloride buffer described below. PNGase F was purchased from New England 

BioLabs Inc. and digestions were performed according to the manufacturer’s instructions. 

 

4.2. Buffer for hydrodynamic measurements on N-terminal fragments of human laminin short arms 

 

 All physicochemical characterization of laminin fragments was carried out in 20 mM 

Tris/HCl buffer supplemented with 150 mM NaCl and 5 mM CaCl2: the ionic strength of this 

buffer, pH 8.5 at 20C, is 0.17 M. 

 

4.3. Dynamic light scattering 

  

 Dynamic light scattering profiles for LM -1N (wild-type and C49S mutant), LM -5N and 

LM -3N in the Trischloride buffer were measured by means of the Zetasizer Nano S system 
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(Malvern Instruments Ltd., Malvern, UK) equipped with a 4 mW laser ( = 633 nm) as described 

previously (Patel et al., 2011; Patel et al., 2014). A stock solution of each laminin fragment was 

subjected to centrifugal filtration through a 0.1 m filter before dilution to yield a series of solutions 

with concentrations in the 0.23.5 g/L range. These solutions were allowed to equilibrate for 4 

minutes at 20C prior to DLS measurements at the same temperature. Multiple records of the DLS 

profile at each protein concentration were analyzed by means of the DTS software supplied by the 

manufacturer (Version 5.10.2, Malvern Instruments Ltd., Malvern, UK). 

 

4.4. Circular dichroism 

 

 The secondary structures of all four variants (LM -1N - wild-type and C49S mutant, LM 

-5N and LM -3N) were examined by circular dichroism spectroscopy using a J-810 

spectropolarimeter (Jasco, Japan). 50-L aliquots of either protein solution (1.11.3 g/L) or 

Trischloride buffer were loaded into a 0.1 mm demountable cell with open top (Starna Cells, Inc., 

Atascadero, CA). Each wavelength scan (including baseline) in 1-nm steps from 190 to 260 nm was 

measured in triplicate to obtain an average measurement as well as its standard deviation at each 

wavelength. Each wavelength point was measured for 16 s using a bandwidth of 1 nm. The mean 

residue ellipticity was calculated per peptide bond as []mrw = /(Cln) where  is the measured 

ellipticity in millidegrees, C the molar concentration, l the optical path length (in nm) of the cuvette, 

and n the number of peptide bonds in the sample. Protein concentrations were determined 

spectrophotometrically at 280 nm on the basis of the average of three independent measurements 

from undiluted samples in a Nanodrop 2000c instrument (Thermo Scientific, Wilmington, DE). 

Molar extinction coefficients were calculated from the amino acid sequence of each fragment by 

means of the ExPASy ProtParam tool (Gasteiger E. et al., 2005). 

 

4.5. Sedimentation velocity 

 

 Sedimentation velocity experiments were performed in an Optima XL-I analytical 

ultracentrifuge (BeckmanCoulter, Palo Alto, CA) fitted with the An60-Ti rotor. Standard 12-mm 

double-sector cells were loaded with 380 L of laminin fragment solution (0.50.6 g/L) and 400 L 

of Trischloride buffer in the sample and reference channels respectively. Solutions were subjected 

to centrifugation at 35,000 rpm and 20C, and solute distributions were recorded at 14-minute 
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intervals by means of the absorption optical system set 280 nm. Those distributions were analyzed 

by the SEDFIT program (Schuck, 1998; Dam and Schuck, 2004) to obtain the weight-average 

sedimentation coefficient, s20,b, which was then corrected to standard solvent conditions (s20,w) by 

means of the SEDNTERP program (Laue et al., 1992) and the partial specific volumes reported in 

Table 1: the SEDNTERP program was also used to calculate the buffer viscosity (0.01022 poise) 

required for that correction to standard conditions.  

 

4.6. Surface Plasmon Resonance 

 

 The first set of SPR experiments were performed at 25°C using a Biacore 2000 instrument 

(GE Healthcare). The recombinant proteins hLM -1N wild-type and hLM -1N C49S, carrying a 

his-tag were coupled with the surface of a NTA-Chip (Kimple et al., 2010). For measurement of 

protein self-interaction, hLM -1N wild-type and -1N C49S respectively without tag were passed 

over the chip as soluble analytes in serial dilutions (1-0.125 µM) in running buffer (10 mM Hepes 

pH 7.4, 150 mM NaCl, 50 µM EDTA, 0.005% P20). The experiments were performed at a constant 

flow rate of 30 µL/min with an association time of 300 s and a dissociation time of 500s. Fitting of 

the data and calculation of the ka, kd and KD value were performed with the BIAevaluation 4.0 

software using the 1:1 Langmuir binding model. An identically treated flow cell without coupled 

protein was used as a blank. Analogous experiments were performed with hLM -1N and its C49S 

mutant immobilized in random orientation on the traditional CM5 biosensor chip to examine the 

analyteimmobilized ligand interaction in buffer with the 50 M EDTA replaced by 2 mM CaCl2. 
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Figure Legends 

 

Fig. 1. Schematic representation of the human  heterotrimer showing the location of the three 

short-arm segments (LM -1N, LM -5N and LM -3N) being investigated. 

 

Fig. 2. SDS-PAGE in tricine buffer (A) SDS-PAGE analysis of purified proteins indicating their 

purity and (B) Deglycosylation study of LM -1N, LM -1N C49S, LM -5N and LM -3N by 

PNGase F digestion. For each laminin fragment, the gel on the left refers to untreated protein (C), 

and that on the right to a sample subjected to deglycosylation by PNGase F (E).   

 

Fig. 3.  CD spectra for 1.2 g/L hLM -1N (), 1.1 g/L hLM -1N C49S mutant (), 1.3 g/L hLM 

-5N (), and 1.1 g/L hLM -3N () in Trischloride buffer (pH 8.5, I 0.17 M). Vertical lines 

denote the standard deviations of three independent measurements. The figure was generated using 

the program R (R Development Core Team, 2011). 

 

Fig. 4. Concentration dependence of hydrodynamic radii determined by dynamic light scattering 

measurements on solutions of hLM -1 N () and its C49S mutant (), hLM -3N () and hLM 

-5N () in Trischloride buffer (pH 8.5, I 0.17 M). 

  

Fig. 5. Analytical ultracentrifugation studies of laminin short arm fragments. (A) SEDFIT analysis 

(Schuck, 1998; Dam and Schuck, 2004) of sedimentation velocity distributions for different 

concentrations of (A) hLM -1N and (B) its C49S mutant in Trischloride buffer (pH 8.5, I 0.17 

M): 
_____

, 0.6 g/L; .., 0.3 g/L;   , 0.15 g/L. Inset: concentration dependence of the derived 

sedimentation coefficient for hLM -1N. (C) SEDFIT analysis of sedimentation velocity 

distributions for 0.6 g/L (_____), 0.3 g/L (..), and 0.15 g/L (  ) solutions of hLM -5N in 

Trischloride buffer (pH 8.5, I 0.17 M), together with the concentration dependence of the derived 

sedimentation coefficients (inset). (D) SEDFIT analysis of sedimentation velocity distributions for 

0.6 g/L (_____), 0.3 g/L(..), and 0.15 g/L (  ) solutions of hLM -3N in Trischloride buffer 

(pH 8.5, I 0.17 M), together with the concentration dependence of the derived sedimentation 

coefficients (inset). 
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Fig. 6. Evidence obtained by SPR studies supporting the concept of hLM α-1N and α-1N C49S self-

association. (A) Sensorgrams showing the adsorption and desorption stages of hLM α-1N wild-type 

interaction with its immobilized counterpart in the absence of Ca
2+

: ka = 1.8  10
4
 M

1
s
1

; kd = 3.6  

10
3

 s
1

 [
2
 = 0.49]. (B) Corresponding profiles for hLM α-1N C49S with its immobilized 

counterpart under the same conditions: ka = 2.3  10
4
 M

1
s
1

; kd = 1.7  10
3

 s
1

 [
2
 = 0.65]. (C) 

Sensorgrams for hLM α-1N wild-type in the presence of 2 mM Ca
2+

: ka = 1.1   10
4
 M

1
s
1

; kd = 1.3 

 10
3

 s
1

 [
2
 = 0.14]. (D) Corresponding patterns for the hLM α-1N C49S mutant under the same 

conditions: ka = 1.6  10
4
 M

1
s
1

; kd = 4.8  10
4

 s
1

 [
2
 = 0.81]. 

 

Fig. 7. Homology model of hLM -1 N-terminal globular domain calculated using Phyre2 (Kelley 

and Sternberg, 2009) server and templates pdb files - 4AQS, 4AQT (Carafoli et al., 2012), 4PLO 

(Xu et al., 2014), 3ZYJ (Seiradake et al., 2011), and 2Y38 (Hussain et al., 2011). Blue sticks 

identify two of the disulphide bridges, whereas the third bridge, between C49 (corresponding to 

C56 in zebrafish) and C65 (corresponding to C72 in zebrafish), is identified by highlighting the 

respective residues in red and magenta. 
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Table 1  

Effect of deglycosylation on the molecular mass of laminin fragments. 

Species Molecular mass (kDa) Partial specific volume (mL/g) 

Polypeptide*   Untreated
†
 Deglycosylated N-Glycan sites

#
 Polypeptide* Glycoprotein

‡
 

hLM -1N 55.2 57 52 2 0.718 0.715 

hLM -1N C49S 55.2 57 52 2 0.718 0.715 

hLM -5N 61.6 73 61 5 0.712 0.709 

hLM -3N 67.5 69 69 1 0.708 - 

 

* Value calculated from the amino acid sequence  

†
 SDS-PAGE estimate 

#
 from NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) 

‡
 Calculated from Eq. (1) 

http://www.cbs.dtu.dk/services/NetNGlyc/
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