
 
 

University of Birmingham

Spatial, seasonal trends and transboundary
transport of PM2.5 inorganic ions in the Veneto
region (Northeastern Italy)
Masiol, Mauro; Benetello, Francesca; Harrison, Roy M.; Formenton, Gianni; De Gaspari,
Francesco; Pavoni, Bruno
DOI:
10.1016/j.atmosenv.2015.06.044

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Masiol, M, Benetello, F, Harrison, RM, Formenton, G, De Gaspari, F & Pavoni, B 2015, 'Spatial, seasonal trends
and transboundary transport of PM

2.5
 inorganic ions in the Veneto region (Northeastern Italy)', Atmospheric

Environment, vol. 117, pp. 19-31. https://doi.org/10.1016/j.atmosenv.2015.06.044

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
After an embargo period this document is subject to the terms of a Creative Commons Attribution Non-Commercial No Derivatives license

Checked October 2015

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Apr. 2024

https://doi.org/10.1016/j.atmosenv.2015.06.044
https://doi.org/10.1016/j.atmosenv.2015.06.044
https://birmingham.elsevierpure.com/en/publications/37d6845b-8c39-4305-9b08-9bce16e37675


Accepted Manuscript

Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the
Veneto region (Northeastern Italy)

Mauro Masiol, Francesca Benetello, Roy M. Harrison, Gianni Formenton, Francesco
De Gaspari, Bruno Pavoni

PII: S1352-2310(15)30186-2

DOI: 10.1016/j.atmosenv.2015.06.044

Reference: AEA 13922

To appear in: Atmospheric Environment

Received Date: 7 January 2015

Revised Date: 16 May 2015

Accepted Date: 25 June 2015

Please cite this article as: Masiol, M., Benetello, F., Harrison, R.M., Formenton, G., De Gaspari, F.,
Pavoni, B., Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto
region (Northeastern Italy), Atmospheric Environment (2015), doi: 10.1016/j.atmosenv.2015.06.044.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.atmosenv.2015.06.044


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1 

 

 1 

 2 

 3 

SPATIAL, SEASONAL TRENDS AND 4 

TRANSBOUNDARY TRANSPORT OF PM2.5 5 

INORGANIC IONS IN TH E VENETO 6 

REGION (NORTHEASTERN ITALY)  7 

 8 

Mauro Masiola∗∗∗∗, Francesca Benetellob  9 

Roy M. Harrisona†, Gianni Formentonc  10 

Francesco De Gasparic, Bruno Pavonib 11 

 12 

 13 

aDivision of Environmental Health and Risk Management 14 

School of Geography, Earth and Environmental Sciences 15 

University of Birmingham 16 

Edgbaston, Birmingham B15 2TT 17 

United Kingdom 18 

 19 

bDipartimento di Scienze Ambientali 20 

Informatica e Statistica, Università Ca’ Foscari Venezia 21 

Dorsoduro 2137, 30123 Venezia, Italy 22 

 23 

cDipartimento Provinciale di Padova 24 

Agenzia Regionale per la Prevenzione e Protezione Ambientale 25 

del Veneto (ARPAV), Via Ospedale 22, 35121 Padova, Italy 26 

 27 

 28 

 29 

  30 

                                                           
∗ To whom correspondence should be addressed.  Email: m.masiol@bham.ac.uk 
 
† Also at: Department of Environmental Sciences / Center of Excellence in Environmental Studies, King 
Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

2 

 

ABSTRACT 31 

The Veneto Region lies in the eastern part of the Po Valley (Italy). This is one of the hotspots 32 

in Europe for air quality, where efforts to meet the European standard for PM2.5 according to 33 

current and future legislation have been generally unsuccessful. Recent data indicating that 34 

ammonium, nitrate and sulphate account for about one third of total PM2.5 mass show that 35 

secondary inorganic aerosol (SIA) plays a key role in the exceedence of the standards. A 36 

sampling campaign for PM2.5 was carried out simultaneously in six major cities (2012-2013). 37 

The water soluble inorganic  ions were quantified and data processed to: (1) investigate the 38 

seasonal trends and the spatial variations of the ionic component of aerosol; (2) identify 39 

chemical characteristics at the regional-scale and (3) assess the potential effects of long-range 40 

transport using back-trajectory cluster analysis and concentration-weighted trajectory (CWT) 41 

models. Results indicated that PM2.5 and SIA ions have an increasing gradient in 42 

concentrations from North (mountain) to South (lowland) and from East (coastal) to West 43 

(more continental), whereas K+ and Ca2+ levels are quite uniformly distributed. Similar 44 

seasonal trends in PM2.5 and ions are seen across the region. Simultaneous daily changes 45 

were observed and interpreted as a consequence of similar emission sources, secondary 46 

pollutant generation and accumulation/removal processes. Sulphate and nitrate were not 47 

directly related to the concentrations of their precursor gases and were generally largely, but 48 

not completely, neutralised by ammonium. The clustering of back-trajectories and CWT 49 

demonstrate that the long-range movement of the air masses has a major impact upon PM2.5 50 

and ion concentrations: an area spreading from Eastern to Central Europe was identified as a 51 

main potential source for most ions. The valley sites are also heavily influenced by local 52 

emissions in  slow moving northerly air masses.  Finally, two episodes of high nitrate levels 53 

were investigated to explain why some sites are experiencing much higher concentrations 54 

than others. This study identifies some key features in the generation of SIA in the Po Valley, 55 
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demonstrating that SIA generation is a regional pollution phenomenon and mitigation 56 

policies are required at regional, national and even European scales. 57 

 58 

Keywords: PM2.5, Ionic composition, Secondary inorganic aerosol, Long-range transport, Po 59 

Valley  60 
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1.  INTRODUCTION  61 

Although most elements of the periodic table and many thousands of different organic 62 

compounds are found in airborne particulate matter (PM), a few major components usually 63 

make up a large percentage of the total mass. Ammonium (NH4
+), nitrate (NO3

–) and sulphate 64 

(SO4
2–) are among the major components of aerosol in the lower troposphere and their 65 

average mass percentages in fine PM (aerodynamic diameter less than 2.5 µm, PM2.5) 66 

account for ~7%, ~9% and ~15%, respectively  in southern Europe (Putaud et al., 2010). 67 

These ions can be directly emitted from various sources, including sea salt, mineral dust, 68 

traffic, biomass combustion, industries and other anthropogenic processes. However, the 69 

dominant mechanisms for their presence in the particulate-phase are the oxidation of 70 

precursor gases, i.e. nitrogen oxides (NO+NO2=NOx) and sulfur dioxide (SO2), to nitric 71 

(HNO3) and sulfuric (H2SO4) acids, respectively. The subsequent neutralisation with 72 

ammonia (NH3) forms salts such as ammonium nitrate (NH4NO3), ammonium sulphate 73 

((NH4)2SO4) and ammonium bisulphate ((NH4)HSO4) (Seinfeld and Pandis, 2006; Holmes, 74 

2007; Benson et al., 2011). These salts are commonly referred to as secondary inorganic 75 

aerosol (SIA). 76 

 77 

PM2.5 has clearly demonstrated adverse effects upon human health (WHO, 2006), and 78 

reducing human exposure to PM is, therefore, of primary importance. In particular, it is a key 79 

objective in the few hot-spots left in Europe, such as the Po Valley, where the current 80 

standards for PM are not met. Several large cities (e.g., Milan, Turin, Bologna, Verona and 81 

Venice-Mestre) and a myriad of minor urban agglomerations, industrial areas, agricultural 82 

and rural environments are spread over a ~48·103 km2-wide alluvial lowland. A total of ~16 83 

million inhabitants and the related road traffic and energy production cause heavy 84 

anthropogenic emissions across the entire valley. In addition, enclosure by the Alps and 85 
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Apennine mountains surrounding the valley from the North, West and South (only the eastern 86 

side is opened to the Adriatic Sea) forms a barrier for the dispersion of pollutants and has a 87 

negative impact on air quality, with a buildup of PM and nitrogen oxides mainly during the 88 

cold season. Sampling at a rural site in the south-eastern Po Valley (San Pietro Capofiume), 89 

Decesari et al. (2014) found that sulphate and nitrate contributed appreciably to particulate 90 

matter mass. Their analysis of the association of particulate matter concentrations with 91 

meteorological factors revealed a complex interplay of local and long-range transport 92 

influences. 93 

 94 

The European Directive 2008/50/EC imposed a PM2.5 annual average concentration of 25 µg 95 

m–3 as a target value to be achieved by 2010. As the target value will become the European 96 

limit value to be met by 2015, this standard has to be achieved with the current and future 97 

legislation. However this concentration is not met in many locations of Veneto Region, 98 

Eastern Po Valley (EEA, 2013): in 2012, eight of the 14 sites included in the main monitoring 99 

plan for PM2.5 of the local environmental protection agency (ARPAV) breached the target 100 

value (ARPAV, 2013). These sites are located in a number of major cities of the region and 101 

generally the PM2.5 concentrations were 3−7 µg m−3 above the target value. In addition, PM2.5 102 

levels exceeding the target value were also recorded in rural environments demonstrating that 103 

even the background pollution is high.  104 

 105 

Almost all the literature available for the SIA pollution in the Veneto is based on studies 106 

carried out in the Municipality of Venice (Squizzato et al., 2012;2013; Masiol et al., 2014a). 107 

Results have shown that about 25−35% of the total PM2.5 mass in Venice-Mestre is made up 108 

of SIA, which is therefore a key component when the target values in the eastern Po Valley 109 

are exceeded. Consequently, successful policies should include not only the reduction of 110 
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direct (primary) sources, but also the reduction of precursor gases to prevent the formation of 111 

secondary particles (de Leeuw, 2002; Andreani-Aksoyoglu et al., 2004; Wu et al., 2008).  112 

 113 

However, data collected in a single coastal city, Venice, are not sufficient to depict the key 114 

characteristics of SIA pollution across the Veneto, the territory of which extends from Alpine 115 

environments to foothills to flat plain areas in the North-South axis and extends from 116 

continental to coastal environments in the West-East axis.  117 

 118 

In view of this, the present study investigates the levels, spatial distribution and sources of 119 

SIA in six major cities of Veneto, which have been carefully selected to be representative of 120 

different environments of the region. The investigated territory extends to ~125 km on the 121 

North-South axis and ~60 km from West to Est. The inorganic ionic composition of PM2.5 122 

was quantified at six sites located in major cities for one year (2012−2013). The seasonal and 123 

spatial variations were examined using a series of statistical tests and chemometric 124 

approaches. Starting from the experimental data, the SIA formation at a regional-scale in 125 

Veneto is described and the potential local and external sources are investigated. This study 126 

has identified some key features that can improve the understanding of the generation of 127 

secondary inorganic particles in the entire Po Valley. 128 

 129 

2.  MATERIALS AND METHODS 130 

2.1  Site Selection 131 

A multiple-site PM2.5 sampling campaign was carried out according to the EN 14907:2005 132 

standard from April 2012 to March 2013 in 6 major cities: Belluno (BL), Conegliano (TV), 133 

Vicenza (VI), Venice-Mestre (VE), Padua (PD) and Rovigo (RO) (Figure 1a). Stations 134 

managed by ARPAV, were placed in high density residential areas and can be considered as 135 
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representative of city-wide background levels. In Table 1 some site characteristics are 136 

summarised. Since the Veneto region includes a northern Alpine zone (29% of the territory), 137 

an intermediate hilly one (15%), a wide southern flat lowland (56%) and an eastern coastline 138 

(95 km long), the cities were also selected to represent most of the differing environments 139 

and features of the territory. BL (36,600 inhabitants) is located in an Alpine valley 140 

surrounded by mountains, with no large industries or heavy traffic, but biomass burning 141 

emissions are intense in winter, as wood is largely used for domestic heating. TV (35,700 142 

inhabitants) is in a foothill region and is therefore representative of the transition between the 143 

mountain and lowland; many factories process stainless steel, produce appliances and 144 

electrical equipment, but a large part of the land is used for agriculture, especially for 145 

vineyards. VI (115,900 inhabitants) is an important city with intense traffic and small to 146 

medium-sized mechanical, textile, tanning and jewelry manufactures. VE (271,000 147 

inhabitants) is a conurbation extending from the coastal lagoon of Venice to the mainland 148 

with a complex emission scenario. This includes heavy road, maritime and airport traffic, an 149 

industrial zone hosting chemical and steel plants, an oil-refinery, incineration facilities, 150 

thermoelectric power plants and others. PD (214,200 inhabitants) is the most densely 151 

populated municipality of the region, with many medium-sized factories mainly in the 152 

engineering, technological and building sectors, but it also suffers from intense traffic due to 153 

the presence of a large intermodal and logistics hub. RO (52,800 inhabitants) is located in a 154 

flat lowland midway between the Alps and the Apennines and is the biggest processing center 155 

of Veneto for agricultural products. Demographic data refer to 2011 and to the whole 156 

municipalities. 157 

 158 

 159 

 160 
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2.2  Experimental 161 

PM was collected on quartz fiber filters (Whatman QMA), starting at midnight for 24 h 162 

continuously using low-volume samplers installed in air conditioned cabins (temperature 163 

<20°C). PM2.5 masses were gravimetrically determined (sensitivity 0.1 µg) after 164 

preconditioning at constant temperature (20±1 °C) and relative humidity (50±5%). Sampled 165 

filters were stored in clean Petri slides in the dark and at −20 °C until analyses to prevent 166 

losses, photochemical reactions and biological processes. The entire set of collected samples 167 

covers most of the year (total 2190). The quantification of the water soluble inorganic ions 168 

was limited to a subset of 60 samples per site (total 360) collected in 6 periods of 10 169 

consecutive days in the middle of April, June, August, October, December and February. 170 

Periods were chosen to be representative of all the seasons and include the dates when home 171 

heating was switched off (15 April) and on (15 October) as established by the national 172 

legislation. A ~2 cm2-wide subsample of each filter was extracted in vials with 10 mL MilliQ 173 

water (resistivity= 18.2 MΩ·cm at 25°C, Millipore) and sonicated for 50 min. Vials were 174 

capped to avoid artifacts and sample evaporation. Extracts were pre-filtered on microporous 175 

(0.45 µm) PTFE membranes and injected in two Metrohm (Switzerland) ion chromatographic 176 

systems with conductivity detectors to quantify the concentrations of five anions (F−, Cl−, 177 

NO3
−, PO4

3−, SO4
2−) and five cations (Na+, NH4

+, K+, Mg2+, Ca2+). Anions were separated on 178 

a Metrosep A Supp 7–250/4.0 column applying a isocratic flow (0.8 mL min–1) of 360 mM 179 

Na2CO3 (Sigma-Aldrich, ACS ≥99.8%) eluent. Cations were determined using a Metrosep C 180 

3–150/4.0 column and a 1 mL min–1 isocratic flow of 3 mM ultrapure HNO3 (Fluka, 181 

TraceSELECT, ≥69%). Single-ionic standards were prepared from pure salts and used to test 182 

the linearity and calibrate the instrumental responses. The analyses were routinely checked by 183 

using certified liquid standards (Fluka, TraceCERT) diluted in MilliQ water. The relative 184 

repeatability of each ion determination (standard deviation of 10 replications) was <5%. Field 185 
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blanks were prepared and analysed together with the samples and the values obtained were 186 

routinely subtracted. Limits of detections (LODs) were calculated as three times the standard 187 

deviation of field blanks: data below the LODs were substituted by LOD/2.  188 

 189 

Other chemical parameters were automatically determined on hourly or bihourly basis in each 190 

site following European standards: NO, NO2, NOx (EN 14211:2012); SO2 (EN 14212:2012); 191 

O3 (EN 14625:2012); PM10 and PM2.5 with automatic beta-attenuation monitor systems. A 192 

comprehensive list of measured parameters in each site is provided in Table 1.  193 

 194 

2.3  Sampling Artifacts 195 

A number of studies have reported that potential artifacts can occur during air sampling 196 

because of ambient conditions and the interactions between collected particles and gaseous 197 

compounds with each other or with the filter medium (e.g., Appel et al., 1984; Dasch et al., 198 

1989; Harrison et al., 1990; Harrison and Kitto, 1990; Koutrakis et al., 1992; Zhang and 199 

McMurry, 1992; Cheng and Tsai, 1997; Pathak et al., 2004a; Schaap et al., 2004a; Pathak and 200 

Chan, 2005). Generally, the most evident artifact is the evaporation of nitrate due to its gas-201 

particle partitioning (negative artifact), which is further enhanced by higher temperatures and 202 

drier air. Also, pressure drop across the filter and mixing of acidic and alkaline particles on 203 

the filter may perturb the gas-particle equilibrium. On the contrary, absorption of gas-phase 204 

nitric acid may also occur (positive artifact) mainly driven by the presence of sea-salt 205 

particles.  206 

 207 

Studies conducted in the Po Valley (Putaud et al., 2002; Schaap et al., 2004a) have reported 208 

that nitrate volatilization generally dominates over absorption. In particular, Schaap et al., 209 

(2004a) concluded that quartz filters have a full retention of nitrate at temperatures <20°C. In 210 
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this study, all the samplers were installed into air conditioned cabins with  an internal 211 

constant temperature below 20°C. Subsequent filter transport, handling and analysis were 212 

carried out under the same controlled conditions, while filter storage was at −20 °C. 213 

Moreover, the prevailing high relative humidity recorded at all of the sites (average >70% 214 

RH) during the sampling periods further decreased the potential nitrate loss. For these 215 

reasons, negative artifacts of nitrate can be considered negligible. Positive artifacts are also 216 

expected to be small: concentrations of Na+ and Cl‒ (as tracers of sea-salt) and Mg2+ and Ca2+ 217 

(as tracers of crustal particles) during the study were very low. 218 

 219 

Another potential positive artefact can be caused by the absorption of SO2 on collected 220 

particles, which can be subsequently oxidized to sulphate (Pathak and Chan, 2005). Due to 221 

the very low concentrations of SO2 in Veneto (ARPAV, 2013) and according to data obtained 222 

with and without the use of denuders by Vecchi et al. (2009), sulphate can be considered a 223 

conserved specie in the Po Valley (i.e. not subject to adsorption or volatilisation).  224 

 225 

In summary, sampling conditions and chemical results indicate that potential artifacts in this 226 

study are small. For this reason, all the chemometric analyses have been performed on raw 227 

data. 228 

 229 

2.4  Back-Trajectory and CWT Analysis 230 

Back-trajectories were computed to study the history of air masses during the sampling days. 231 

Set-up: HYSPLIT model (Draxler and Rolph, 2013; Rolph, 2013); 96 h backward; starting 232 

height at 20 m a.s.l.; 4 trajectories per day at 3, 9, 15 and 21 UTC calculated separately for all 233 

the sites. A clustering algorithm using the Euclidean distance measure (Carslaw, 2014) was 234 
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applied to gain information on pollutant species with similar chemical histories by grouping 235 

back-trajectories into clusters depending on their potential origin.  236 

 237 

CWT is a back-trajectory-based hybrid receptor model used to assess potential source areas 238 

affecting air pollution at a receptor site. Briefly, each grid cell ij in a grid domain was used to 239 

compute the weighted concentration obtained by averaging sample concentrations that have 240 

associated trajectories passing the grid cell according to: 241 

��� =
1

∑ ����	�
�
�(��)����
	

�
�
 

where i and j are the coordinates of grid, k the trajectory index, N the number of trajectories, 242 

Ck the pollutant concentration measured at the receptor site upon arrival of the trajectory k, 243 

and τijk represents the residence time of trajectory k in the ij cell. Further insights are provided 244 

in Seibert et al. (1994) and Hsu et al. (2003). Cluster analysis and CWT were computed using 245 

R and the ‘Openair’ package (Carslaw and Ropkins, 2012; Carslaw, 2013). 246 

 247 

3.  RESULTS 248 

3.1  Overview of Results 249 

Table 2 summarises the annual average concentrations of PM2.5 and ions and also gives 250 

statistics for SIA (as sum of ammonium, nitrate and sulphate) and ΣWSII (sum of all the 251 

analysed water soluble inorganic ions). Due to the high percentage of samples below the 252 

LODs, F−, Mg2+ and PO4
3− were excluded from the statistics. A comprehensive list of results 253 

for each month is provided as Supplementary Information Table SI1. The PM2.5 annual 254 

average concentrations (365 days) ranged from a minimum of 16 µg m–3 in BL and a 255 

maximum of 28 µg m–3 in PD. In the study period, the European annual average target value 256 

of 25 µg m–3 (2008/50/EC Directive) was breached in three sites (PD, RO, VI). On an annual 257 
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basis, ΣWSII accounted for a significant fraction of the total PM2.5 mass, ranging from 30% 258 

(BL) to 41% (RO) and generally showed a slightly increasing trend from north to south. 259 

Annually, the most abundant ion in all the sites (Figure 1b) was nitrate, ranging from 36% 260 

(BL) and 47% (VI) of the ΣWSII, followed by sulphate 22% (VI)−29% (BL, VE), 261 

ammonium 17% (BL, TV)−21% (VI, RO) and potassium 3% (RO, VI)−5% (BL). Sodium 262 

varied from 1% (VI) and 5% (TV), while the remaining single ions never exceeded 2%. The 263 

annual levels of PM2.5 and PM2.5-bound nitrate, sulphate and ammonium in this study are 264 

very similar to those recorded in other urban sites in the Po Valley (Table SI2).  265 

 266 

Gaseous pollutants were recorded for all the year on hourly basis and data were averaged to 267 

give daily mean values (Table 2 and Table SI1). The annual average concentrations of NO 268 

during the selected periods varied from 12 µg m–3 (TV) to 27 µg m–3  (PD); NO2 from 23 µg 269 

m–3 (BL) to 37 µg m–3 (PD and RO); NOx from 45 µg m–3 (BL and TV) to 79 µg m–3 (PD); 270 

O3 from 46 µg m–3 (RO) to 61 µg m–3 (PD); SO2 from 1 µg m–3  (PD) to 2.8 µg m–3 (VE). 271 

These mean concentrations are very close to the annual average levels and demonstrate that 272 

the selected periods are representative of the annual concentrations.  273 

 274 

The annual average NO2 levels never exceeded the Limit Value fixed by the European 275 

Directives (40 µg m–3). In Veneto the emission inventory (EI) for 2007/8 (ARPAV and 276 

Regione Veneto, 2013) reported that road transport was the main source of NOx (52111 Mg 277 

y-1), followed by combustion in manufacturing industry (15119 Mg y-1),  other mobile 278 

sources and machinery (13793 Mg y-1),  combustion in energy and transformation industries 279 

(7322 Mg y-1) and non-industrial combustion plants (7187 Mg y-1), while remaining 280 

EMEP/EEA sources (production processes, agriculture, waste treatment and disposal, solvent 281 

and other product use, extraction and distribution of fossil fuels and geothermal energy and 282 
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other sources and sinks) accounted for 3216 Mg y-1. The annual average levels of SO2 were 283 

very low at all the sites and well below the European limit value. The EI reported that in 284 

2007/8 the main contributors in Veneto were (in Mg y-1): combustion in energy and 285 

transformation industries (5077)> combustion in manufacturing industry (4578)> other 286 

mobile sources and machinery (2340)> production processes (1879)> non-industrial 287 

combustion plants (1327)> sum of other EMEP/EEA sources (165). 288 

 289 

It should be noted that most of the NOx was emitted at ground level by mobile sources, 290 

whereas most of SO2 emissions originated from stationary sources via chimneys. SO2 may 291 

disperse widely from elevated sources, but the NOx sources are themselves widely 292 

distributed. 293 

 294 

3.2  Seasonal Variations 295 

The PM2.5 time series are reported as Supplementary Information  Figure SI1 and exhibit 296 

seasonal trends at all of the sites, i.e. higher levels during winter and lower in summer, as 297 

commonly observed in most sites in the Po Valley (e.g., Marcazzan et al., 2003; Vecchi et al., 298 

2004; Perrone et al., 2012; Tositti et al., 2014). The seasonality is strongly linked to weather 299 

conditions, such as prolonged atmospheric stability, shallower mixing layers, wind calm 300 

periods and low temperatures, which favor the accumulation of atmospheric pollutants at the 301 

ground level (Ferrero et al., 2010). The increased use of wood for domestic heating in winter 302 

and the burning of biomass such as straw and crop residues in the harvest season (late 303 

autumn) may also have a role in raising the PM2.5 levels.  The semi-volatility of ammonium 304 

nitrate may also be important. The time series also showed a number of single peaks of 305 

concentration at various sites. In most cases these peaks occurred at individual sites and were 306 

therefore linked to local and occasional phenomena. However, it is evident that the highest 307 
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concentrations were recorded on January 6th for all stations except BL, when thousands of 308 

folk fires of wooden material were lit in most of the Veneto region for a local religious 309 

celebration. This episode was extensively reported by Masiol et al. (2014b) and recorded 310 

extremely high daily concentrations of PM2.5, ranging from 136 µg m–3 in VI to 202 µg m–3 in 311 

RO. This period was not included in the present study. 312 

 313 

On a monthly basis, each ion exhibited a typical seasonality and similar seasonal trends were 314 

generally observed in all the territory. Figure 2 reports the mass concentration time series of 315 

the three SIA components, while seasonal average levels for all ions are shown as Figure SI2. 316 

Results for SIA ions show that both the concentrations and the daily variations of SIA at the 317 

four sites in the flatter areas of the Po Valley (VI, VE, PD and RO) are quite similar and are 318 

in line with results observed at urban sites in other nearby regions (Table SI2). Low SIA 319 

concentrations were recorded at all sites in June, and in October in the Alpine valley (BL), 320 

the SIA components were extremely low as well. Nitrate concentrations in PM are inversely 321 

related to the ambient temperature: they are higher in the colder months, mainly because 322 

ammonium nitrate tends to volatilise at temperatures above 20°C (Schaap et al., 2004a; 323 

Vecchi et al., 2009). This is observed all over Europe (e.g., Allen et al., 1989; Schaap et al., 324 

2004b; Revuelta et al., 2012). Sulphate presents a peculiar bimodal seasonality, with two 325 

maxima in August and February. A peak in the warmest period is commonly recorded in 326 

Europe (e.g., Revuelta et al., 2012) and is probably due to  the increased photochemical 327 

activity favouring the oxidation of SO2 via hydroxyl radical reaction (Stockwell and Calvert, 328 

1983; Khoder, 2002; Seinfeld and Pandis, 2006), whereas the peak in February may be 329 

associated with aqueous phase oxidation. Ammonium concentrations tend to parallel those of 330 

nitrate and sulphate. Calcium shows no evident seasonality. However slightly higher levels 331 

were recorded in August and winter. Potassium, a known tracer of biomass combustions, 332 
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(e.g., Puxbaum et al., 2007; Saarnio et al., 2010) presents an evident seasonality with higher 333 

concentrations in the coldest period. Wood (i.e. logs, briquettes, chips and pellet) is becoming 334 

a popular renewable alternative to natural gas in Northern Italy (Pastorello et al., 2011) and 335 

the increasing emissions from its use for domestic heating can be considered the most 336 

plausible source. Chloride has a seasonal behavior similar to potassium. Its presence in PM 337 

can derive from various sources, i.e. sea-salt, biomass burning, resuspension of road deicing 338 

salts, coal combustion and various industrial processes. The marine origin can be probably 339 

excluded as no significant gradients of concentration are observed from the stations close to 340 

the coast (VE) to the more continental ones (VI and PD). Therefore, biomass burning and the 341 

resuspension of road salt are probably the most important sources.  342 

Seasonal trends of gaseous pollutants are also given in Figure SI2. Nitrogen oxides increased 343 

during the cold season due to changes in mixing depths and emission rates, while ozone 344 

reached the highest levels in the warmest period due to its photochemistry. Sulfur dioxide 345 

showed no clear seasonal trends, but reached the highest levels in VE during the warmest 346 

period (June-August). 347 

 348 

3.3  Spatial Variations 349 

Starting from the evidence that PM2.5 and most ions have quite similar seasonal trends at all 350 

the sites, an inter-site comparison of the annual concentrations was conducted for each ion. 351 

Since the data were not distributed normally, the nonparametric Kruskal–Wallis one-way 352 

analysis of variance was used. This test is based on the rank of each sample instead of its 353 

value and the null hypothesis assumes that the central values of the groups (medians) are 354 

equal, and is rejected for p< 0.05. Thus, the post hoc Dunn’s test was applied to identify 355 

which sites are significantly different from the others. Results generally show that PM2.5, 356 

nitrate, sulphate and ammonium in BL and TV are significantly (p<0.05) different from the 357 
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other sites and concentrations increased from North (mountain) to South (lowland) and from 358 

East (coastal) to West (more continental). On the other hand, K+ and Ca2+ levels are not 359 

significantly different and their concentrations are therefore uniform in all of the Veneto 360 

region. These results show that biomass burning, which has been identified as a major source 361 

of potassium, and the re-suspension of mineral dust and soil, which is the major source of 362 

calcium, are quasi-uniformly distributed throughout the region.  363 

 364 

An indirect quantification of differences in concentrations among the sites was carried out by 365 

regressing PM2.5 mass concentration and  nitrate+sulphate (expressed as neq m-3) among 366 

pairs of sites (intercept forced to zero). Results are provided in Figures SI3 and SI4, 367 

respectively. Results for both PM2.5 and nitrate+sulphate show that sites located in the main 368 

Po Valley (VI, VE, PD and RO) have regression slopes around 1 (0.84―1.17) and high 369 

coefficients of determination (R2>0.8), which indicate good agreement between 370 

concentrations. On the contrary, slopes (range 1.26―1.42) and R2 (≤0.2) between BL and 371 

sites in the main Po Valley indicate a very poor agreement. TV has an intermediate behavior 372 

with sites in the main Po Valley: it presents a moderate relationship (R2 0.6―0.8), but high 373 

slopes (1.2―1.8). 374 

 375 

The spatial and temporal relationships among the sites for PM2.5 and ionic species were 376 

further investigated by using correlation analysis. A preliminary inter-site correlation analysis 377 

among the PM2.5 concentrations for the whole year (365 days) was conducted. The PM2.5 378 

distributions were tested for normality by applying the Shapiro-Wilk’s tests and the normality 379 

assumption at p< 0.05 was not met. A Box-Cox transformation of the dataset was therefore 380 

made. The resultant transformed data were normally distributed and Pearson’s correlation 381 

analysis was run. Results (Table 3) generally show significant correlations (p<0.01, r>0.8) 382 
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among all the sites, with the exception of BL, which appears slightly less correlated (r≈0.7) 383 

with the others. PM2.5 exhibits a similar temporal trend in all the cities even if these are 384 

located in different territories of the region. It is evident that the processes of emission, 385 

accumulation and removal are quite similar in the six cities.  386 

 387 

However, the correlation analysis for the full dataset may be affected by the marked 388 

seasonality of the variables, with the result that the correlation links variables with similar 389 

seasonal trends and not sites with simultaneous daily variations. This problem was solved by 390 

monthly-averaging the original data: the monthly means were subtracted from each daily 391 

value in each selected period. This normalisation procedure had also the advantage of 392 

generating variables that were quasi-normally  distributed. The correlation matrices of the 393 

monthly-averaged data are reported in Table 3 and show that the PM2.5 is still strongly 394 

correlated at all the sites located in the lowland area, while the mountain site (BL) is less 395 

correlated. Sulphate has usually significantly (p< 0.05) positive relationships for all pairs of 396 

sites, indicating that it has a similar (synchronous) behavior in the whole region. Highly (r> 397 

0.75) significant correlations are also found for PM2.5, nitrate and ammonium, except at BL 398 

which appears to be uncorrelated with the other sites. Potassium is very well correlated in the 399 

central part of the region (VI, VE, PD), while significant but weak correlations are found in 400 

TV and RO, and BL is uncorrelated with the other sites. Calcium shows few inter-site 401 

correlations (Table SI3).  402 

 403 

This analysis generally shows that PM2.5, potassium, nitrate, sulphate and ammonium follow 404 

a similar day-to-day trend at all sites throughout the region, in particular in the lowland 405 

territory, and confirms that both the emission sources and the accumulation/removal 406 
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processes in the region are similar. A similar finding was also recently reported for the levels 407 

of PM10-bound polycyclic aromatic hydrocarbons at 21 sites in Veneto (Masiol et al., 2013). 408 

 409 

4.  DISCUSSION 410 

The SIA mass is generally calculated as the simple sum of ammonium, sulphate and nitrate or 411 

is derived from the results of source apportionment approaches. Nevertheless, its prediction is 412 

not straightforward because the ion generation, transport, aging or removal in the particle-413 

phase strongly depends on weather conditions, but also on the presence of precursor gases 414 

and oxidant species (mainly hydroxyl radical, hydrogen peroxide and ozone). Basically, SIA 415 

generation is a two-step process, in which the gaseous precursors SO2 and NOx undergo 416 

photochemical and heterogeneous thermal oxidation to form sulfuric and nitric acids, 417 

respectively. Subsequently, the acids are neutralised by ammonia, and in the case of 418 

ammonium nitrate, partitioned according to thermodynamic equilibria, mostly determined by 419 

temperature and relative humidity (Baek et al., 2004; Seinfeld and Pandis, 2006; Allen et al., 420 

1989). Reactions with other ions may also form mixed salts. Using the experimental data 421 

obtained in this study, some preliminary conclusions regarding the SIA are drawn. 422 

 423 

4.1  Sulfur and Nitrogen Oxidation Ratios 424 

The degree of atmospheric conversion of gaseous precursors, SO2 and NO2, to sulphate and 425 

nitrate, respectively, can be indirectly assessed by means of the sulfur (SOR) and nitrogen 426 

(NOR) oxidation ratios: 427 

SOR = n-nssSO���
n-nssSO��� + nSO� 

NOR = n-NO��
n-NO�� + nNO� 
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where the n units are in moles m–3 and nss-SO4
2 is the non-sea-salt sulphate calculated as 428 

[SO4
2-]- 0.25·[Na+]. The SOR and NOR have been used by many authors (e.g., Khoder, 2002; 429 

Bencs et al., 2008; Behera and Sharma, 2010) to describe the degree of ageing of the air 430 

mass. The results appear as Table SI4, alongside those of other similar studies for 431 

comparison. Annually, the average SOR varied from 0.4 (VE) to 0.6 (PD) suggesting a high 432 

degree of oxidation of SO2 in the atmosphere, while the annual average NOR ranged between 433 

0.04 (BL) and 0.1 (PD).  SOR shows no clear spatial variation and generally its seasonal 434 

concentrations follow those of sulphate. However, it is important to point out that the 435 

minimum SOR is reached at VE in the warmest period. This is probably due to the highest 436 

concentrations of SO2 in summer caused by: (1) the peak of energy production of a coal-fired 437 

power plant meeting the demand for air conditioning; (2) the presence of higher shipping 438 

traffic using the cruise harbour. This assumption is also supported by the emission inventory 439 

for 2010 (ISPRA, 2014) showing that the Venice province has the highest production of SO2 440 

(4586 Mg y-1), followed by Padova (1324 Mg y-1). About 71% of the emissions in VE are 441 

attributed to combustion in energy and transformation industries. Spatially, NOR seems to 442 

increase slightly from North to South and from the coast to the mainland.  443 

 444 

4.2  Ammonia Availability and Neutralisation Ratio  445 

Ammonia is known to neutralise sulfuric acid irreversibly, and then nitric acid. In addition, 446 

hydrochloric acid may react with gaseous ammonia to form ammonium chloride aerosol. 447 

However, in thermodynamic equilibrium conditions ammonium chloride is reported to be 2-3 448 

times more volatile than ammonium nitrate (Stelson and Seinfeld, 1982; Pio et al., 1992) and 449 

its formation occurs later. It is well known that in low ammonia conditions, NH3 acts as the 450 

main limiting factor for SIA generation (Erisman and Schaap, 2004). On the other hand, in 451 

case of high NH3 availability, ammonium nitrate formation is principally limited by the 452 
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availability of nitric acid. These conditions are important in agricultural areas because 453 

livestock farming and the use of soil fertilizers are primary sources of atmospheric NH3 454 

(Galloway et al., 2004; Sutton et al., 2008). Recent modeling simulations on a continental 455 

scale (Wichink Kruit et al., 2012) have reported that ammonia levels in the Po Valley are 456 

among the highest in Europe (range 4−10 µg m−3). This is also confirmed by satellite 457 

observations (Clarisse et al., 2009) indicating the Po valley as one of the most evident 458 

hotspots for NH3 at a global scale. The 2010 Italian emission inventories (ISPRA, 2014) 459 

reported that ~50.2·103 Mg of NH3 are emitted annually in Veneto, most of which is from 460 

agriculture (48.9·103 Mg), followed by road transport (0.7·103 Mg). Because SO2 emissions 461 

have been sharply reduced in the last decades in most developed countries, including Italy  462 

(Manktelow et al., 2007; Hamed et al., 2010), more NH3 is available for the formation of 463 

ammonium nitrate (Bauer et al., 2007; Pye et al., 2009). Recent data indicated that in Veneto 464 

SO2 concentrations are generally < 8 µg m−3, i.e. below the EU lower threshold (ARPAV, 465 

2013). 466 

 467 

Reactions of gaseous acids with other particles (e.g., sea salt, crustal dust, anthropogenic) can 468 

form secondary salts, mainly replacing Cl– with sulphate and nitrate, or forming salts with 469 

Na+, K+, Mg2+ or Ca2+. For example, sulphate and nitrate may affect the hygroscopic 470 

behaviour of mineral dust (Shi et al., 2008) and may form nitrate-containing particles mainly 471 

in the coarse mode (Pakkanen et al., 1996; Metzger et al., 2006).  472 

 473 

However, in this study, the masses of  Na+, Mg2+, Ca2+ and Cl– were low, if compared to 474 

NH4
+, NO3

– and SO4
2– and therefore their contribution to salts in PM2.5 can be assumed to be 475 

negligible. From a linear regression analysis between ammonium and the sum of nitrate and 476 

sulphate (expressed as neq m–3) significant coefficients of determination (R2 varying from 477 
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0.94 in BL and 0.99 in VI, VE and RO), almost unitary slopes (from 0.83 in BL 1.06 in VI, 478 

VE and RO) and very low intercepts were obtained for all the sites. The scatterplots are 479 

reported as Figure SI5. They also reveal that the relationships are constantly linear in all the 480 

seasons, even if the mass contributions of each ion varied greatly during the year.  481 

 482 

The neutralisation ratio (NR) (Bencs et al., 2008), also called acidity ratio (Engelhart et al., 483 

2011), expresses the degree of neutralisation of sulphate and nitrate by ammonium 484 

(concentrations are in equivalents) and was used to describe the aerosol acidity: 485 

NR = [NH��]
[SO���] + [NO��] 

Figure 3 shows the NR time series and permits some inferences: (i) on an annual basis, 486 

average NRs were equal to 1 within the analytical variability, or slightly less: 0.8 in BL, TV, 487 

PD and 0.9 in VI, VE, RO; (ii) the lowest NRs were recorded in spring, while they were 488 

almost constant in the remaining months at all the sites; (iii) both the concentrations and the 489 

daily variations of SIA at the 4 sites in the Po valley had similar trends; (iv) NR variability in 490 

August and February, i.e. in the warmest and coldest months of the year, respectively, was 491 

small, while strong daily changes were recorded in April and October. It is unclear if this 492 

trend is linked mainly to a discontinuity of the sources (e.g., domestic heating switching off 493 

and on), to weather factors controlling the SIA generation, or to external transport effects. 494 

 495 

To investigate the extent of neutralisation of the SIA in more detail, NR was plotted against 496 

the ammonium concentration (Figure 4a). Results show that for all the sites: when 497 

concentrations of NH4
+ exceed ~150 neq m-3, the NR appears to be constant around 1 and 498 

SIA is likely to be composed of ammonium nitrate and ammonium sulphates; for lower levels 499 

of ammonia, the variability of NR increases and, generally, the ratio becomes smaller. These 500 
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results confirm that ammonia may effectively act as a limiting agent for SIA and suggest that 501 

during ammonia-limiting conditions, sulfuric and nitric acids may react with other particles to 502 

form salts. This assumption can be further confirmed by plotting the NR versus ionic balance 503 

(ratio between the sum of all analysed cations and anions) (Figure 4b). The graph clearly 504 

shows that most of samples are set in the 4th quadrant, a region where the relative lack of 505 

ammonium (NR<1) corresponds to an excess of cations (cations>anions), i.e. nitrate and 506 

sulphate are potentially combined with other cations than ammonium. Figure 4b also shows 507 

that no samples are plotted in the opposite quadrant (2nd), demonstrating that on days with an 508 

excess of ammonium (NR>1) no excess anions are present, thus showing the absence of other 509 

inorganic salts of ammonium, such as NH4Cl. A few samples mainly pertaining to the 510 

mountain site (BL) are scattered in the 1st and 3rd quadrants: samples in the 1st quadrant are 511 

characterised by an excess of ammonium and a positive ionic balance, i.e. an excess of 512 

positive charges probably neutralised by organic acids, not measured in this study. Samples 513 

in the 3rd quadrant were almost all collected in April and a possible explanation is that the 514 

lack of positive charges may be balanced by H+ (which was not measured), resulting in acid 515 

aerosol. 516 

 517 

4.3  Potential Contribution of Long-Range Transport 518 

The analysis of the back-trajectories was used to give some insight into the potential 519 

contribution of long-range aerosol transport upon the Veneto region. As known from the 520 

literature, the use of trajectories has some limitations in accuracy for various reasons (e.g., 521 

Stohl et al., 1998). However, taking into account the range of associated uncertainties, the use 522 

of some trajectory statistical methods is recognised as very useful to investigate potential 523 

source areas (Kabashnikov et al., 2011; Abdalmogith and Harrison, 2005).  524 
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For the purpose of this study, the variability of back-trajectories was tested using different 525 

starting heights and hours: errors associated with a single trajectory were reduced by 526 

simulating four trajectories for each sampling day (at 6, 12, 18, 24 local time). The cluster 527 

analysis was applied to all the 4-days back-trajectories computed and for the each site, i.e. 4 528 

trajectories every day, which have been merged with daily data. In fact, this expedient 529 

allowed the spread of daily chemical data over 4 trajectories and thus can account for days 530 

that may have changes in trajectories within 24-h. The number of extracted clusters was 531 

carefully evaluated by analysing the change in the total spatial variance and the best 532 

compromise was 5 clusters for all the sites. Results show that all sites present similar mean 533 

trajectories (Figure 5) named (1) Western Europe, (2) Mediterranean, (3) local, (4) Northern 534 

Europe and (5) Eastern Europe. Statistics for chemical composition data in each cluster are 535 

presented as boxplots in Figures 5 and SI6. The number of trajectories grouped in each 536 

cluster generally differ among BL, TV and other sites (Table SI5). The reason is linked to the 537 

topography of the territory: BL is located in an alpine valley, TV is at the border of Alps, 538 

whereas other sites are located in flatter areas of the Po Valley. As a consequence, results for 539 

BL and TV differ from the other sites with results sometimes showing opposite trends. 540 

Generally, PM2.5, nitrate and K+ show similar results, with concentrations higher for cluster 3 541 

in BL and TV and for clusters 1, 4 and 5 for the remaining sites. Sulphate in BL and TV 542 

appears to have higher concentrations when air masses are associated with clusters 1 and 5, 543 

whereas it is associated with clusters 3 and 5 at the other sites. Calcium and chloride show 544 

only small differences.  Sites BL and TV show a different behaviour with respect to PM2.5. 545 

The highest concentrations are associated with trajectory 3, which for the other sites shows 546 

the lowest PM2.5.  This effect is probably the result of trapping of lower level emissions at BL 547 

and TV in the slow moving northerly air.  With regard to high sulphate and nitrates, these 548 

sites behave rather similarly to the others as a results of regional influences.  549 
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 550 

On the other hand, the analysis of the potential effects of long-range transport on a regional 551 

scale through the CWT model returned very similar results at all sites and clearly indicate 552 

some predominant source areas for potential transboundary transport of PM2.5 and some ions 553 

(Figures 6a and 6b). In particular, a wide area spanning across Eastern and Central Europe 554 

and Northern Italy is identified as a main potential source of all species. Similar results have 555 

also been obtained from a previous  study conducted at a site near VE during 2009-2010 556 

(Squizzato et al., 2014). In addition, other minor source areas are also identified: an area in 557 

Central Italy which roughly coincides with the heavily populated areas of Rome and Naples 558 

as a source of PM2.5 nitrate, and an area in North Africa, which may be linked to Saharan dust 559 

outbreaks. CWT also shows that air masses passing over continental Europe are responsible 560 

for the highest NR and SOR, while this effect is less evident for NOR (Figure SI7). If NR, 561 

SOR and NOR are taken as indicative of the aging of air masses (generally highest values of 562 

oxidation ratios and NR values close to 1 are expected in aged air masses) these results stress 563 

that transboundary transport from continental Europe may have an important impact on levels 564 

of secondary species in the Po Valley.  The lower values of NOR than SOR probably reflect 565 

the higher local emissions of NOx compared to SO2.  566 

 567 

4.4  Analysis of Single Episodes 568 

Three episodes of high SIA concentrations occurred during the campaign (Figure 2): (1) 15th 569 

to 21st October, (2) 13th to 17th February and (3) 17th to 22nd February. Despite all sites 570 

showed covariant daily variations in the levels of nitrate, some differences during those 571 

episodes were identified. A further analysis of single back-trajectories was thus performed to 572 

explain why some sites are generally experiencing much lower concentrations than others. 573 

Figure 7 shows the single back-trajectories associated with the daily concentration of SIA. In 574 
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the first and third episodes, it is evident that all sites show similar daily air mass pathways 575 

from the Mediterranean and Central Europe, respectively. However, only VI, VE, PD and RO 576 

show similar daily variations and levels associated with single trajectories, whereas TV had a 577 

similar daily variation, but significantly lower concentrations. There will be a number of 578 

reasons explaining this result: (i) data indicate that transboundary transport of polluted air 579 

masses may have a higher impact over the Eastern Po Valley; (ii) the cluster and CWT 580 

analyses both indicate Central Europe as a major source area of ammonium nitrate aerosol; 581 

(iii) results suggest the topography may influence the local impact of long-range transport: a 582 

general homogeneity in the SIA levels is often recorded in the flat area of the valley, while 583 

the Alpine chain may act as a barrier for the dispersion of pollutants at ground-level. 584 

 585 

The results for the second episode are quite different. Despite all sites show similar air mass 586 

histories, the levels of SIA were higher in RO and VI. As the differences cannot be explained 587 

by differing air mass origins, it can be concluded that ammonium nitrate generation may also 588 

occur locally as a consequence of oxidation of locally emitted NOx.  589 

 590 

In conclusion, these results indicate that SIA pollution may be sensitive to both long-range 591 

transport and local generation processes. Due to the relatively short period investigated in this 592 

study (60 days over one year), there is a limit to the conclusions which may be drawn. 593 

However, as a few events such as those considered in detail can have a considerable effect 594 

upon the annual mean PM2.5 concentration, the different characteristics and effects of long-595 

range or local SIA episodes should be investigated in more detail over a longer period, by 596 

collecting a large number of samples. 597 

 598 

 599 
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5.  CONCLUSIONS 600 

This study is the first one investigating the spatial and temporal properties of secondary 601 

inorganic aerosol in a large area of the Po Valley using simultaneous experimental 602 

measurements at multiple receptor-sites. The statistical processing of the data shows that 603 

PM2.5 and individual ions to have very similar concentrations across all urban sites and to be 604 

very well correlated throughout the region, even though the sampling stations are located in 605 

different cities and in an area ~18.4·103 km2-wide. Therefore, it can be concluded that the PM 606 

pollution and the relative amount of SIA in the Veneto is quasi-uniformly distributed 607 

throughout the region and the formation and removal processes affecting all sites are quite 608 

similar. Moreover, a comparison with previous studies conducted in other nearby regions of 609 

NE Italy indicates quite constant levels, seasonal trends and speciation of SIA over a wide 610 

area of the Po Valley. The main results can be summarised as follows: 611 

 612 

• Annually, water soluble inorganic ions account from 30% to 41% of the total PM2.5 613 

mass concentrations and the most abundant ion is nitrate (36%−47%), followed by 614 

sulphate (22%−29%), ammonium (17%−21%) and potassium (3%−5%). 615 

• Each ion exhibits a characteristic seasonality and similar seasonal trends are generally 616 

recorded over the entire study area.  617 

• PM2.5, nitrate, sulphate and ammonium in BL and TV are significantly different from 618 

other sites and generally levels of analysed pollutants increased from North (mountain) 619 

to South (lowland) and from East (coastal) to West (more continental). In contrast, K+ 620 

and Ca2+ show weak spatial gradients.  621 

• Potassium, nitrate, sulphate and ammonium also show similar daily trends throughout 622 

the region, in particular in the lowland territory, and confirm that both the sources and 623 

the accumulation/removal processes in the region are similar. 624 
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• The neutralisation ratio and the ionic balance were jointly investigated to provide 625 

information about the processes affecting SIA and the interactions between the 626 

secondary ions and other particles. Results confirm the probable formation of 627 

secondary salts with potassium, sodium and calcium.  628 

• The application of trajectory-based methods (cluster and CWT analyses) was useful to 629 

identify potential source areas leading to increases in PM2.5 and ions concentrations 630 

across the region. Results showed that higher concentrations of all analysed species are 631 

mainly associated with air masses originating in a widespread area located in the 632 

Eastern-Central Europe. Central Italy and Northern Africa are also identified as 633 

possible source areas particularly for PM2.5 and K+.  634 

• The analysis of three single episodes of high ammonium nitrate levels indicate that both 635 

long-range transport and local formation processes may lead to high SIA levels during 636 

colder months. Those events have a large potential for raising the annual average levels 637 

of PM2.5 and should be investigated in more detail. 638 

 639 

As a final remark, this study concluded that SIA pollution has similar and concurrent effects 640 

over the entire study area and probably in the whole Po Valley. Findings clearly indicate that 641 

any action to mitigate the PM2.5 pollution to meet the present target and the future air quality 642 

standards in Veneto must be taken concurrently in the entire region and well beyond its 643 

boundaries.  644 
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TABLE LEGENDS 931 

 932 

 933 

Table 1. Characteristics of the selected sampling sites and the number of analysed 934 

samples. 935 

 936 

Table 2. Annual average concentrations of analysed pollutants. A full list of results 937 

including monthly average concentrations is provided as supplementary 938 

material Table SI1. 939 

 940 

Table 3. Inter-site correlation matrices. Upper-left: box-cox transformed PM2.5 dataset 941 

for the whole year (365 day); other matrices are calculated on the selected 942 

periods (60 days) and data were monthly normalized. Only significant (p< 943 

0.05) correlations are shown; correlations significant (p<0.01) are bold faced. 944 

Correlation matrices for all analysed compounds is provided in Table SI2. 945 

 946 

 947 

 948 

 949 

 950 

FIGURE LEGENDS 951 

  952 

 953 

Figure 1. Map of selected sites (a; left) and annual average percentages of analysed ions 954 

on ΣWSII (b; right). 955 

 956 

Figure 2. Time series of sulphate, nitrate and ammonium in the six sites. 957 

 958 

Figure 3. Time series of neutralisation ratio (NR) in the six sites. 959 

 960 

Figure 4. Scatterplots of a) ammonium vs NR and b) ionic balance vs NR. Samples 961 

collected in six sites are coloured differently.  962 

 963 

Figure 5. Results of the back-trajectory clustering (upper) and distributions of PM2.5 and 964 

ion concentrations for each identified cluster (bottom). Results for remaining 965 

ions are provided as Supplementary Information Figure SI6. 966 

 967 

Figure 6a. CWT analysis for PM2.5, nitrate and sulphate. Concentrations are expressed as 968 

µg m‒3. 969 

 970 

Figure 6b. CWT analysis for chloride, potassium and calcium. Concentrations are 971 

expressed as µg m‒3. 972 

 973 

Figure 7. Single back-trajectories during three high-nitrate concentration events. 974 
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Table 1. Characteristics of the selected sampling sites and the number of analysed samples. 

 
 

 
 Municipality Latitude Longitude Alt (m) Site characteristics Other automatic measurements 

BL Belluno 46.143 N 12.218 E 401 Public park, residential-commercial area SO2; O3; NO2 ; NO ; NOx ; CO ; Benzene ; PM10 (gravimetric); PM10 (BAMs) 

TV Conegliano 45.890 N 12.307 E 72 Residential area SO2 ; O3 ; NO2 ; NO ; NOx ; CO ; PM10 (gravimetric) 

VI Vicenza 45.560 N 11.539 E 36 Residential area NO2 ; NO ; NOx ; PM10 (gravimetric); PAHs 

PD Padova 45.371 N 11.841 E 13 Residential area SO2 ; O3 ; NO2 ; NO ; NOx ; CO ; Benzene ; PM10 (gravimetric); PAHs 

VE Venice-Mestre 45.498 N 12.261 E 1 Public park, residential area SO2 ; O3 ; NO2 ; NO ; NOx ; CO ; Benzene ; PM10 (gravimetric); PAHs 

RO Rovigo 45.074 N 11.782 E 7 Residential-commercial area SO2 ; TSP (gravimetric); O3 ; NO2 ; NO ; NOx ; CO ; PM10 (gravimetric) 
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Table 2. Annual average concentrations of analysed pollutants. A full list of results including 
monthly average concentrations is provided as supplementary material Table SI1. 
 

    BL TV VI VE PD RO 

PM2.5 µg m–3 17 20 28 25 29 27 

Na+ µg m–3 0.14 0.31 0.15 0.16 0.47 0.23 

NH4
+ µg m–3 0.9 1.1 2.3 1.9 2 2.3 

K + µg m–3 0.28 0.29 0.31 0.38 0.39 0.3 

Ca2+ µg m–3 0.11 0.15 0.15 0.15 0.16 0.15 

Cl– µg m–3 0.12 0.12 0.19 0.17 0.19 0.24 

NO3
– µg m–3 1.8 2.4 5 3.6 4.6 5.2 

SO4
2– µg m–3 1.5 1.7 2.4 2.6 2.4 2.6 

SIA µg m–3 4.2 5.2 9.7 8.1 9 10.2 

SIA % 23 25 32 30 29 35 

ΣWSII µg m–3 5.2 6.5 10.8 9.2 10.7 11.4 

ΣWSII % 30 34 36 35 38 41 

NO µg m–3 15 12 24 22 27 26 

NO2 µg m–3 23 27 33 32 37 36 

NOx µg m–3 45 45 70 65 79 76 

O3 µg m–3 49 47 48 49 61 46 

SO2 µg m–3 1.1 — — 2.8 1 2.5 
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Table 3. Inter-site correlation matrices. Upper-left: box-cox transformed PM2.5 dataset for the whole year (365 day); other matrices are 
calculated on the selected periods (60 days) and data were monthly normalized. Only significant (p< 0.05) correlations are shown; correlations 
significant (p<0.01) are bold faced. Correlation matrices for all analysed compounds is provided in Table SI2. 
 

PM2.5  
(Whole year) 

BL TV VI VE PD RO 
  

PM2.5  
(Monthly norm.) 

BL TV VI VE PD RO 

BL 1 
      

BL 1 
     TV 0.74 1 

     

TV 0.33 1 
    VI 0.75 0.86 1 

    

VI 0.26 0.84 1 
   VE 0.75 0.82 0.86 1 

   

VE 
 

0.84 0.89 1 
  PD 0.74 0.83 0.89 0.94 1 

  

PD 0.29 0.85 0.89 0.87 1 
 RO 0.71 0.82 0.88 0.9 0.93 1 

 

RO 0.26 0.8 0.81 0.83 0.95 1 
NO3

–  
(Monthly norm.) 

BL TV VI VE PD RO 
  

SO4
2– 

(Monthly norm.) 
BL TV VI VE PD RO 

BL 1 
      

BL 1 
     TV 

 

1 
     

TV 0.51 1 
    VI 

 

0.84 1 
    

VI 0.39 0.51 1 
   VE 

 

0.85 0.95 1 
   

VE 0.53 0.86 0.58 1 
  PD 

 

0.87 0.97 0.96 1 
  

PD 0.54 0.74 0.59 0.9 1 
 RO 

 

0.79 0.86 0.84 0.92 1 
 

RO 0.39 0.73 0.55 0.83 0.89 1 
NH4

+  
(Monthly norm.) 

BL TV VI VE PD RO 
  

K+  

(Monthly norm.) 
BL TV VI VE PD RO 

BL 1 
      

BL 1 
     TV 

 

1 
     

TV 
 

1 
    VI 0.26 0.81 1 

    

VI 
 

0.58 1 
   VE 

 

0.86 0.92 1 
   

VE 
 

0.64 0.82 1 
  PD 

 

0.87 0.94 0.95 1 
  

PD 
 

0.51 0.83 0.77 1 
 RO 0.26 0.77 0.85 0.83 0.92 1   RO   0.32 0.52 0.56 0.77 1 
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HIGHLIGHTS 

� Inorganic ions were analysed in PM2.5 collected at 6 sites across NE Italy 

� Ions account from 30% to 40% of total PM2.5 mass over the region 

� Results reveal significant spatial and temporal patterns for most ions 

� Statistical tools are applied to reveal the inter-site relationships 

� Effects of long-range transport were investigated using trajectory-based methods 
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SUPPLEMENTARY MATERIAL 

 

SPATIAL, SEASONAL TRENDS AND TRANSBOUNDARY 
TRANSPORTS OF PM2.5-BOUND INORGANIC IONS IN 
THE VENETO REGION (NORTHEASTERN ITALY) 
 
Mauro Masiol, Francesca Benetello, Roy M. Harrison,  
Gianni Formenton, Francesco De Gasperi, Bruno Pavoni
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Table SI1. Monthly and annual average concentrations of all analysed pollutants (µg m-3). 

    BL   TV   VI 

    Apr Jun Aug Oct Dec Feb Annual Apr Jun Aug Oct Dec Feb Annual 
 

Apr Jun Aug Oct Dec Feb Annual 

PM2.5 µg m–3 9 11 15 8 37 25 17   13 6 16 18 31 34 20   14 13 20 32 42 48 28 

Na+ µg m–3 0.06 0.06 0.06 0.06 0.21 0.38 0.14 
 

1.28 0.06 0.06 0.13 0.25 0.07 0.31 
 

0.09 0.06 0.06 0.06 0.06 0.54 0.15 

NH4
+ µg m–3 0.4 0.7 0.9 0.2 1.3 1.8 0.9 

 

0.4 0.3 1.2 1.1 0.9 2.7 1.1 
 

1.1 0.8 1.4 3.2 2.7 4.4 2.3 

K + µg m–3 0.09 0.05 0.08 0.11 0.95 0.39 0.28 
 

0.12 0.02 0.13 0.21 0.77 0.49 0.29 
 

0.11 0.05 0.1 0.18 0.79 0.65 0.31 

Mg2+ µg m–3 0.05 0.05 0.06 0.05 0.05 0.05 0.05 
 

0.05 0.06 0.05 0.05 0.05 0.05 0.05 
 

0.05 0.05 0.05 0.06 0.05 0.05 0.05 

Ca2+ µg m–3 0.07 0.12 0.18 0.03 0.15 0.12 0.11 
 

0.14 0.09 0.14 0.08 0.2 0.23 0.15 
 

0.12 0.11 0.15 0.11 0.19 0.25 0.15 

F– µg m–3 0.02 0.02 0.02 0 0.03 0 0.02 
 

0.02 0.02 0.02 0 0.01 0.01 0.02 
 

0.02 0.02 0.02 0 0.02 0.01 0.02 

Cl– µg m–3 0.1 0.13 0.1 0.12 0.12 0.12 0.12 
 

0.1 0.1 0.1 0.12 0.15 0.12 0.12 
 

0.1 0.1 0.1 0.14 0.42 0.3 0.19 

NO3
– µg m–3 1 0.1 0.1 0.3 4.4 5.1 1.8 

 

1.9 0.1 0.2 3 3.5 5.4 2.4 
 

2.9 0.3 0.5 9.7 6.1 10.8 5 

SO4
2– µg m–3 0.8 1.7 2.4 0.4 1.6 2 1.5 

 

1.1 0.9 3.3 0.8 0.8 3.5 1.7 
 

1.1 1.9 3.7 0.8 3 3.6 2.4 

SIA µg m–3 2.2 2.6 3.4 1 7.3 8.9 4.2 
 

3.5 1.4 4.7 4.9 5.2 11.6 5.2 
 

5 3 5.7 13.7 11.8 18.9 9.7 

SIA % 25 23 23 13 19 36 23 
 

27 21 30 23 17 34 25 
 

34 23 28 37 28 39 32 

ΣWSII µg m–3 2.9 3.3 4.2 1.5 9 10.2 5.2 
 

6.3 2 5.5 5.7 6.8 12.7 6.5 
 

5.8 3.7 6.4 14.5 13.5 20.8 10.8 

ΣWSII % 34 30 29 21 24 41 30 
 

48 32 35 28 22 38 34 
 

40 29 32 40 32 43 36 

NO µg m–3 4 1 1 9 55 16 15 
 

6 3 3 13 36 11 12 
 

3 1 0 17 91 34 24 

NO2 µg m–3 20 12 11 16 40 38 23 
 

24 16 14 24 47 36 27 
 

23 18 21 31 57 49 33 

NOx µg m–3 26 14 12 31 124 63 45 
 

33 21 18 45 103 53 45 
 

28 19 21 57 196 102 70 

O3 µg m–3 58 87 87 18 17 33 49 
 

57 88 88 14 4 33 47 
 

52 94 99 15 4 23 48 

SO2 µg m–3 0.6 0.6 1.3 0.9 2.2 0.8 1.1 
 

1.4 — — — — — — 

 

— — — — — — — 
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Table SI1. Continue. 

    VE   PD   RO 

    Apr Jun Aug Oct Dec Feb Annual 
 

Apr Jun Aug Oct Dec Feb Annual 
 

Apr Jun Aug Oct Dec Feb Annual 

PM2.5 µg m–3 11 14 17 30 45 34 25   16 16 19 31 45 45 29   14 14 17 33 43 43 27 

Na+ µg m–3 0.06 0.05 0.05 0.05 0.44 0.3 0.16 
 

1.86 0.08 0.12 0.06 0.5 0.22 0.47 
 

0.44 0.06 0.25 0.06 0.39 0.18 0.23 

NH4
+ µg m–3 0.8 0.9 1.5 2.7 2.3 3.1 1.9 

 

0.8 0.9 1.2 2.7 2.4 4.1 2 
 

0.9 0.9 1.2 3.1 3.2 4.7 2.3 

K + µg m–3 0.11 0.07 0.13 0.23 1.1 0.62 0.38 
 

0.11 0.09 0.1 0.19 1.06 0.78 0.39 
 

0.09 0.1 0.12 0.15 0.79 0.56 0.3 

Mg2+ µg m–3 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
 

0.05 0.05 0.04 0.05 0.06 0.05 0.05 
 

0.05 0.05 0.05 0.05 0.05 0.08 0.05 

Ca2+ µg m–3 0.09 0.15 0.15 0.1 0.27 0.15 0.15 
 

0.11 0.17 0.11 0.14 0.22 0.21 0.16 
 

0.11 0.13 0.2 0.07 0.13 0.24 0.15 

F– µg m–3 0.02 0.02 0.02 0 0.02 0.01 0.02 
 

0.02 0.02 0.02 0 0.02 0.02 0.02 
 

0.02 0.02 0.02 0 0.01 0.01 0.02 

Cl– µg m–3 0.09 0.09 0.09 0.15 0.49 0.11 0.17 
 

0.1 0.1 0.09 0.16 0.43 0.27 0.19 
 

0.12 0.26 0.09 0.14 0.55 0.3 0.24 

NO3
– µg m–3 1.5 0.2 0.2 7.4 6.3 6 3.6 

 

3.4 0.3 0.3 8 6.3 9.1 4.6 
 

2.8 0.2 0.4 8.7 8.3 10.8 5.2 

SO4
2– µg m–3 1.2 2.3 4.2 1.6 2.2 4.3 2.6 

 

1.1 2.3 3.4 1.4 2.3 3.9 2.4 
 

1.3 2.4 3.8 1.5 2.6 4.3 2.6 

SIA µg m–3 3.5 3.4 5.9 11.7 10.7 13.4 8.1 
 

5.4 3.5 4.9 12.1 11.1 17.1 9 
 

5 3.6 5.4 13.3 14.1 19.8 10.2 

SIA % 29 23 35 31 24 39 30 
 

33 20 26 34 25 38 29 
 

35 25 31 37 33 47 35 

ΣWSII µg m–3 4.2 4.1 6.7 12.4 13.3 14.8 9.2 
 

9.4 4.3 5.6 12.9 13.5 18.8 10.7 
 

6.3 4.5 6.4 13.9 16.2 21.4 11.4 

ΣWSII % 36 29 39 34 30 44 35 
 

61 26 30 37 31 42 38 
 

45 33 37 39 38 51 41 

NO µg m–3 3 2 1 21 83 20 22 
 

5 2 2 27 88 41 27 
 

8 3 4 24 76 38 26 

NO2 µg m–3 22 24 24 32 52 37 32 
 

26 23 23 28 57 60 37 
 

25 22 17 34 61 60 36 

NOx µg m–3 26 27 25 64 178 68 65 
 

34 26 26 70 192 123 79 
 

38 27 22 71 177 119 76 

O3 µg m–3 63 85 86 16 8 33 49 
 

61 99 101 35 27 37 61 
 

58 94 83 17 3 24 46 

SO2 µg m–3 1.4 5.1 3.7 1.8 2.0 2.9 2.8   0.6 0.8 0.6 0.9 1.9 1.3 1.0   2.0 2.3 1.6 1.5 3.6 4.0 2.5 
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Table SI2. PM2.5, PM2.5-bound nitrate, sulphate, ammonium and percent of PM2.5-bound SIA in other major cities of Po Valley compared to this study. 

City Period PM2.5 Nitrate Sulphate Ammonium %SIA 
%Ammonium 

Nitrate 
%Ammonium 

Sulphate Reference 
Bologna Annual 2000 32 4.27 4.2 2.6 34 21 21 Putaud et al.(2010) 
Bologna Summer 2005 18 0.4 5.8 1.9 46 13 44 Tositti et al. (2014) 

Autumn 2005 33 7.3 5.0 3.8 49 34 27 Tositti et al. (2014) 
Winter 2006 41 12.1 3.9 3.6 48 38 18 Tositti et al. (2014) 
Summer 2006 21 0.7 5.2 1.6 36 11 32 Tositti et al. (2014) 

Milan Cold season 54 20.2 5.8 5.2 58 47 20 Lonati et al. (2005) 
Warm season 2002-2003 20 4.6 4 2.2 53 34 31 Lonati et al. (2005) 

Ispra Annual 2005 36 8.54 4.6 4.1 48 35 24 Putaud et al.(2010) 
Belluno April 2012 9 1 0.8 0.4 24 16 13 This study 

June 2012 11 0.1 1.7 0.7 23 7 22 This study 
August 2012 15 0.1 2.4 0.9 23 7 22 This study 
October 2012 8 0.3 0.4 0.2 11 6 8 This study 
December 2012 37 4.4 1.6 1.3 20 15 8 This study 
February 2013 25 5.1 2 1.8 36 28 15 This study 

  Annual 2012-2013 17 1.8 1.5 0.9 25 16 14 This study 
Conegliano 
(TV) April 2012 13 1.9 1.1 0.4 26 18 12 This study 

June 2012 6 0.1 0.9 0.3 22 7 20 This study 
August 2012 16 0.2 3.3 1.2 29 9 28 This study 
October 2012 18 3 0.8 1.1 27 23 11 This study 
December 2012 31 3.5 0.8 0.9 17 14 5 This study 
February 2013 34 5.4 3.5 2.7 34 24 18 This study 

  Annual 2012-2013 20 2.4 1.7 1.1 26 18 14 This study 
Vicenza April 2012 14 2.9 1.1 1.1 36 29 16 This study 

June 2012 13 0.3 1.9 0.8 23 8 21 This study 
August 2012 20 0.5 3.7 1.4 28 10 26 This study 
October 2012 32 9.7 0.8 3.2 43 40 13 This study 
December 2012 42 6.1 3 2.7 28 21 14 This study 
February 2013 48 10.8 3.6 4.4 39 32 17 This study 

  Annual 2012-2013 28 5 2.4 2.3 35 26 17 This study 
Venezia- April 2012 11 1.5 1.2 0.8 32 21 18 This study 
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Mestre 

June 2012 14 0.2 2.3 0.9 24 8 23 This study 
August 2012 17 0.2 4.2 1.5 35 10 34 This study 
October 2012 30 7.4 1.6 2.7 39 34 14 This study 
December 2012 45 6.3 2.2 2.3 24 19 10 This study 
February 2013 34 6 4.3 3.1 39 27 22 This study 

  Annual 2012-2013 25 3.6 2.6 1.9 32 22 18 This study 
Padova April 2012 16 3.4 1.1 0.8 33 26 12 This study 

June 2012 16 0.3 2.3 0.9 22 8 20 This study 
August 2012 19 0.3 3.4 1.2 26 8 24 This study 
October 2012 31 8 1.4 2.7 39 35 13 This study 
December 2012 45 6.3 2.3 2.4 24 19 10 This study 
February 2013 45 9.1 3.9 4.1 38 29 18 This study 

  Annual 2012-2013 29 4.6 2.4 2 31 23 15 This study 
Rovigo April 2012 14 2.8 1.3 0.9 36 26 16 This study 

June 2012 14 0.2 2.4 0.9 25 8 24 This study 
August 2012 17 0.4 3.8 1.2 32 9 29 This study 
October 2012 33 8.7 1.5 3.1 40 36 14 This study 
December 2012 43 8.3 2.6 3.2 33 27 13 This study 
February 2013 43 10.8 4.3 4.7 46 36 21 This study 

  Annual 2012-2013 27 5.2 2.6 2.3 37 28 18 This study 

Note: SIA is roughly estimated as the sum of nitrate, sulphate and ammonium; ammonium nitrate and ammonium sulphate are calculated as simple 
sum of ammonium+nitrate and ammonium+sulphare, respectively.  

 

References: 
 
Lonati G., Giugliano M., Butelli P., Romele L., Tardivo R., 2005. Major chemical components of PM2. 5 in Milan (Italy). Atmospheric Environment 

39(10), 1925-1934. 
Putaud J.-P., van Dingenen R., Alastuey A., Bauer H., Birmili W., Cyrys J., et al., 2010. A European aerosol phenomenology – 3: Physical and 

chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment 44, 1308–1320. 
Tositti L., Brattich E., Masiol M., Baldacci D., Ceccato D., Parmeggiani S., et al., 2014. Source apportionment of particulate matter in a large city of 

southeastern Po Valley (Bologna, Italy). Environmental Science and Pollution Research 21, 872-890. 
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Table SI3. Inter-site correlation matrices. Upper-left: box-cox transformed PM2.5 dataset for the 
whole year (365 day); other matrices are calculated on the selected periods (60 days) and data were 
monthly normalized. Only significant (p< 0.05) correlations are shown; correlations significant (p<0.01) 
are bold faced. 
 
PM2.5 (Whole 
year) 

BL TV VI  VE PD RO 
  

PM2.5 (Monthly 
norm.) 

BL TV VI  VE PD RO 

BL 1 
     BL 1 

     
TV 0.74 1 

    TV 0.33 1 
    

VI 0.75 0.86 1 
   VI 0.26 0.84 1 

   
VE 0.75 0.82 0.86 1 

  VE  0.84 0.89 1 
  

PD 0.74 0.83 0.89 0.94 1 
 PD 0.29 0.85 0.89 0.87 1 

 
RO 0.71 0.82 0.88 0.90 0.93 1 RO 0.26 0.80 0.81 0.83 0.95 1 

NO3
– (Monthly 

norm.) 
BL TV VI  VE PD RO 

  
SO4

2– (Monthly 
norm.) 

BL TV VI  VE PD RO 

BL 1 
     BL 1 

     
TV  

1 
    TV 0.51 1 

    
VI  0.84 1 

   VI 0.39 0.51 1 
   

VE  0.85 0.95 1 
  VE 0.53 0.86 0.58 1 

  
PD  0.87 0.97 0.96 1 

 PD 0.54 0.74 0.59 0.90 1 
 

RO  0.79 0.86 0.84 0.92 1 RO 0.39 0.73 0.55 0.83 0.89 1 

Na+  (Monthly 
norm.) 

BL TV VI  VE PD RO 
  

NH4
+ (Monthly 

norm.) 
BL TV VI  VE PD RO 

BL 1 
     BL 1 

     
TV  

1 
    TV  

1 
    

VI 0.48  
1 

   VI 0.26 0.81 1 
   

VE -0.44  -0.43 1 
  VE  0.86 0.92 1 

  
PD     

1 
 PD  0.87 0.94 0.95 1 

 
RO  0.36    

1 RO 0.26 0.77 0.85 0.83 0.92 1 

K + (Monthly 
norm.) 

BL TV VI  VE PD RO 
  

Ca2+ (Monthly 
norm.) 

BL TV VI  VE PD RO 

BL 1 
     BL 1 

     
TV  

1 
    TV 0.27 1 

    
VI  0.58 1 

   VI 0.46 0.39 1 
   

VE  0.64 0.82 1 
  VE 0.40 0.38 0.56 1 

  
PD  0.51 0.83 0.77 1 

 PD   0.34  
1 

 
RO   0.32 0.52 0.56 0.77 1   RO 0.35   0.35 0.43   1 
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Table SI4. SOR and NOR values reported in the literature. Some information about the site, PMx and period were jointly reported. 

Country (Region) Location PMx Period SOR NOR Reference 

Italy (Po Valley) BL PM2.5 April 0.49±0.13 0.035±0.014 This study 

BL PM2.5 June 0.62±0.18 0.009±0.002 This study 

BL PM2.5 August 0.56±0.14 0.01±0.002 This study 

BL PM2.5 October 0.25±0.13 0.017±0.008 This study 

BL PM2.5 December 0.41±0.25 0.074±0.03 This study 

BL PM2.5 February 0.63±0.12 0.094±0.036 This study 

BL PM2.5 Annual 0.49±0.21 0.04±0.038 This study 

TV PM2.5 April 0.35±0.15 0.057±0.024 This study 

TV PM2.5 June — 0.007±0.001 This study 

TV PM2.5 August — 0.01±0.003 This study 

TV PM2.5 October — 0.077±0.07 This study 

TV PM2.5 December — 0.052±0.014 This study 

TV PM2.5 February — 0.1±0.035 This study 

TV PM2.5 Annual — 0.05±0.047 This study 

VI PM2.5 April — 0.087±0.048 This study 

VI PM2.5 June — 0.012±0.007 This study 

VI PM2.5 August — 0.02±0.005 This study 

VI PM2.5 October — 0.164±0.111 This study 

VI PM2.5 December — 0.076±0.024 This study 

VI PM2.5 February — 0.137±0.051 This study 

VI PM2.5 Annual — 0.083±0.077 This study 

VE PM2.5 April 0.37±0.19 0.05±0.037 This study 

VE PM2.5 June 0.27±0.08 0.007±0.003 This study 

VE PM2.5 August 0.45±0.09 0.008±0.004 This study 

VE PM2.5 October 0.34±0.14 0.118±0.107 This study 

VE PM2.5 December 0.44±0.07 0.084±0.021 This study 
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VE PM2.5 February 0.50±0.09 0.115±0.043 This study 

VE PM2.5 Annual 0.39±0.14 0.063±0.066 This study 

PD PM2.5 April 0.58±0.25 0.091±0.033 This study 

PD PM2.5 June 0.62±0.22 0.01±0.008 This study 

PD PM2.5 August 0.81±0.12 0.011±0.004 This study 

PD PM2.5 October 0.46±0.19 0.292±0.382 This study 

PD PM2.5 December 0.45±0.12 0.078±0.021 This study 

PD PM2.5 February 0.66±0.13 0.095±0.041 This study 

PD PM2.5 Annual 0.60±0.21 0.096±0.178 This study 

RO PM2.5 April 0.31±0.22 0.075±0.044 This study 

RO PM2.5 June 0.41±0.12 0.006±0.002 This study 

RO PM2.5 August 0.62±0.11 0.017±0.006 This study 

RO PM2.5 October 0.55±0.29 0.142±0.08 This study 

RO PM2.5 December 0.37±0.17 0.091±0.028 This study 

RO PM2.5 February 0.41±0.09 0.108±0.04 This study 

RO PM2.5 Annual 0.45±0.20 0.073±0.063 This study 

Italy (Po Valley) 

Mestre-Venice 
(urban 
background) PM2.5 March–April 2009 0.28±0.16 0.07±0.07 Squizzato et al. (2013) 

PM2.5 June–July 2009 0.28±0.13 0.01±0.01 Squizzato et al. (2013) 

PM2.5 September–October 2009 0.62±0.25 0.04±0.05 Squizzato et al. (2013) 

PM2.5 December 2009–January 2010 0.41±0.19 0.08±0.04 Squizzato et al. (2013) 

Mestre-Venice 
(industrial) PM2.5 March–April 2009 0.22±0.09 0.10±0.05 Squizzato et al. (2013) 

PM2.5 June–July 2009 0.31±0.20 0.02±0.02 Squizzato et al. (2013) 

PM2.5 September–October 2009 0.35±0.23 0.05±0.06 Squizzato et al. (2013) 

PM2.5 December 2009–January 2010 0.38±0.19 0.08±0.04 Squizzato et al. (2013) 

Northern Belgium (Flanders) Petroleumkaai PM2.5 18/09/2001-29/10/2001 0.11±0.09 0.005±0.007 Bencs et al. (2008) 

PM2.5 19/12/2002-23/02/2003 0.10±0.08 0.05±0.04 Bencs et al. (2008) 

Borgerhout PM2.5 06/11/2001-10/12/2001 0.13±0.08 0.009±0.007 Bencs et al. (2008) 

PM2.5 10/02/2003-07/04/2003 0.14±0.10 0.08±0.05 Bencs et al. (2008) 
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Zelzate PM2.5 11/12/2001-30/01/2002 0.15±0.10 0.02±0.01 Bencs et al. (2008) 

PM2.5 13/08/2002-26/09/2002 0.26±0.12 0.01±0.01 Bencs et al. (2008) 

Hasselt PM2.5 01/02/2002-26/03/2002 0.23±0.09 — Bencs et al. (2008) 

PM2.5 27/09/2002-04/11/2002 0.23±0.11 — Bencs et al. (2008) 

Wingene PM2.5 16/05/2002-26/06/2002 0.71±0.27 0.03±0.01 Bencs et al. (2008) 

PM2.5 5/11/2002-03/01/2003 0.45±0.17 0.004±0.002 Bencs et al. (2008) 

Mechelen PM2.5 27/03/2002-15/05/2002 0.10±0.20 0.07±0.11 Bencs et al. (2008) 

PM2.5 27/06/2002-12/08/2002 0.21±0.08 0.04±0.03 Bencs et al. (2008) 

India Allahabad PM2.5 Dec-04 clear 0.39±0.05 0.25±0.08 Ram et al. (2012) 

PM2.5 Dec-04 haze 0.45±0.12 0.20±0.04 Ram et al. (2012) 

PM2.5 Dec-04 fog 0.52±0.15 0.33±0.11 Ram et al. (2012) 

Hisar PM2.5 Dec-04 clear   0.23±0.15 Ram et al. (2012) 

PM2.5 Dec-04 haze 0.30±0.04 Ram et al. (2012) 

PM2.5 Dec-04 fog 0.39±0.08 Ram et al. (2012) 

China Shangai PM2.5 19 december 2006 - 18 january 2007 0.05–0.28 0.03–0.23 Fu et al. (2008) 

PM2.5 18 january polluted day 0.67 0.61 Fu et al. (2008) 
Mountain Tai 
1534 m  PM2.5 14 march - 6 may 2006 + 2-30 june 2006 0.08 0.31 Deng et al. (2011) 

PM2.5 26 march-18 may 2007 0.09 0.22 Deng et al. (2011) 

Jinan PM2.5 1 december  2007 - 3 january 2008 0.17±0.02 0.12±0.01 Gao et al. (2011) 

PM2.5 1-18 april 2008 0.22±0.05 0.14±0.01 Gao et al. (2011) 

PM2.5 5-17 juny 2008 0.47±0.13 0.28±0.03 Gao et al. (2011) 

PM2.5 12 september - 15 october 2008  0.30±0.04 0.14±0.01 Gao et al. (2011) 

Xiamen PM2.5 spring 2010 0.25 0.07 Zhang et al. (2012) 

PM2.5 summer 2009 0.22 0.06 Zhang et al. (2012) 

PM2.5 autumn 2009 0.22 0.07 Zhang et al. (2012) 

PM2.5 winter 2009 0.29 0.10 Zhang et al. (2012) 

Shangai PM2.5 27 may - 16 june 2009 0.35±0.14 0.17±0.08 Du et al. (2011) 

Fuzhou PM2.5 spring 2007 0.18 0.05 Xu et al. (2012) 

PM2.5 summer 2007 0.23 0.02 Xu et al. (2012) 
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PM2.5 autumn 2007 0.26 0.04 Xu et al. (2012) 

PM2.5 winter 2007-2008 0.24 0.10 Xu et al. (2012) 

Xi’an TSP 24 october 2005 - 24 october 2006 0.32  0.22 Shen et al. (2012) 

TSP spring 0.26 0.15 Shen et al. (2012) 

TSP summer 0.44 0.22 Shen et al. (2012) 

TSP autumn  0.39 0.35 Shen et al. (2012) 

TSP  winter 0.19 0.20 Shen et al. (2012) 

  PM2.5 24 october 2005 - 24 october 2006 0.23 0.13 Shen et al. (2012) 

Guangzhou PM2.5 winter-2002 clear 0.08 0.06 Tan et al. (2009) 

PM2.5 winter-2002 haze 0.15 0.15 Tan et al. (2009) 

PM2.5 summer-2002 clear 0.1 0.04 Tan et al. (2009) 

PM2.5 summer-2002 haze 0.16 0.22 Tan et al. (2009) 

  PM2.5 december 2007- january 2008 clear 0.22 0.09 Tan et al. (2009) 

  PM2.5 december 2007- january 2008 haze 0.29 0.24 Tan et al. (2009) 

Beijing PM2.5 2001-04 clear 0.17 0.18 Wang et al. (2006) 

PM2.5 2001-04 haze 0.27 0.29 Wang et al. (2006) 

Shanghai PM2.5 5 may – 15 june 2005 0.16 0.07 Wu (2009) 

Beijing PM2.5 20 june – 6 august 2005 0.45 0.16 Wu (2009) 

 Lanzhou PM2.5 18 june – 17 july 2006 0.18 0.09 Wu (2009) 
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Table SI5. Number of cluster of back-trajectories. 
 

Cluster 
No. BL TV VI  VE PD RO 
1 47 51 39 34 35 37 
2 71 70 55 53 59 60 
3 54 51 56 58 54 53 
4 36 32 53 56 54 52 
5 32 36 37 39 38 38 
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Figure SI1. PM2.5 time series (period April 1st 2012 —March 31st 2013). The peak on January 6th 2013 was due to the burning of folk fires in most of the Veneto 
Region: this episode was separately studied in Masiol et al. (2014).  
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Figure SI2. Average seasonal concentrations of measured ions and gaseous pollutants in the six sampling sites.  
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Figure SI3. Regression of PM2.5 mass  concentrations among pairs of sites. Concentrations are in µg m-3. Regression line in black, reference 1:1 
slope in grey. 
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Figure SI4. Regression of nitrate+sulphate concentrations among pairs of sites. Concentrations are in neq m-3. Regression line in black, reference 
1:1 slope in grey. 
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Figure SI5. 2D scatterplots of nitrate+sulfate vs ammonium (in neq m–3) in the 6 sampling sites. 
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Figure SI6. Results of the back-trajectory clustering (upper) and distributions of chloride, ammonium, SIA and calcium for each identified 
cluster (bottom). 
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Figure SI7. Results of CWT analysis for remaining parameters. 


