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Abstract 

Hepatitis C virus (HCV) entry inhibitors have been hypothesized to prevent infection of the liver after 

transplantation. ITX5061 is a Scavenger Receptor B-I (SR-BI) antagonist that blocks HCV entry and 

infection in vitro. We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. 

The study included 23 HCV infected patients undergoing liver transplantation. The first 13 

“control“ patients did not receive drug. The subsequent 10 patients received ITX5061 150 mg 

immediately pre- and post-transplant, and daily for 1 week thereafter. ITX5061 pharmacokinetics and 

plasma HCV RNA were quantified. Viral genetic diversity was measured by ultradeep pyrosequencing. 

ITX5061 was well tolerated with measurable plasma concentrations during therapy. Whilst the median 

HCV RNA reduction was greater in ITX treated patients at all time points in the first week after 

transplantation there was no difference in the overall change in the area over the HCV RNA curve in 

the 7-day treatment period.  However, in genotype 1 infected patients treatment was associated with a 

sustained reduction in HCV RNA levels compared to the control group (area over the HCV RNA curve 

analysis, p=0.004). Ultradeep pyrosequencing revealed a complex and evolving pattern of HCV 

variants infecting the graft during the first week. ITX5061 significantly limited viral evolution where the 

median divergence between day 0 and day 7 was 3.5% in the control group compared to 0.1% in the 

treated group. Conclusions: ITX5061 reduces plasma HCV RNA post transplant notably in genotype 

1 infected patients and slows viral evolution. Following liver transplantation the likely contribution of 

extrahepatic reservoirs of HCV necessitates combining entry inhibitors such as ITX5061 with inhibitors 

of replication in future studies. Clinicaltrials.gov NCT01292824.  
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Introduction 

Hepatitis C virus (HCV) infection is a global health problem with more than 170 million people infected 

worldwide.  Chronic infection with HCV can lead to cirrhosis and hepatocellular carcinoma (HCC) and 

is a leading indication for liver transplantation [1]. At the time of transplantation HCV circulating in the 

periphery infects the newly transplanted graft [2-4] and can lead to progressive liver injury. HCV is one 

of the major causes of graft failure [5-7] and preventing infection of the graft is a rational strategy to 

combat that complication.  

Studies investigating the use of polyclonal anti-HCV immunoglobulins or anti-HCV monoclonal 

antibodies to prevent HCV reinfection of the newly transplanted liver have met with limited success [8, 

9]. However, recent reports detailing the passive transfer of the neutralizing human monoclonal 

antibody MBL-HCV1 showed some protection in humans and chimpanzee [10, 11], illustrating the 

potential of this approach. The major cell type supporting HCV replication in the liver is the hepatocyte 

and infection is defined by four essential host entry factors: CD81, scavenger receptor B-I (SR-BI), 

claudin-1, and occludin (reviewed in [12, 13]). Recent studies showing that antibodies targeting SR-BI 

limit HCV infection of humanized mice highlight a role for SR-BI antagonists to prevent HCV infection 

of the newly transplanted liver [14, 15]. 

SR-BI is a receptor for high-density lipoprotein (HDL) and is an essential component of the reverse 

cholesterol transport system [16]. ITX5061 was originally developed as a p38 mitogen-activated 

protein kinase inhibitor and was evaluated in early phase clinical trials for treating rheumatoid arthritis 

and psoriasis where treated subjects showed an elevation in serum HDL (iTherX, data on file). 

Mechanistic studies identified ITX5061 as an antagonist of SR-BI [17] that could inhibit HCV entry in 

vitro and was effective against diverse viral genotypes [18]. More recently ITX5061 was reported to act 

additively with interferon, ribavirin and the protease inhibitor telaprevir in vitro and, given its mode of 

action, no cross-resistance is expected with any of the direct acting antivirals (DAAs) currently in 

development [19].   

We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. Viral RNA levels 

were measured in treated and untreated patients during the post-transplant period and viral evolution 

assessed by ultradeep pyrosequencing (UDPS).  
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Patients and Methods 

Study design. An open label phase Ib study was designed to assess the effect of ITX5061 in patients 

undergoing liver transplantation at a single centre (Queen Elizabeth Hospital Birmingham, UK). All 

patients gave informed consent and ethical approval was given by the UK National Research Ethics 

Service (reference 10/H0301/36). Patients were allocated sequentially to a no treatment control group 

or to treatment with ITX5061, 150 mg/day via the enteral route for 1 week. Treatment duration was 

determined with reference to the known safety profile of ITX5061 in patients without liver disease.  

Although it was intended that 10 subjects would be enrolled into each group, an interim analysis 

following the enrolment of the first 5 patients suggested that more detailed HCV kinetic monitoring 

would provide a more robust baseline of viral kinetics in the untreated patients.  The control group was 

therefore increased to 13 subjects. The study was registered at clinicaltrials.gov (NCT01292824). 

Population.  The study enrolled men and women between the ages of 18 and 65 years who were 

suitable for liver transplantation.  Subjects with HCV associated end-stage liver disease or HCC were 

enrolled regardless of their infecting genotype or previous anti-viral treatment. Subjects co-infected 

with HBV or HIV were excluded, as were patients receiving a liver from a HCV positive donor. 

Study drug.  ITX5061 was formulated as a 25 mL solution for oral or nasogastric use containing 150 

mg drug in a vehicle containing 20% (w/w) hydroxypropyl-beta-cyclodextrin in 10 mM aqueous citric 

acid.  A dose of 150 mg was selected following pre-clinical studies predicting a 10-fold excess over the 

EC90 for inhibiting HCV entry [18].  Dosing at 150 mg was further supported by studies conducted in 

the initial development of ITX5061 where this dose was sufficient to block uptake of HDL (the 

physiological ligand of SR-BI) as evidenced by increased serum HDL levels in treated study 

participants [17].  The first dose was administered orally approximately 1 hour before the induction of 

anaesthesia. A second dose was given via a nasogastric tube on arrival to the intensive care unit 

following liver transplantation and then once daily for 7 days thereafter. 

Pharmacokinetics. Plasma ITX5061 concentrations were measured by liquid chromatography/mass 

spectrometry [20]. Since ITX5061 is primarily metabolised in the liver an interim analysis of ITX5061 

plasma concentrations was performed on the first 3 treated subjects.  Review of these data by the trial 

steering group and by the Medicines and Health Regulatory Authority UK, recommended continued 

enrolment and treatment of the remaining 7 patients. 

HCV replication kinetics. Plasma was collected at screening, before surgery, at the time of 

transplantation, and during a follow up period of 90 days. HCV RNA levels were measured on 

admission to hospital, immediately following the induction of anaesthesia, at the time of portal vein 

clamping (the start of the anhepatic phase), immediately before perfusion of the allograft, and an hour 

later. Plasma samples were collected every 4 hours during the first post-transplant day, daily for the 

first week, weekly for the first month, and monthly thereafter up to 90 days. Plasma HCV RNA was 

measured using the COBAS TaqMan HCV Test v.2.0 in a Health Protection Agency UK accredited 

laboratory.   
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Viral sequencing. HCV RNA was purified from plasma obtained immediately before surgery and 7 

days later. Each sample was analysed by UDPS of the viral structural genes (core, E1, E2 and P7) 

including the hypervariable region (HVR) using genotype specific primers (Suppl. Table 1). Amplicons 

were ligated to adaptors (Nextera Tagmentation), amplified by emulsion polymerase chain reaction 

(PCR) and sequenced on a 454 GS Junior (Roche). The raw sequence outputs (“reads”) were 

assembled using the Assemble Viral 454 [21] and VICUNA de novo assembler software [22] to form a 

consensus assembly.  The reads were corrected for systematic 454 errors and aligned to the 

consensus assembly using the ReadClean 454 and V-Phaser algorithms [23]. Average sequence 

lengths varied from 342 to 405 nucleotides and on average 3900 reads were generated for each 

sample, a total of 1·5 to 2·9 x 106 bases and an average coverage of 350 to 500 reads for each base. 

Heat-maps of the viral envelope (E2) region were generated to graphically represent sequence 

polymorphisms. Genetic diversity within samples, and divergence between samples were assessed by 

calculating genetic distance estimates. Pairwise comparisons of sequences allowed estimates of 

genetic diversity of viral quasispecies before and after therapy. 

Statistics.  The primary endpoint of this study was to assess ITX5061 safety in liver transplant 

recipients. Adverse events were graded in accordance with the National Cancer Institute Common 

Terminology Criteria version 4.0 and were tabulated according to treatment allocation. The secondary 

endpoint was to measure plasma HCV RNA levels in treated and untreated patients. As a global 

summary of HCV RNA changes in the first week after transplantation the area over the curve (AOC) 

was calculated from the anhepatic baseline value in line with previous similar studies [9].  Categorical 

data were compared using Fisher’s exact test whilst continuous data were compared using the Mann-

Whitney test. Analyses were performed using Prism v 6.0e (Graphpad) and CLC 6.1 workbench. 

Role of the funding source.  Representatives of iTherX Pharma Inc. were involved in the initial 

design of the study.  None of the other funding agencies had any role in study conduct.  The 

corresponding author had full access to the study data and made the final decision to submit for 

publication. 
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Results 

Patients. 23 patients were included in the study (Fig.1) and their characteristics are listed in Table 1. 

The patients were predominantly males (21/23) infected with HCV genotype 1 (13 cases) or genotype 

3 (8 cases). Sixteen patients were transplanted for liver failure and seven for HCC. The baseline 

median HCV RNA load was 5.8 log10 IU/mL in in the untreated group and 5.3 log10 IU/mL in the 

ITX5061 treated group. There were no significant differences in any of the clinical parameters between 

the groups. All transplanted livers were from deceased donors and the donor age was comparable 

between the groups. 

Safety. During the study period there were a total of 165 serious adverse events (SAE) and 342 

adverse events.  There was no difference in the frequency or severity of adverse events between 

control or treatment groups (Table 2) and no adverse events leading to the discontinuation of ITX5061. 

On a per patient basis the median number of grade 1 and 2 adverse events was 15 in the untreated 

group and 14 in the ITX5061 treated group (p=0.96, Mann-Witney test).  Similarly the median number 

of SAEs was 7 in the untreated group compared with 6 in the ITX treated group (p=0.45, Mann-Witney 

test).  One patient in the control group died from a subarachnoid haemorrhage 8 weeks after 

transplantation. A further patient required emergency re-transplantation for haemorrhagic necrosis at 

day 8 after transplantation. The remaining SAEs were related to elevations of transaminases >2000 

IU/mL, hyperglycaemia, symptomatic anaemia, acute kidney injury, severe infection, agitation and 

confusion, and perioperative hypotension associated with ventricular tachycardia. For one treated 

patient, elevated transaminases were prolonged and initially categorised as “probably related to 

ITX5061”.  Treatment was continued and transaminases declined in line with other treated and 

untreated patients. The peak transaminase levels measured 24 hours following transplantation were 

comparable between the groups (Suppl. Fig.1).  There was no difference in trough plasma tacrolimus 

concentrations measured at day 3, day 5, and day 7 after transplantation although concentrations at 

day 7 were numerically lower (5.4 vs. 7.2 µg/L, Table 3). 

Pharmacokinetics. Plasma ITX5061 concentrations were measured during the treatment period in all 

patients. Oral administration approximately 1 hour before transplantation resulted in good absorption 

and median plasma concentrations of 336 ng/mL (interquartile range, 291 – 481ng/mL) at the start of 

anaesthesia (Suppl. Fig.2). At the time of reperfusion plasma drug levels were 5- to 90-fold in excess 

of the predicted EC90 (3 ng/mL) to limit HCV entry [18]. During the early post operative period there 

was no evidence of drug accumulation and trough levels (24±4 hours since last dose) were, on 

average, greater than 18-fold in excess of the predicted EC90 in all subjects. 

HCV RNA kinetics after transplantation. We observed a rapid decrease in HCV RNA immediately 

after allograft reperfusion in all patients (Fig.2A). The initial decline in the first 16 hours was similar in 

both groups, suggesting that the drug has minimal effect on viral clearance. We noted a rebound of 

viral RNA 24 hours post surgery in the untreated patients that most likely reflects de novo infection 

and release of viral particles into the periphery. Importantly, this rebound was not apparent in any 

patient receiving ITX5051 (Fig.2B), suggesting that ITX5061 limits primary infection of the allograft.   
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Two patterns of HCV RNA replication kinetics were observed in the untreated group between 24 and 

168 hours after transplantation: 5 patients showed an early increase in HCV RNA (>10 fold) and the 

remaining 8 showed stable or decreasing viral loads. The majority of subjects in the ITX5061 treated 

group (7/10) showed stable or decreasing viral loads. Two treated patients showed >10 fold increase 

in HCV RNA between 24 and 72 hours after transplant and a third patient showed increasing HCV 

RNA between 4 and 7 days (Fig.3A). The median HCV RNA decline was greater in ITX5061 treated 

patients throughout the treatment period although there was no significant difference when the AOC 

was calculated (Fig.3B). At one month post transplantation, HCV RNA levels were comparable in both 

groups (Fig.3C&D). The majority of patients were infected with HCV genotype 1 and we assessed the 

effect of ITX5061 on HCV RNA kinetics during the first week of this sub-group. The median reduction 

in HCV RNA was greater in the ITX5061 treated group: no patients in this group showed an increase 

in HCV RNA (Fig.4A&B).  

HCV quasispecies analysis. To assess whether ITX5061 exerts selective pressure the viral 

quasispecies in the plasma on the day of transplant and at the end of therapy were compared. A 

heatmap of E2 diversity shows the HVR to be the most variable region sequenced and provides an 

indicator of genetic diversity (Fig.5A) [24]. Two patterns of quasispecies diversity were observed at 

baseline: in the untreated group (median E2 diversity 9.3%) four patients showed a high level of 

diversity, with >10 HVR sequence variants at day 0 (Fig.5A upper, and Fig.5B); the remaining 5 

patients had significantly fewer variants (2-3) at day 0 (Fig.5A lower, and Fig.5B). Among the treated 

group (median E2 diversity 10.2%) similar patterns were seen, with four patients showing high 

variability and 4 lower (Fig.5B). We failed to observe an association between baseline viral diversity 

and replication kinetics in either group (Fig.5B).	

Sequencing the circulating virus after 7 days showed that in both untreated and treated patients, E2 

diversity was preserved (median diversity 10.4% and 11.6% respectively). Analysis of the sequences 

in the untreated patients showed that, irrespective of their baseline sequence diversity, after 7 days 

many of the initial sequences were replaced by a new group of variants. In contrast, the majority of 

treated patients showed no change in their viral sequence profiles, with new HVR variants being 

detected in only two treated patients. The majority of treated subjects had exactly the same HVR 

sequences at 0 and 7 days, albeit with some alteration in their relative abundance. The average 

pairwise change in the HVR was significantly higher in the untreated compared to the ITX5061 treated 

patients (control patient median change 3.5%, ITX5061 treated 0.1%, Mann-Whitney p=0.027) 

(Fig.5C). Remarkably, for one treated patient not one polymorphic residue was observed among the 

1,152 HVR sequences obtained at day 7. We observed a similar change when the entire E2 region 

was analysed, however, this was not statistically significant (data not shown). These observations 

show that ITX5061 restricts HCV evolution.   
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Discussion 

HCV infects the newly transplanted liver and can cause graft injury with up to 25% of recipients 

experiencing graft failure 10 years post transplant, highlighting the clinical relevance of preventing 

infection of the allograft. The SR-BI antagonist ITX5061 was well tolerated and the drug limited HCV 

RNA rebound 24 hours post surgery.  This was sustained most notably in patients infected with 

genotype 1 viruses. Furthermore, ITX5061 limited HCV evolution suggesting that the drug reduces de 

novo infection events that drive the production of new viral variants. 

The safety profile of ITX5061 was previously established in patients with autoimmune diseases (at 

doses up to 300 mg) and in chronic HCV infected patients with no indications for liver transplantation.  

This was a “first in indication” study to determine safety in the liver transplant population where 

additional issues of surgery and concomitant medications apply. We did not identify any excess of 

adverse events in the treated group and there was no evidence for a significant drug interaction with 

tacrolimus.  Tacrolimus trough concentrations were numerically lower in the ITX5061 treated group at 

day 7 following transplantation and larger studies would be necessary to determine both safety and 

the presence or absence of significant drug-drug interactions with a greater degree of accuracy.  

Importantly there was no deleterious accumulation of ITX5061 in the plasma due to impaired hepatic 

clearance in the hours and days following transplantation although the majority of patients included in 

this study had relatively well preserved synthetic function and low median model for end-stage liver 

disease (MELD) scores.  Whilst there is no reason to expect greater toxicity in patients with more 

advanced liver failure since treatment targets the allograft, continued assessment of drug levels with 

pharmacokinetic analyses would be appropriate in future studies. 

This trial is the first to target a host entry factor in HCV infected subjects undergoing liver 

transplantation. In a similar study Chung and colleagues showed that a humanised antibody targeting 

the HCV encoded E2 envelope glycoprotein reduced viral RNA burden in 6 subjects in an analogous 

manner to our observations with ITX5061 [10]. This raises the question of the magnitude of HCV RNA 

decline that is possible following treatment with agents targeting the entry step of the viral lifecycle. 

The fate of viral particles following transplantation is challenging to study. Studies of HCV replication 

kinetics and quasispecies diversity post liver transplant suggest that 3-4% of circulating virus is 

produced from sites outside the liver [2-4].  Assuming these estimates are accurate, it would not be 

possible for an inhibitor targeting the viral entry process to depress the plasma viral burden by more 

than 96-97%. It may therefore be unrealistic to expect larger reductions in HCV RNA with even the 

most potent entry inhibitors. This is in contrast to the effects of DAAs that are increasingly being used 

in both patients waiting for liver transplantation and in patients post-transplantation where rapid 

reductions in plasma HCV RNA are observed [25].  In vitro studies and small animal models that 

support HCV replication show that entry inhibitors can prevent infection and suggest a role for these 

agents in the transplantation setting [15, 26].  Since these model systems lack extrahepatic sites for 

virus replication they are likely to overestimate the efficacy of entry inhibitors in patients undergoing 

liver transplantation as evidenced in our current study.   
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ITX5061 was recently reported to have a minimal effect on HCV RNA burden in subjects with chronic 

genotype 1 infection [27]. A number of explanations that are also relevant to the current study were 

proposed including insufficient dosing, duration of treatment or the presence of pre-existing drug 

resistant mutations. Zhu and colleagues reported that a single amino acid substitution in HCV E2 at 

residue N415D conferred resistance to ITX5061 in vitro [19]. However, inspection of our UDPS 

dataset from treated patients failed to identify a single occurrence of this polymorphism, demonstrating 

that mutations at this site did not explain the limited efficacy of ITX5061 in our study.  An alternative 

explanation for the modest effects of ITX5061 on HCV replication may be insufficient drug targeting 

hepatocellular SR-BI. However, pharmacokinetic analysis demonstrated drug plasma levels in excess 

of the EC90 required to inhibit HCV entry in vitro. Since ITX5061 is cleared by the liver we anticipate 

that hepatic levels will exceed those measured in the plasma and so it is unlikely that insufficient drug 

contributed to the limited efficacy of in vivo. We failed to see any association between drug levels and 

the early rise in HCV RNA observed in two patients. Masson et al reported increased serum HDL as a 

biomarker for ITX5061 activity [17].  However, we did not identify any significant differences in serum 

HDL levels between the treated and untreated groups (Suppl. Fig.3).  The marked decrease in HDL 

observed in both groups following transplantation is likely associated with the dyslipidaemia of patients 

with critical illness that is well recognised [28] and may explain the failure to demonstrate a difference 

between the groups in this study. Additional factors such as the IL-28B polymorphism may define 

innate interferon signalling in the allograft that may affect early stage HCV replication kinetics. 

Unpublished data show no significant role for IL28B genotype of the donor or recipient in early stage 

HCV replication kinetics (X. Forns and S. Perez-del-Pulgar, personal communication).  We observed 

an apparent genotype dependent response to ITX5061 favouring genotype 1 infected patients. Whilst 

there is no in vitro evidence for genotype specific effects of ITX5061, these data support a model 

where genotype 3 viruses may be less dependent on SR-BI for entry into hepatocytes in vivo. This 

finding is analogous to early studies with the protease inhibitor telaprevir that showed in vitro activity 

against genotype 3 viruses but limited efficacy in vivo [29]. Given the relatively small number of 

patients studied, it is possible that our observations are made by chance, and that there is no 

genotype-dependent effect of ITX5061 on viral kinetics and further clinical studies are required to 

explore this further. 

SR-BI is expressed on the endothelial cells lining the sinusoids that play a major role in the clearance 

of adenoviral particles from the circulation [30].  However, their role in HCV infection is debated and 

the scavenging activity of SR-BI may contribute to clearing HCV particles from the periphery [31, 32].  

ITX5061 had no effect on HCV clearance rates suggesting a minimal role for endothelial SR-BI in this 

process. In contrast, ITX5061 had a significant reduction on HCV RNA levels 24h post transplant, 

suggesting a block to extracellular virus production from newly infected hepatocytes. This conclusion 

is supported by data showing an eclipse period of approximately 9h between virus entry into a 

hepatoma cell and the detection of extracellular progeny virus [33].  

This trial provided the opportunity to study the impact of an entry inhibitor on HCV evolution in the first 

week after transplantation. We observed a complex and evolving pattern of HCV variants in the 

plasma of untreated patients. In contrast to earlier reports that suggest a ‘founder effect’ leads to 
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monotypic infection of the allograft [34-36], our data are consistent with a recent report demonstrating 

that viral diversity is maintained in the first months after liver transplant [37]. The apparent 

discrepancies between these studies most likely reflect the increased depth of ultra deep sequencing 

methodologies used to study the HCV infected allograft. Importantly, we saw limited evidence for viral 

genetic evolution in treated patients, demonstrating efficacy of ITX5061 in vivo. 

The results of this study need to be viewed in the context of recent and ongoing developments in the 

field of therapy for HCV infection, including the recent introduction of DAAs targeting the viral 

polymerase, protease, and non-structural protein NS5A. Clinical trials of various DAAs demonstrate 

high cure rates (>90% in most studies) in selected patient populations. However, there is limited 

information on the use of DAAs in the liver transplantation setting, although data suggest that new 

DAA combinations are likely to be effective at curing infection after transplantation [25, 38, 39]. Future 

treatment strategies are likely to include DAAs to cure HCV infection before or after liver 

transplantation. HCV entry inhibitors, like ITX5061, may have a role in patients who are transplanted 

during antiviral treatment or in those who develop DAA resistance undergoing retreatment. 

In conclusion, ITX5061 treatment was safe and had no significant drug-drug interactions. The drug 

reduced HCV RNA in the plasma, in particular in genotype 1 infected patients, and restricted HCV 

sequence evolution. The relatively modest reduction in HCV RNA levels argues for a role of 

extrahepatic sites of replication in infection [40] and suggest that future studies of entry inhibitors may 

be more effectively utilized in combination with replication inhibitors to eradicate HCV infection.   
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Table 1.  Patient demographics.  G, genotype; HCC, hepatocellular carcinoma; IQR, interquartile 

range; MELD, model for end-stage liver disease.  Continuous variables compared with the §Mann-

Witney test, and categorical variables compared using +Fisher’s exact test. 

Table 2. Patient safety information.  All adverse events were recorded.  The highest grade of each 

adverse event for all participants was categorised.  Adverse events were graded using the National 

Cancer Institute Common Terminology Criteria v.4.0. 

Table 3.  Tacrolimus dosing information.  Tacrolimus dose and trough concentrations were 

recorded at day 3, day 5, and day 7 after transplantation.  All comparisons were made using the 

Mann-Witney test. IQR, interquartile range. 

Fig.1.  Recruitment flowchart for ITX5061 trial. Of 33 individuals who consented to participate 10 

were not included in the final study. The first 13 patients who did not receive drug were sampled under 

the same regimen as the remainder to give comparison samples for the subsequent analyses.  HCC, 

hepatocellular carcinoma. 

Fig.2: Plasma HCV RNA kinetics in the first 24 hours after transplantation.  The median (± 

interquartile range) viral load values for plasma samples taken over the first 24 hours post-transplant 

are shown relative to the sample taken at the end of the anhepatic phase (time zero, panel A).  The 

HCV RNA values in all patients at 24 hours were compared using the Mann-Witney test (B). 

Fig.3: HCV RNA in ITX5061 treated and untreated patients. The individual viral load values for 

plasma samples taken over the first week post-transplant are shown relative to the sample taken at 

the end of the anhepatic phase (time zero, panel A). The area over the curve (AOC) of HCV RNA 

values in the first transplant week (B) were compared using the Mann-Witney test.  Weekly monitoring 

of HCV RNA levels continued in both untreated and ITX5061 treated patients after the first week post 

transplant with the boxed area indicating the treatment period (C).  The AOC of values for changes in 

the first month after transplantation were compared using the Mann-Witney test (D). 

Fig.4: HCV RNA in ITX5061 treated and untreated genotype 1 infected patients. The individual 

viral load values for plasma samples from genotype 1 infected patients are shown relative to the 

sample taken at the end of the anhepatic phase (time zero, panel A).  The area over the curve (AOC) 

of HCV RNA values in the first transplant week were compared using the Mann-Witney test (B). 

Fig.5: Effect of ITX5061 on HCV genetic diversity and genetic change during therapy. Ultra-deep 

pyrosequencing of HCV E1E2 variants in the plasma show two patterns of intra-sample diversity: high 

variability (>10%, upper heatmap) or a lower level of diversity (< 10%, lower heatmap). Each box in 

the heatmap corresponds to an amino acid position within E1E2, where diversity is quantified 

according to a colour gradient where black corresponds to no diversity, dark blue less than 10% 

diversity and brighter colours, e.g. green equate to higher diversity up to 50% (A). Average pairwise 

diversity between sequences in plasma samples from untreated (UT) and ITX5061 treated patients at 

0 and 7 days were determined, no significant differences were seen between any of the four groups. 

Open symbols indicate samples derived from patients with fast replication kinetics, and closed 
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symbols with slow kinetics (B). Assessment of sequence change in the HVR region during the first 

week after transplant shows a significant reduction in the amount of change detected in ITX5061-

treated patients (Mann-Witney p=0.027). Open symbols indicate samples derived from patients with 

fast replication kinetics, and closed symbols those with slow kinetics (C).   
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 Untreated (n=13) ITX5061 (n=10) Comparison 

Age, y 

Median (IQR) 

 

57 (49 – 58) 

 

56 (48 – 51) 

 

0.87§ 

Male gender 

No. (%) 

 

11 (85) 

 

10 (100) 

 

0.49+ 

Ethnicity 

No. Caucasian (%) 

 

9 (69) 

 

10 (100) 

 

0.10+ 

Weight, kg 

Median (IQR) 

 

88 (73 – 98) 

 

93 (91 – 95) 

 

0.73§ 

BMI, kg/m2 

Median (IQR) 

 

27.3 (26.7 – 31.1) 

 

29.6 (26.7 – 31.5) 

 

0.84§ 

Indication 

No. Liver failure (%) 

No. HCC (%) 

 

8 (62) 

5 (38) 

 

8 (80) 

2 (20) 

 

 

0.41+ 

MELD 
Median (IQR) 

 

15 (11 – 17) 

 

15 (11 – 16) 

 

0.99§ 

HCV RNA, log10 IU/mL 
Median (IQR) 

 

5.8 (4.7 – 6.0) 

 

5.3 (4.5 – 6.1) 

 

0.68§ 

Genotype 
No. G1 (%) 

No. G2 (%) 

No. G3 (%) 

No. G4 (%) 

 

7 (54) 

1 (8) 

4 (30) 

1 (8) 

 

6 (60) 

0 (0) 

4 (40) 

0 (0) 

 

 

 

 

1.00+ 

Prior antiviral therapy 

Yes (%) 

 

10 (77) 

 

9 (90) 

 

 

0.60+ 

Donor age 
Median (IQR) 

 

50 (45 – 56) 

 

54 (42 – 60) 

 

0.94§ 

Donor type 
Donation after brain death 

Donation after cardiac death 

 

9 

4 

 

6 

4 

 

 

0.69+ 

Whole or split liver transplant 

Whole 

Split 

 

11 

2 

 

9 

1 

 

 

1.00+ 

Cold ischaemia time, minutes    

Median (IQR) 534 (494 – 615) 490 (454 – 517) 0.07§ 

Warm ischaemia time, minutes 
Median (IQR) 

 

41 (35 – 42) 

 

38(37 – 44) 

 

0.77§ 

 

Table 1.  Patient demographics.  BMI, body mass index; G, genotype ; HCC, hepatocellular 
carcinoma; IQR, interquartile range; MELD, model for end-stage liver disease.  Continuous variables 
compared with the §Mann-Witney test, and categorical variables compared using +Fisher’s exact test. 
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 Grade 1 Grade 2 Grade 3 Grade 4 
Untreated 

(n=13) 
ITX5061 
(n=10) 

Untreated 
(n=13) 

ITX5061 
(n=10) 

Untreated 
(n=13) 

ITX5061 
(n=10) 

Untreated 
(n=10) 

ITX5061 
(n=10) 

Blood and lymphatic 
system disorders 
 

4 5 8 4 9 11 1 1 

Cardiac disorders 
 

0 0 5 1 3 0 2 0 

Gastrointestinal 
disorders 
 

8 7 17 20 3 1 0 0 

General disorders and 
administration site 
condition 
 

14 4 5 3 1 0 0 0 

Infections and 
infestations 
 

1 0 3 2 0 0 2 0 

Investigations 
 

24 26 35 16 35 27 17 11 

Metabolism and nutrition 
disorders 
 

2 2 22 26 9 3 2 1 

Musculoskeletal and 
connective tissue 
disorders 
 

1 2 2 0 0 0 0 0 

Nervous system 
disorders 
 

7 8 4 2 0 0 1 0 

Psychiatric disorders 
 

5 2 6 4 2 1 2 0 

Renal and urinary 
disorders 
 

0 2 0 0 1 0 0 1 

Respiratory, thoracic, 
and mediastinal 
disorders 
 

2 2 2 3 5 1 0 0 

Skin and subcutaneous 
tissue disorders 
 

1 1 4 0 0 0 0 0 

Vascular disorders 3 0 8 7 5 6 1 0 

	

Table 2.  Patient safety information.  All adverse events were recorded.  The highest grade of each 
adverse event for all participants was categorised.  Adverse events were graded using the National 
Cancer Institute Common Terminology Criteria v.4.0. 
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  Untreated (n=13) ITX5061 (n=10) Comparison 

Tacrolimus daily dose (mg)    

Median (IQR) Day 3 

Day 5 

Day 7 

8 (6 – 8) 

8 (6 – 8) 

6 (6 – 8) 

6 (6 – 7) 

6 (5 – 8) 

6.5 (6 – 8) 

0.21 

0.17 

0.89 

Tacrolimus trough concentration (µg/L)    

Median (IQR) Day 3 

Day 5 

Day 7 

5.0 (3.8 – 6.4) 

7.1 (5.6 – 8.0) 

7.2 (5.8 – 8.8) 

5.7 (3.1 – 8.1) 

5.4 (4.6 – 7.6)  

5.4 (5.0 – 6.3) 

0.79 

0.38 

0.14 

 

Table 3.  Tacrolimus dosing information.  Tacrolimus dose and trough concentrations were 
recorded at day 3, day 5, and day 7 after transplantation.  All comparisons were made using the 
Mann-Witney test. IQR, interquartile range. 
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Fig.1.  Recruitment flowchart for ITX5061 trial. Of 33 individuals who consented to participate 10 
were not included in the final study. The first 13 patients who did not receive drug were sampled under 
the same regimen as the remainder to give comparison samples for the subsequent analyses.  HCC, 
hepatocellular carcinoma. 
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Fig.2: Plasma HCV RNA kinetics in the first 24 hours after transplantation.  The median (± 
interquartile range) viral load values for plasma samples taken over the first 24 hours post-transplant 
are shown relative to the sample taken at the end of the anhepatic phase (time zero, panel A).  The 
HCV RNA values in all patients at 24 hours were compared using the Mann-Witney test (B). 
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Fig.3: HCV RNA in ITX5061 treated and untreated patients. The individual viral load values for 
plasma samples taken over the first week post-transplant are shown relative to the sample taken at 
the end of the anhepatic phase (time zero, panel A). The area over the curve (AOC) of HCV RNA 
values in the first transplant week (B) were compared using the Mann-Witney test.  Weekly monitoring 
of HCV RNA levels continued in both untreated and ITX5061 treated patients after the first week post 
transplant with the boxed area indicating the treatment period (C).  The AOC of values for changes in 
the first month after transplantation were compared using the Mann-Witney test (D). 
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Fig.4: HCV RNA in ITX5061 treated and untreated genotype 1 infected patients. The individual 
viral load values for plasma samples from genotype 1 infected patients are shown relative to the 
sample taken at the end of the anhepatic phase (time zero, panel A).  The area over the curve (AOC) 
of HCV RNA values in the first transplant week were compared using the Mann-Witney test (B). 
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Fig.5: Effect of ITX5061 on HCV genetic diversity and genetic change during therapy. Ultra-deep 
pyrosequencing of HCV E1E2 variants in the plasma show two patterns of intra-sample diversity: high 
variability (>10%, upper heatmap) or a lower level of diversity (< 10%, lower heatmap). Each box in 
the heatmap corresponds to an amino acid position within E1E2, where diversity is quantified 
according to a colour gradient where black corresponds to no diversity, dark blue less than 10% 
diversity and brighter colours, e.g. green equate to higher diversity up to 50% (A). Average pairwise 
diversity between sequences in plasma samples from untreated (UT) and ITX5061 treated patients at 
0 and 7 days were determined, no significant differences were seen between any of the four groups. 
Open symbols indicate samples derived from patients with fast replication kinetics, and closed 
symbols with slow kinetics (B). Assessment of sequence change in the HVR region during the first 
week after transplant shows a significant reduction in the amount of change detected in ITX5061-
treated patients (Mann-Witney p=0.027). Open symbols indicate samples derived from patients with 
fast replication kinetics, and closed symbols those with slow kinetics (C). 


