UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

A common TMPRSS2 variant has a protective effect against severe COVID-19

GenOMICC Consortium; ISARIC4C Investigators; David, Alessia; Parkinson, Nicholas; Peacock, Thomas P; Pairo-Castineira, Erola; Khanna, Tarun; Cobat, Aurelie; Tenesa, Albert; Sancho-Shimizu, Vanessa; Casanova, Jean-Laurent; Abel, Laurent; Barclay, Wendy S.; Baillie, J.Kenneth; Sternberg, Michael JE

DOI:

10.1016/j.retram.2022.103333

License:

Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

GenOMICC Consortium, ISARIC4C Investigators, David, A, Parkinson, N, Peacock, TP, Pairo-Castineira, E, Khanna, T, Cobat, A, Tenesa, A, Sancho-Shimizu, V, Casanova, J-L, Abel, L, Barclay, WS, Baillie, JK & Sternberg, MJE 2022, 'A common TMPRSS2 variant has a protective effect against severe COVID-19', *Current Research in Translational Medicine*, vol. 70, no. 2, 103333. https://doi.org/10.1016/j.retram.2022.103333

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)

•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 12. May. 2024

Available online at

ScienceDirect

www.sciencedirect.com

Elsevier Masson France

Original article

A common TMPRSS2 variant has a protective effect against severe COVID-19

Alessia David^{a,*}, Nicholas Parkinson^b, Thomas P Peacock^c, Erola Pairo-Castineira^b, Tarun Khanna^a, Aurelie Cobat^{d,e,f}, Albert Tenesa^b, Vanessa Sancho-Shimizu^{g,h}, GenOMICC Consortium^{**}, ISARIC4C Investigators^{***}, Jean-Laurent Casanova^{d,e,f,i}, Laurent Abel^{d,e,f}, Wendy S. Barclay^c, J.Kenneth Baillie^{b,j}, Michael JE Sternberg^a

- ^a Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- ^b Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- ^c Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
- ^d St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- ^e Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France
- f University of Paris, Imagine Institute, Paris, EU France
- g Department of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK
- ^h Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- ⁱ Howard Hughes Medical Institute, New York, NY, USA
- ^j Intenstive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK

ARTICLE INFO

Article History: Received 18 October 2021 Accepted 6 January 2022 Available online 10 January 2022

Keywords: SARS-CoV-2 COVID-19 TMPRSS2 Targeting the host to prevent COVID19 severity

ABSTRACT

Background: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection.

Methods: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2_{V160M}). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2_{V160M} to promote viral entry.

Results: We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79–0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50–0.84, $p = 1.3 \times 10^{-3}$). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells.

Conclusion: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

The severe acute respiratory syndrome like coronavirus (SARS-CoV-2) has infected over 190 million individuals globally and has caused more than 4.2 million deaths as of August 2021 [1]. SARS-CoV-2 infection has a broad clinical spectrum, ranging from asymptomatic or

^{*} Corresponding author.

E-mail address: alessia.david09@imperial.ac.uk (A. David).

^{**} See Appendix 1.

^{***} See Appendix 2.

mildly symptomatic, to a life-threatening presentation requiring admission to intensive care. Age, and to a much lesser extent male gender and various underlying clinical conditions, such as cardiovascular disease, obesity and diabetes, are known risk factors associated with an increased COVID-19 morbidity and mortality [2,3]. The role of an individual's genetic background has recently emerged as an additional, yet not clearly understood, risk factor for COVID-19 [4–6]. Rare genetic variants in genes involved in the regulation of type I interferon (IFN) immunity, including autosomal recessive IRF7 and IFNAR1 deficiencies, have been identified in patients with life-threatening COVID-19 [6]. Autoantibodies to type I IFNs also account for at least 10% of cases of critical COVID-19 pneumonia[7]. Genome-wide association studies (GWAS) have discovered genetic haplotypes spanning several genes that are associated with COVID-19 severity [3,4,8].

The transmembrane protease serine type 2 (TMPRSS2) protein plays a key role in coronavirus infections [9–11], including SARS-CoV-2, as it is required for priming the virus' spike (S) glycoprotein through its cleavage, thus facilitating endosome-independent entry into target cells [12,13]. TMPRSS2, which is part of the type 2 transmembrane serine protease (TTSP) family, is characterized by androgen receptor elements located upstream to its transcription site [14]. As well as cleaving and activating viral glycoproteins of coronaviruses and influenza A and B viruses [15], TMPRSS2 is subject to autocleavage, which results in the liberation of its soluble catalytic domain [16]. The conditions under which autocleavage of TMPRSS2 and other members of the TTSPs family occurs are yet to be elucidated.

TMPRSS2 is expressed in lung and bronchial cells [17], but also in the colon, stomach, pancreas, salivary glands and numerous other tissues [18]. Moreover, it is co-expressed in bronchial and lung cells with the angiotensin-converting enzyme 2 (ACE2) [17], which is the best described SARS-CoV-2 cellular receptor [19]. In the olfactory epithelium of mice, the expression of TMPRSS2, but not ACE2, appears to be age-related and greater in older compared to younger animals [20]. Similarly, a recent study showed that expression of TMPRSS2 in mouse and human lung tissue is also age-related [21]. Studies in TMPRSS2 knock out (KO) mice reported reduced SARS-CoV and MERS-CoV replication in the lungs compared to wild-type mice, and a reduced proinflammatory viral response, especially cytokine and chemokine release via the Toll-like receptor 3 pathway [22,23]. We have recently shown that TMPRSS2 expression permits cell surface entry of SARS-CoV-2, allowing the virus to bypass potent endosomal restriction factors [24]. In vitro studies have shown that TMPRSS2 inhibitors prevent primary airway cell and organoid infection by SARS-CoV and SARS-CoV-2 [25,24,26]. In animal studies, mice infected with SARS-CoV and treated with the serine protease inhibitor camostat mesilate had a high survival rate [27]. Recently, camostat mesilate (which, in Japan, is already approved for patients with chronic pancreatitis and postoperative reflux esophagitis) was shown to block SARS-CoV-2 lung cell infection in vitro [12,24]. Furthermore, camostat mesylate and its metabolite GBPA have been shown to block SARS-CoV-2 spread in human lung tissue ex vivo [28]. Several clinical trials using camostate in COVID-19 patients are currently underway [29].

In view of the data from animal models and cell-based studies supporting a protective role of a knock out TMPRSS2 on coronavirus infection (including SARS and MERS), we hypothesized that naturally-occurring TMPRSS2 genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection.

Methods

TMPRSS2 three-dimensional structure and variant analysis

The recently released 3D structure of TMPRSS2 (PDB: 7meq) was used to assess the impact missense variants. The Phyre homology modelling algorithm [30] was used to resolve missing amino acid

regions in the SRSC domain that were not experimentally solved (described in Supplementary material). The FASTA sequence of TMPRSS2 was obtained from the UniProt protein knowledge database [31] (UniProt Id O15393, corresponding to 492 amino acid transcript Ensembl ID ENST00000332149.10). The recently released AlphaFold model [32] was compared to the Phyre model. The impact of each missense variant on the TMPRSS2 protein structure was assessed by analysing the following 16 features, using our in-house algorithm Missense3D [33]: breakage of a disulfide bond, hydrogen bond or salt bridge, introduction of a buried proline, clash, introduction of hydrophilic residue, introduction of a buried charged residue, charge switch in a buried residue, alteration in secondary structure, replacement of a charged with uncharged buried residue, introduction of a disallowed phi/psi region, replacement of a buried glycine with any other residue, alteration in a cavity, replacement of cis proline, buried to exposed residue switch, replacement of a glycine located in a bend. In addition, we used the SIFT [34] and Polyphen2 [35] variant predictors, which mainly use evolutionary conservation to assess the effect of each variant. The effect of variant rs12329760 was further assess using: i. CONDEL [36], which reports a weighted average of the scores from fatHMM and MutationAssessor, and ii. FoldX5 force field [37], which calculates the stability of a protein based on the estimation of its free energy. A $\Delta\Delta G$ > 0.5 kcal/mol (calculated as: $\Delta\Delta G$ = ΔG_{wt} - ΔG_{mut}) was predicted to have a destabilizing effect.

Participants

Genetics Of Mortality In Critical Care (GenOMICC) and the International Severe Acute Respiratory Infection Consortium (ISARIC) Coronavirus Clinical Characterisation Consortium (4C) (ISARIC 4C)

Cases: this cohort was established between March 2020 and July 2020 (first COVID-19 wave) and comprises of 2244 critically ill, hospitalized COVID-19 positive patients from 208 UK intensive care units (ICUs): 2109, patients were recruited as part of the GenOMICC project, and an additional 135 cases as part of the International Severe Acute Respiratory Infection Consortium (ISARIC) Coronavirus Clinical Characterisation Consortium (4C) study. The clinical characteristics and comorbidities of these patients have been extensively reported in Pairo-Castineira et al. [8]. Only unrelated individuals (up to 3rd degree, based on kinship analysis (King 2.1)) were included. Samples were excluded if the genotype-based sex inference did not match the reported sex, or if a XXY karyotype was present. Moreover, patients of mixed genetic ancestry, and from ancestry groups with small numbers of cases (such as North American Indian, n = 13) defined using admixture supervised mode with 1000 genomes as reference, were excluded.

Controls: ancestry-matched controls (ratio 1 case to 5 controls) without a positive COVID-19 test were obtained from the UK BioBank population study. COVID-19 test results in BioBank are obtained from Public Health England, Public Health Scotland and SAIL for English, Scottish and Welsh data, respectively. The vast majority of results are from nose/throat swabs analysed by PCR. For patients admitted to hospital, results can also be from samples obtained from the lower respiratory tract. Only unrelated individuals (up to 3rd degree) were included. Individuals with sex mismatch were excluded. For validation, 45,875 unrelated individuals of European ancestry from the 100,000 Genomes Project were used as an alternative control group.

DNA extraction, genotyping and quality control have been described in detail previously[8]. Genetic ancestry was inferred using ADMIXTURE and reference individuals from the 1000 Genomes project. Imputation was performed using the TOPMed reference panel.

Cells, pseudovirus and plasmid

Human embryonic kidney 293T cells (293Ts; ATCC) were maintained in Dulbecco's modified Eagle's medium (DMEM), 10% foetal

calf serum (FCS), 1% non-essential amino acids (NEAA), 1% penicillinstreptomycin (P/S). Human Caco-2 (ATCC HTB-37) and Calu-3 (ATCC HTB-55) were maintained in DMEM, 20% FCS, 1% NEAA, 1% P/S. All cell lines were maintained at 37 °C, 5% CO₂.

Lentiviral pseudotype production was performed as previously described[24]·[38]. Briefly, pseudovirus was generated by co-transfecting 293Ts with lentiviral packaging constructs pCSFLW (minimal HIV genome with firefly luciferase reporter), pCAGGs-GAGPOL (HIV packing proteins) and the relevant viral glycoprotein in pcDNA3.1 — either the G glycoprotein from Indiana vesiculovirus (VSV-G) or SARS-CoV-2 spike protein. Co-transfections were performed at a plasmid ratio of 1.5:1:1 for pCSFLW:GAGPOL:glycoprotein. Pseudovirus was harvested at 48 and 72 h post-transfection, pooled, filtered, then frozen down. ACE2 FLAG was used as previously described [24]. TMPRSS2 expression plasmid was a kind gift from Roger Reeves (Addgene plasmid #53,887; http://n2t.net/addgene:53887; RRID: Addgene_53,887) [39]. Non-cleavable ACE2-FLAG and TMPRSS2 mutants were generated by overlap extension PCR or site-directed mutagenesis.

Phenotypic assays

293Ts were co-transfected with FLAG-tagged, non-cleavable ACE2 and TMPRSS2, as previously described [24]. Briefly, confluent $10 \mathrm{cm}^2$ dishes of 293T cells were co-transfected with $1~\mu\mathrm{g}$ each of TMPRSS2 and ACE2-FLAG. 24 h later, cells were resuspended in fresh media and either spun down for lysis and western blot or added to 96 well plates along with pseudovirus. 24 h later, media was refreshed and a further 24 h later, cells were lysed with reporter lysis buffer (Promega), and luminescence (measured as relative luminescence units, RLU) was read on a FLUOstar Omega plate reader (BMF Labtech) using the Luciferase Assay System (Promega).

Cell pellets for western blot were lysed in RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM TRIS, pH 7.4) supplemented with an EDTA-free protease inhibitor cocktail tablet (Roche). Cell lysates were combined with 4x Laemmli buffer (Bio-Rad) with 10% β -mercaptoethanol and boiled for 5 min. Membranes were probed with mouse anti-tubulin (abcam; ab7291), rabbit anti-TMPRSS2 (abcam; ab92323) and/or mouse anti-FLAG (F1804, Sigma). Near infra-red (NIR) secondary antibodies, IRDye® 680RD Goat anti-mouse (abcam; ab216776) and IRDye® 800CW Goat anti-rabbit (abcam; ab216773) were subsequently used. Blots were imaged using the Odyssey Imaging System (LI-COR Biosciences). Densitometry was performed using Image].

Reagent, cell lines and antibody validation

All reagents, cell lines and antibodies used in this study are commercially available and validation data are available on the manufacturers' websites.

Statistical analysis

Sample size: Critically ill Covid-19 patients, n = 2,244; random controls matched by ancestry from UK Biobank, n = 11,220. The sample size was determined pragmatically by the number of cases recruited during the first wave of the outbreak in the UK (as described in [8]). No randomization was performed. Blinding was not used in this study because the exposure (genotype) and outcome (ICU admission) are objective. Confounding was controlled by the use of covariates: age, sex, deprivation score and genetic ancestry [8]. The association between the TMPRSS2 rs12329760 variant and COVID-19 severity was assessed using logistic regression. Genetic associations in the GenOMICC/ISARIC 4C cohort were analysed as previously described[8]. Briefly, logistic regression with additive and recessive models was performed in PLINKv1.9, adjusting for sex, age,

mean-centred age-squared, top 10 principal components (principal component analysis [PCA] performed to adjust for population stratification) and deprivation index decile based on UK postcode. Each major ancestry group alternative in the 100,000 Genomes control group was performed with mixed model association tests in SAIGE (v0.39) [40], including age, sex, age-squared, age-sex interaction and the first 20 principal components as covariates. Trans-ethnic meta-analysis of GenOMICC data for different ancestries was performed by METAL using an inverse-variance weighted method and the P-value for heterogeneity was calculated with Cochran's Q-test for heterogeneity implemented in the same software [41].

Additional publicly available genetic data were obtained from the COVID-19 Host Genetics Initiative meta-analyses, release 6 (June 15, 2021) [42]. The COVID-19 Host genetics initiative classifies COVID-19 severity according to the use of invasive and non-invasive ventilation during hospital admission. Here we report the four different phenotype comparisons:

- A2: 8,779 critically ill confirmed cases (inclusion criteria: hospitalized for COVID-19 and either death or on respiratory support including intubation, CPAP, BiPAP, continue external negative pressure, Optiflow/very high flow Positive End Expiratory Pressure Oxygen) versus 1,001,875 population controls,
- B1: 14,480 hospitalised cases versus 73,191 non-hospitalised cases,
- B2 24,274 hospitalised cases versus 2,061,529 population controls, and
- C2: 112,443 COVID-19 cases of unspecified severity versus 2,473,889 population controls.

Analyses used all data with the exclusion of the 23&Me study, for which full data were not publicly available. Meta-analysis in all cases was performed using a fixed effect, inverse variance-weighted model, either as a trans-ethnic meta-analysis or subsetted by ancestry group.

Data are presented as mean \pm standard deviation. Log-normality was assessed using the Shapiro-Wilk test and QQ plot. A two-tailed Student's t-test was used to compare the means of two groups. Oneway ANOVA was used to compare the means of more than two groups.

Colocalisation analysis

Colocalisation analysis for genetic associations was performed by an Approximate Bayes Factor approach using the package coloc version 5, in R 4.1.0 [43]. Summary statistics (beta and variance) were from GWAS data [8] and from lung eOTL data from GTex v8 [44], in individuals of European ancestry. To reduce the likelihood of violation of the single causal variant assumption arising from multiple independent association signals, the analysis was restricted to a region extending to 5 kb upstream and downstream of the TMPRSS2 gene. With the assumption that exactly one measured SNP in the region was causative for each trait, SNP-level priors (p1 and p2) of 1/ (n SNPs) were used for the probability of association with each individual trait, with an arbitrary prior of 0.1 x p1 for p12, the SNP-level prior probability of association with both traits. Sensitivity analysis was performed to assess the impact of prior selection, comparing the selected priors to the more stringent default priors (10⁻⁴ for p1 and p2, 10^{-5} for p12), and varying the p12 range from p1 to p1 x p2.

Ethics

Research ethics committees (Scotland 15/SS/0110, England, Wales and Northern Ireland: 19/WM/0247). Current and previous versions of the study protocol are available at genomicc.org/protocol. All participants gave informed consent.

Role of funders

The Wellcome Trust, UKRI, MRC/UKRI, Howard Hughes Medical Institute, Rockefeller University, St. Giles Foundation, Fisher centre for Alzheimer's Research Foundation, Meyer Foundation, Square Foundation, Grandir Fonds de solidarité pour l'enfance, SCOR Corporate Foundation for Science, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Paris, National Institutes of Health, French Foundation for Medical Research, FRM and French National Research Agency (ANR) GENCOVID, Agence Nationale de la Recherche, Health Data Research UK and BBSRC provided funding to support the salaries of the authors but had no role in the design, data collection, analysis, interpretation of the results or writing of the report. The content of this publication is solely the responsibility of the authors.

Results

We extracted 377 TMPRSS2 genetic variants reported as loss of function (LoF), missense or inframe and indel in the database of population genetic variations GnomAD (v2.1.1). All variants passed quality filters in GnomAD. Nine variants flagged by GnomAD as carrying dubious annotation or quality were excluded. Forty variants were loss of function or indel and the remaining 328 were missense. All variants except for one (rs12329760 C>T) were very rare (MAF < 0.001). We focused on missense variants and studied the evolutionary conservation of TMPRSS2 amino acids and the impact of amino acid substitution on TMPRSS2 protein structure (described in Methods). The first experimental structure of TMPRSS2 was released in the public domain in June 2021. Although the trypsin domain was well resolved, several unstructured loops were present in the SRCR domain. We, therefore, used homology modelling and the Phyre2 server to model the missing regions of SRCR (Fig. 1). For completeness, a comparison between the Phyre2 model and the recently released (August 2021) AlphaFold [32] model is presented in Figure S1 (Phyre2 versus AlphaFold model: root mean square deviation [RMSD] 0.5 Å). We identified the chemical and physical bonds that stabilize the TMPRSS2 structure (i.e. hydrogen bonds, cysteine and salt bridges, as detailed in the Methods) and are affected by amino acid substitutions naturally occurring in the human population. A total of 137 variants were predicted damaging to the structure and/ or function of TMPRSS2. Of these, 136 variants are extremely rare in the human population, with an average minor allele frequency (MAF) of 9.67 \times 10⁻⁶ (cumulative MAF of 7.3 \times 10⁻⁴) and are, therefore, unlikely to be of use as a marker of COVID-19 infection severity in the population. The remaining variant, rs12329760, (NC_000021.9:g.41480570 C>T [GRCh38.p13], p.Val160Met on Ensembl transcript ENST00000332149.5 and Val197Met on the Ensembl transcript ENST00000398585.3) is predicted damaging and causes the substitution of an evolutionary conserved valine to methionine (Figure S2). Overall, the minor allele frequency (MAF) of this variant is 0.25 in the human population, with 6.7% homozygous individuals (9,587 T/T homozygotes out of 141,456 individuals sequenced as part of the GnomAd project). Under Hardy-Weinberg equilibrium and a MAF of 0.25, it is expected that 37% of individuals will be heterozygous for this variant. The MAF of rs12329760 T varies according to ethnicities and ranges from 0.14 in Ashkenazi Jewish to 0.38 in East Asian populations (0.15 in Latino, 0.23 in non-Finnish Europeans, 0.25 in South Asians, 0.29 in African/African Americans and 0.37 in Finnish Europeans). This highly conserved valine occurs in the scavenger receptor cysteine-rich (SRCR) domain, whose function within TMPRSS2 is still not fully understood, although a role in ligand and/or protein interaction has been proposed [45]. Indeed, this domain is present in several proteins involved in host defence, such as CD5, CD6 and Complement factor I [46,47].

We first analysed the relation between TMPRSS2 rs12329760 and life-threatening SARS-CoV-2 infection in 2,244 critically ill, hospitalized, COVID-19 positive patients from 208 UK intensive care units (ICUs) (Table 1) recruited as part of the GenOMICC (genomicc.org) and ISARIC 4C (isaric4c.net) projects. These patients were representative of critically ill patients with COVID-19 in the UK population during the first Sars-Co-V2 outbreak of 2020[8]. Patients were treated in intensive care units (ICU/ITU) because of their propensity to critical respiratory failure due to COVID-19. Within the GenOMICC cohort (n = 2,109), mean age was 57.3 \pm 12.1, 624 (30%) patients were females, and 396(19%) had comorbidities; 1,557 (74%) required invasive ventilation and 459 (22%) died within 60 days. Within the ISARIC 4C cohort (n = 135), mean age was 57.3 \pm 2.9, 46 (34%) were females, and 40 (30%) had comorbidities; 25 (19%) required invasive ventilation and 22 (16%) died within 60 days, as described in[8]. 11,220 ancestry-matched individuals without a COVID-19-positive PCR test from the UK BioBank, acted as controls. Under an additive model, we found that the minor T allele of rs12329760 was significantly associated with a protective effect against severe COVID-19 in individuals of European ancestry (1,676 cases, 8,379 controls) with an OR of 0.87 (95%CI:0.79–0.97, p = 0.01). A protective effect was also observed in individuals of East Asian ancestry (149 cases, 745 controls; OR 0.64, 95%CI:0.43-0.95, p = 0.03). Similar effect sizes were observed in South Asians and Africans, but did not reach statistical significance, most likely as a result of the small sample size (Fig. 2). We further confirmed this protective effect on a trans-ethnic meta-analysis, using the entire cohort of 2,244 patients (OR 0.84, 95%CI:0.77-0.93, $p = 5.8 \times 10^{-4}$, Fig. 2, panel A). A heterogeneity analysis suggested that the T allele has a similar effect across different ethnicities (p = 0.47). To ascertain that this association was not an artefact due to population bias in the UK BioBank controls, the results from the European cohort were confirmed on an independent control population (45,875 unrelated individuals of European ancestry from 100 K Genomes [48]: OR 0.89, 95%CI:0.81-0.99, p = 0.02). Under a recessive model (i.e. individuals homozygous for the T allele), the trans-ethnic meta-analysis on 2,244 critically ill COVID-19 patients estimated an OR of 0.65 for TT homozygotes (95%CI:0.50–0.84, $p = 1.3 \times 10^{-3}$). In subset analyses, the OR was estimated at 0.70 (95%CI:0.52-0.95, p = 0.024) in Europeans, and 0.28 (95%CI:0.09–0.82, p = 0.019) in East Asians versus their corresponding ancestry-matched controls (Fig. 2,

To assess whether the rs12329760 could be a proxy for an association with a nearby expression quantitative trait locus (eQTL), colocalisation analysis was performed to compare the GWAS signal at the locus to eQTL associations for TMPRSS2 and neighbouring gene MX1 in GTex version 8 [44] (Figure S3 A-C), using an Approximate Bayes Factor approach [43]. Under an assumption of a single causal variant within the locus for each trait, the posterior probability of a common causal variant was 1.1% for TMPRSS2 expression and 2.0% for MX1 expression, compared to posterior probabilities of 67% and 42% respectively for independent associations. Sensitivity analysis showed that the analysis was robust to choice of prior probabilities: more stringent software-default single-trait priors increased the posterior probabilities of null or single-trait-only association hypotheses, but had little impact on the colocalisation probability (1.1% for TMPRSS2 and 0.2% for MX1); varying prior probability for colocalisation (Figure S3 D-F) had an impact only when approaching the prior for single-trait associations, and did not result in posterior probabilities for colocalisation exceeding those for separate associations. Although independent contributions from multiple variants towards the genetic association cannot be excluded, this indicates that any genetic association between rs12327960 and severe COVID-19 is unlikely to be attributable to linkage disequilibrium with an eQTL and, thus, modification of protein function is more likely.

For additional corroboration of the genetic signal, we investigated the results of large GWAS meta-analyses performed in the context of

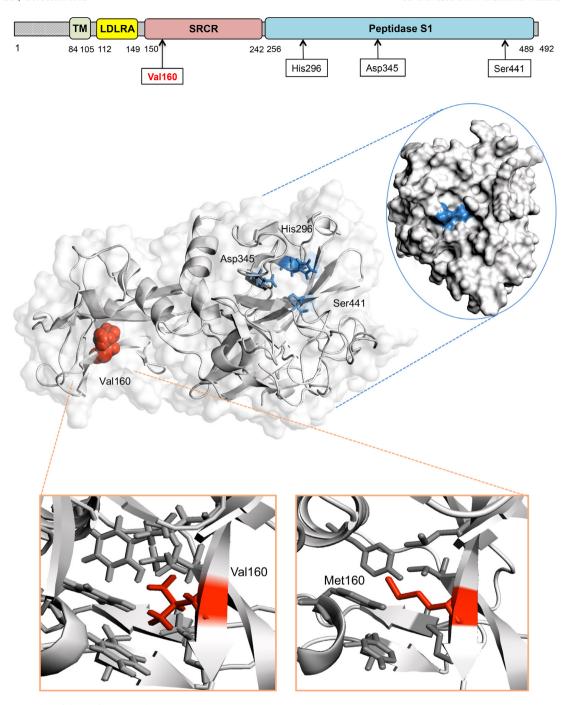


Fig. 1. The TMPRSS2 protein and the p.Val160Met variant

The TMPRSS2 protein is composed of a cytoplasmic region (residues 1–84), a transmembrane region (TM, residues 85–105) and an extracellular region (residues 106–492). The latter is composed of three domains: the LDLR class A (residues 112–149), the scavenger receptor cysteine-rich domain (SRCR) (residues 150–242) and the Peptidase S1 (residues 256–489), which contains the protease active site: residues His296, Asp345 and Ser441. The three-dimensional structure of the extracellular region residues 145–491 corresponding to domains SRCR-2 (in green) and Peptidase S1 (in blue) is presented. Valine 160 (Val 160, depicted as a red sphere on the cartoon), which harbours variant p.Val160Met, occurs in the SRCR domain and spatially far from the TMPRSS2 catalytic site (mapped onto the surface of TMPRSS2).

the COVID-19 Host Genetics Initiative (COVID-19hg, available at https://www.COVID-19hg.org/, release 6, June 2021) [42]. Compared with the general population, in a trans-ethnic meta-analysis, the minor T allele of rs12329760 was associated with a significantly protective effect against severe COVID-19 (patients requiring hospitalization for COVID-19): 24,274 cases versus 2,061,529 controls; OR 0.95, 95%CI:0.92–0.97, $p = 4.72 \times 10^{-6}$. In ancestry-specific subgroup analyses, this effect was significant for a European population (OR 0.94, 95%CI:0.91–0.96, $p = 5.66 \times 10^{-6}$), but not for individuals of African, Hispanic-American, or admixed African/Hispanic/American

ancestry; however, lower sample sizes for these groups limited study power, and subgroup analyses were not available for Asian populations. The protective effect was particularly evident in confirmed, critically ill cases (8,779 cases versus 1,001,875 population controls; OR 0.91, 95%CI:0.87–0.95, $p=8.18\times10^{-6}$). Furthermore, the rs12329760 T allele was associated with reduced risk of hospitalisation after confirmed infection (14,480 hospitalised versus 73,191 cases not requiring hospitalization within 21 days after the test): OR 0.96, 95%CI:0.92–0.99, p=0.012. Finally, there was no significant difference (p=0.056) in the prevalence of the T allele between the

Table 1Characteristics of 2,244 GenOMICC/ISARIC patients and 11,220 BioBank controls included in the study.

Patient characteristics	Cases (n = 2,244)		Controls (<i>n</i> = 11,220)
		missing data	
Females, n. (%)	670[30]		6,075[54]
Age (years), mean \pm SD	57.3 ± 11.6		66.1 ± 8.0
Invasive ventilation, n. (%)	1,582 (70.50)	66 (2.94)	n.a
Death, n. (%)	481 (21.44)	368 (16.40)	n.a
Ancestry			
European, n. (MAF)	1,676 (0.20)		8,380 (0.23)
South Asian, n. (MAF)	237 (0.21)		1,185 (0.24)
African, n. (MAF)	182 (0.26)		910 (0.29)
East Asian, n. (MAF)	149 (0.28)		745 (0.38)

MAF, minor allele frequency; n.a, not available.

general population (n = 2,473,889) and pooled individuals with a laboratory-confirmed SARS-CoV-2 infection (including hospitalized and life-threatening COVID-19 cases from the metanalyses previously described) or with a self-reported or physician-confirmed COVID diagnosis (total n = 112,443 cases, Fig. 2, panel A).

Although these meta-analyses include UK Biobank data and all except the hospitalised versus non-hospitalised comparison include data from the GenOMICC/ISARIC 4C cohort, and thus do not provide completely independent replication, these cohorts only comprise less than 25% of the total cases, limiting the impact of this single study on the overall results. These data therefore provide further support for our hypothesis that the TMPRSS2 rs12329760 variant has a protective effect against severe and/or life-threatening COVID-19. However, studies examining the prevalence of this variant in SARS-CoV-2 infected asymptomatic or pauci-symptomatic individuals are needed to ascertain its protective effect against mild viral infection.

To investigate the phenotypic effect of the TMPRSS2 V160M variant, we co-transfected 293Ts cells, which we have previously confirmed that they do not endogenously express ACE2 or TMPRSS2 [24], with ACE2 and either TMPRSS2 wild type (TMPRSS2_{WT}) or

V160M (TMPRSS2_{V160M}), as previously described [24]. We and others previously observed that co-expression of TMPRSS2 and ACE2 results in rapid cleavage of ACE2. We, therefore, used a mutant ACE2 that is more poorly degraded by TMPRSS2[49]. Two additional TMPRSS2 variants were included as controls: the catalytically inactive S441A (TMPRSS2_{S441A}) and the catalytically active R2550 (TMPRSS2_{R2550}), that is unable to autocleave [16]. First, we investigated the autocleavage pattern of the different TMPRSS2 variants. The N-terminal membrane-bound part of TMPRSS2 can exist as different cleaved intermediates: a full-length uncleaved form of approximately 55 kDa, a partially cleaved form, and a fully cleaved form of 20 kDa. The latter is the product of TMPRSS2 autocleavage at arginine 255, which results in the liberation of the catalytically active protease domain in the extracellular space, leaving a small transmembrane N-terminal domain [16]. Wild type TMPRSS2 is expressed as roughly equal amounts of full-length and fully cleaved forms, with a small amount of partially cleaved product. As expected, the catalytically inactive TMPRSS2_{S441A} and the non-autocleavable TMPRSS2_{R255Q} resulted in only the full-length TMPRSS2 being expressed. However, TMPRSS2_{V160M} resulted in a significantly higher proportion of fulllength (55 kDa), and a significantly lower proportion of fully cleaved protein (20 kDa) (p < 0.05, Student's t-test). This difference was clear across a range of TMPRSS2 concentrations, with TMPRSS2 showing a concentration-dependant autocleavage phenotype: the higher the concentration of TMPRSS2, the higher the amount of autocleavage. Overall, these data suggest the V160M substitution exerts a partial inhibitory effect on the proteolytic autocleavage of TMPRSS2 (see Fig. 3A-D, Supplementary Figure S4).

Subsequently, we investigated the effect of TMPRSS2_{V160M} on promoting viral entry, using a previously described SARS-CoV-2 pseudovirus entry assay [24]. Pseudovirus expressing the glycoprotein from the vesicular stomatitis virus (VSV-G) was used as a control, as this virus enters cells in a TMPRSS2-independent manner [24]. Briefly, cells co-transfected with ACE2 and TMPRSS2 wild type or variants were incubated with the pseudovirus (as described in [24,38]) and, after 48 h, luminescence was measured. TMPRSS2_{WT} enhanced viral

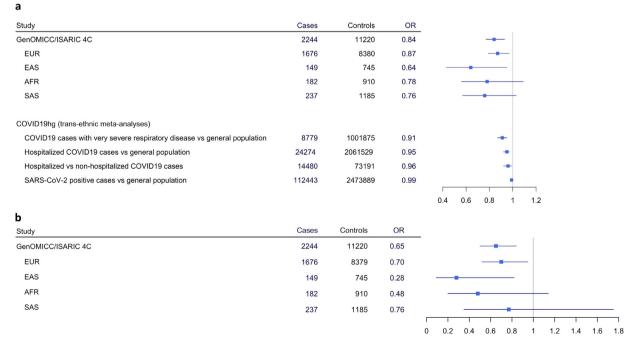
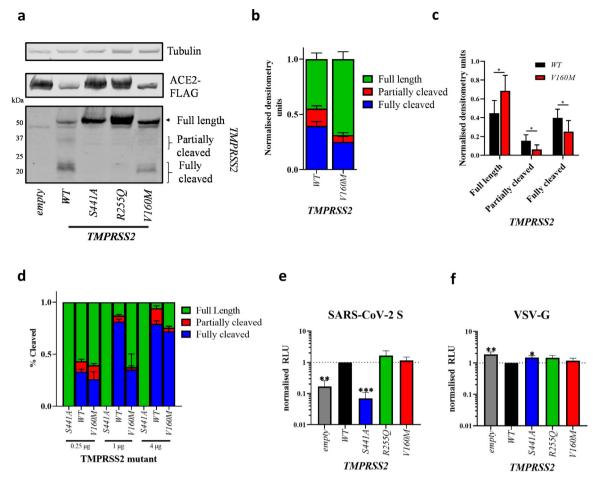



Fig. 2. Association of TMPRSS2 rs12329760 to COVID-19 severity

Results are presented for the additive (a) and the recessive (b) model using different COVID-19-positive patient cohorts. The results from large GWAS meta-analyses performed as part of the COVID-19hg initiative (1) are also shown.

OR, odds ratio; EUR, European; EAS, East Asian; AFR, African; SAS, South Asian.

Fig. 3. Phenotypic impact of the TMPRSS2 V160M variant on autocleavage and SARS-CoV-2 spike-mediated entry; (A) Western blot analysis of TMPRSS2 autocleavage after expression in HEK 293Ts. (B,C, D) densitometry was determined in ImageJ and shows mean±standard deviation from *N* = 6 (B,C) or *N* = 3 (D) independent repeats. Statistics determined by two-tailed Student's *t*-test.

Entry of lentiviral pseudotypes expressing (E) SARS-CoV-2 spike glycoprotein or (F) Vesicular stomatitis virus glycoprotein (VSV-G) into HEK 293Ts co-expressing ACE2-FLAG and either empty vector or TMPRSS2 variants. Data shows mean \pm standard deviation of 3 independent repeats from different weeks, normalised to WT TMPRSS2. (E,F) Statistics determined by one-way ANOVA with multiple comparisons against WT on Log-transformed data (after determining log normality by the Shapiro-Wilk test and QQ plot). Values in μ g indicate the amount of TMPRSS2 plasmid added to each condition. RLU, relative luminescence units.

*, $0.05 \ge P > 0.01$; **, $0.01 \ge P > 0.001$, ***, $0.001 \ge P$.

entry by \sim 5-fold compared to empty vector, while the catalytically dead TMPRSS2_{S441A} showed no enhancement (Fig. 3E). The non-autocleavable mutant TMPRSS2_{R255Q} showed similar enhancement, suggesting that autocleavage is dispensable for optimal TMPRSS2-mediated enhancement. TMPRSS2_{V160M} showed no significant difference in viral entry compared to the TMPRSS2_{WT}. Overall, the expression of catalytically active TMPRSS2 proteins only slightly inhibited VSV-G mediated entry (Fig. 3F).

The partial inhibitory effect exerted by the V160M variant on the proteolytic autocleavage of TMPRSS2 resulted in a far greater proportion of uncleaved, surface-expressed TMPRSS2_{V160M} compared to TMPRSS2_{WT}. We compared this autocleavage seen in transfected 293T cells, to that seen in several epithelial cell lines that naturally express endogenous ACE2 and TMPRSS2 [24]: the human lung cell line, Calu-3, and the human colorectal adenocarcinoma cell line, Caco-2, both of which are extensively used for SARS-CoV-2 research. Interestingly, no fully cleaved TMPRSS2 could be detected as opposed to 293T cells, while both cell lines expressed mostly full length or partially cleaved TMPRSS2. This again suggests that the high levels of autocleavage seen in 293T cells may be, in part, an artefact of overexpression (Supplementary Figure S5). Therefore, we re-assessed whether TMPRSS2_{V160M} affects SARS-CoV-2 S-expressing pseudovirus entry by using the double mutant TMPRSS2_{R255O/V160M} (which does not autocleave and is, therefore, more similar to endogenous TMPRSS2 in Calu-3 and Caco-2 cells), to control for protein cell-surface expression. Under these conditions, and across a range of plasmid titrations of both TMPRSS2 mutants and ACE2, TMPRSS2 $_{R255Q/V160M}$ showed a significantly reduced ability to promote SARS-CoV-2 S-expressing pseudovirus compared to TMPRSS2 $_{R255Q}$ alone, despite equal protein expression (Fig. 4A,C,D,F). Again, TMPRSS2 $_{R255Q/V160M}$ had no effect on VSV-G-mediated entry (Fig. 4B,E).

Discussion

Overall, our results suggest that the rs12329760 C>T variant results in a moderately less catalytically active TMPRSS2, which is less able to autocleave and prime the SARS-CoV-2 spike protein. This may explain the protective effect against life-threatening COVID-19 observed in our cohort of patients admitted to ICU, compared to the general population. Such an effect was more prominent in homozygotes (recessive model) for the rs12329760 C>T in whom a 30% (OR 0.70) risk reduction was observed. Unfortunately, we did not have samples from asymptomatic/pauci symptomatic patients, but data from COVID-19hg meta-analyses appear to suggest that the rs12329760 variant has no protective effect against SARS-Co-V2 infection per se.

The allele frequency of TMPRSS2 rs12329760 (data from GnomAD population database) varies across different populations and is higher

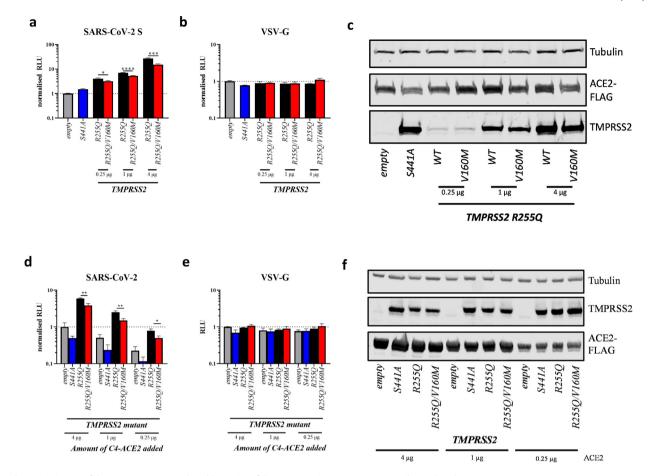


Fig. 4. Phenotypic impact of the TMPRSS2 non-autocleavable version of the V160M variant on SARS-CoV-2 spike-mediated entry
Entry of lentiviral pseudotypes expressing (A,D) SARS-CoV-2 spike glycoprotein or (B,E) vesicular stomatitis virus glycoprotein (VSV-G) into HEK 293Ts co-expressing ACE2FLAG and either empty vector or TMPRSS2 variants. Data shows mean±standard deviation of 3 independent repeats from different weeks, normalised to empty vector. A-C shows titrations of mutant TMPRSS2 with constant ACE2 expression, while D-E show titrations of ACE2 with constant levels of TMPRSS2 expressed.

(A,B,D,E) statistics determined by two-tailed Student's t-test. (C,F) Western blot analysis of TMPRSS2 autocleavage mutant (R255Q) titration with or without the V160M substitution. μ g values indicate the amount of TMPRSS2 or ACE2 plasmid added to each condition. RLU, relative luminescence units. * , $0.05 \ge P > 0.01$; *** , $0.01 \ge P > 0.001$, *** , $0.001 \ge P$.

in East Asian and Finnish individuals (MAF 0.38 and 0.37, respectively) compared to south Asians (MAF 0.25) and non-Finnish Europeans (MAF 0.23). The lowest frequency of the T allele is reported in Latino and Jewish-Ashkenazi individuals (MAF 0.15). However, in our study, the small sample size of populations of non-European ancestry does not allow conclusions on the effect size of TMPRSS2 rs12329760 in different ethnicities. Genotyping of the TMPRSS2 rs12329760 variant on large COVID19 cohorts of patients of non-European genetic ancestry is, therefore, needed to assess its role in determining the differences in the severity of COVID-19 across various populations (e.g. between East Asia and Europe [50]). Indeed, a recent study showed a lower T allele frequency in a small cohort of Chinese patients with life-threatening COVID-19 compared to the population frequency [51]. Although the differences in the proportion of SARS-CoV-2 patients who develop severe COVID-19 across different populations [50] are more likely to be explained by social behaviour, public health measures to curb outbreaks, exposure to other viruses and immunological factors, human genetic variation across different populations may also contribute to the observed differences.

The pharmacological inhibition of TMPRSS2 using serine protease inhibitors, such as camostat and nafamostat, has been proposed as a pharmacological treatment of COVID-19 patients. In vitro [12] and animal studies have demonstrated that camostat can block viral entry (reviewed in [52]), and initial reports on the repurposing of camostat in COVID-19 patients have provided promising results [53]. However, a recently completed clinical trial using camostat in patients

hospitalized for severe COVID-19, did not demonstrate a significant reduction in time-to-clinical improvement compared to placebo [54]. As the authors suggest, these patients were likely to have passed the most active stage of viral replication at the time of treatment and were in the hyper-inflammatory stage of the COVID-19, thus possibly explaining the lack of camostat efficacy. Several additional clinical trials of camostat in COVID-19 are currently underway [29]. Recently, the placebo-controlled phase III trial conducted in Japan on pauci symptomatic COVID-19 patients administering camostat mesilate 600 mg 4 times a day did not meet its primary end point of time to negative Sars-CoV-2 test [55], however data on secondary end points, such as progression to severe or life-threatening COVID-19, are still not publicly available.

Very little is known on TMPRSS2 and further extensive in vitro and in vivo studies on its pathophysiology are necessary. Since the beginning of the COVID-19 pandemic, the interest in TMPRSS2 has focused only on its role as a serine protease involved in the activation of the SARS-CoV-2 spike protein. However, as a soluble protease, TMPRSS2 may have additional substrates, and in vitro studies have demonstrated that PAR2 is one of these substrates [56,57]. PAR2 is expressed in several tissues, including lung, vascular endothelial and vascular smooth muscle cells [58,59] and its protease-mediated activation promotes inflammation by inducing prostaglandin synthesis and cytokine production in the lungs and other organs [60–64]. An intriguing hypothesis is that, similar to other soluble serine proteases, such as the human airway trypsin-like protease HAT (also known as

TMPRSS11D), the soluble wild type TMPRSS2 protease may also have a role in promoting inflammation in the lungs and other tissues.

Since May 2020, when we reported the TMPRSS2 variant rs12329760 as possibly damaging to protein structure/function and raised the possibility that it could partly explain host susceptibility to COVID-19 severity [65], several other studies have also supported this hypothesis [66–71]. In this study we have confirmed our initial hypothesis and provided a mechanistic effect to explain how this variant may contribute to the host susceptibility to severe COVID-19.

As previously discussed, one limitation of our study was the lack of access to a cohort of asymptomatic/pauci symptomatic COVID-19 patients. In the absence of such a cohort, we considered the general population as a good proxy and used this for comparison with COVID-19 severe cases. Indeed, a recent systematic review and metanalysis shows that one third of COVID-19 positive cases do not develop symptoms [72]. When well-characterized cohorts of asymptomatic/pauci symptomatic COVID-19 patients become available, it will be possible to further investigate the role of TMPRSS2 variant rs12329760 on Sars-Co-V2 infection. Another limitation of this study is that we did not directly validate our results in endogenously expressing cell lines, such as like Calu-3, as this would require gene editing the endogenous TMPRSS2. Calu-3 cells are extremely slow growing and highly resistant to single cell cloning, thus making this cell line not particularly suitable for gene editing.

In conclusion, the T allele of the common TMPRSS2 variant rs12329760 confers a reduced risk of severe COVID-19. Similar to what observed in the TMPRSS2 KO mouse, the Val160Met substitution, which exerts a partial inhibitory effect on the proteolytic autocleavage of TMPRSS2 and the priming of the SARS-CoV-2 spike protein, is associated with a milder COVID-19 infection compared to the wild type. Differences in population frequency of this genetic variant may contribute to the reported variability in COVID-19 severity across various ethnicities and studies on large COVID-19 cohorts of patients of non-European genetic ancestry are needed to clarify this. Further studies are needed to assess the expression of TMPRSS2 across different age groups; indeed a reduced TMPRSS2 expression in younger compared to older individuals, as observed in mice and in preliminary human studies, could help explain age-related differences in COVID-19 morbidity. Moreover, TMPRSS2 could be a viable drug target in COVID-19 patients, and camostat mesilate, or other novel TMPRSS2 inhibitors, may have a role in the treatment of COVID-19. Clinical trials are needed to confirm this.

Funding

Wellcome Trust, BBSRC, UKRI Future Leader's Fellowship, Health Data Research UK

AD and NP were supported by the Wellcome Trust (grants 104,955/Z/14/Z, 218,242/Z/19/Z and 211,496/Z/18/Z) and TK by the BBSRC (grants BB/P011705/1 and BB/P023959/1), VSS is supported by UKRI Future Leader's Fellowship (MR/S032304/1), J-LC is supported by Howard Hughes Medical Institute, Rockefeller University, St. Giles Foundation, Fisher centre for Alzheimer's Research Foundation, Meyer Foundation, Square Foundation, Grandir - Fonds de solidarité pour l'enfance, SCOR Corporate Foundation for Science, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Paris, National Institutes of Health (R01AI088364), French Foundation for Medical Research (EQU201903007798), FRM and French National Research Agency (ANR) GENCOVID project (ANR-20-COVI-0003); LA is supported by the Agence Nationale de la Recherche (ANR-10-IAHU-01, ANR-10-LABX-62-IBEID), TPP and WSB are supported by BBSRC grants BB/R013071/1 and BBSRC and the G2P-UK National Virology consortium (funded by MRC/UKRI, grant ref: MR/W005611/1), AT was supported by Roslin Institute Strategic Programme Grants from the BBSRC (BBS/E/D/10,002,070 and BBS/E/

D/30,002,275) and Health Data Research UK (references HDR-9004 and HDR-9003).

Author contributions

NP, EP-C, AT and JKB contributed to population data analysis. AD, TK and MJES contributed to 3D modelling and structural analysis. TPP and WSB contributed to laboratory work. NP, EP-C, TPP and AD contributed to data analysis. NP, TPP, WSB, AD contributed to study design. NP, TPP, EP-C, AC, VS-S, J-LC, LA, WSB, JKB, MJES and AD contributed to interpretation of findings and manuscript preparation. AD conceived the study, contributed to study coordination and wrote the first draft of the manuscript. All authors approved the final version of the manuscript.

Data availability

Full summary-level data in support of the findings of this study are available for download from https://genomicc.org/data. Individual level data can be analysed by qualified researchers in the ISARIC 4C/GenOMICC data analysis platform by application at https://genomicc.org/data. BioBank data and Genomics England data are available to registered researchers at https://www.genomicsengland.co.uk/. The COVID-19 Host Genetics Initiative2 (COVID-19hg) summary statistics are available at https://www.COVID-19hg.org/.

Supplementary Information is available for this paper.

Declaration of Competing Interest

Dr. David reports grants from Wellcome Trust during the conduct of the study; Dr. Parkinson reports grants from Wellcome Trust during the conduct of the study; Dr. Peacock reports grants from MRC/ UKRI, grants from BBSRC during the conduct of the study; Dr. Pairo-Castineira has nothing to disclose. Dr. Khanna reports grants from BBSRC during the conduct of the study; Dr. Cobat has nothing to disclose. Dr. Tenesa reports grants from BBSRC, grants from Health Data Research UK during the conduct of the study. Dr. Sancho-Shimizu reports grants from UKRI Future Leader's Fellowship during the conduct of the study; Dr. Casanova reports other from Howard Hughes Medical Institute, other from Rockefeller University, other from St. Giles Foundation, other from Fisher centre for Alzheimer's Research Foundation, other from Meyer Foundation, other from Square Foundation, other from Grandir - Fonds de solidarité pour l'enfance, other from SCOR Corporate Foundation for Science, other from Institut National de la Santé et de la Recherche Médicale (INSERM), other from University of Paris, other from National Institutes of Health (NIH), other from French Foundation for Medical Research (FRM), other from FRM and French National Research Agency (ANR) GENCO-VID project during the conduct of the study; Dr. Abel reports other from Agence Nationale de la Recherche during the conduct of the study; Dr. Barclay reports grants from BBSRC during the conduct of the study; Dr. Baillie has nothing to disclose. Dr. Sternberg reports grants from Wellcome Trust, grants from BBSRC, during the conduct of the study.

Acknowledgement

This research was conducted using the UK BioBank Resource under project 788

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.retram.2022.103333.

References

- [1] WHO. WHO Coronavirus (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/
- [2] Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect 2020;81(2):e16–25.
- [3] Zhang Q., Bastard P., Bolze A., Jouanguy E., Zhang S.-Y., C.O.V.I.D. Human Genetic Effort, et al. Life-threatening COVID-19: defective interferons unleash excessive inflammation. Med (N Y). 2020;1(1):14–20.
- [4] Severe Covid-19 GWAS Group, D Ellinghaus, Degenhardt F, Bujanda L, Buti M, Albillos A, et al. Genomewide association study of severe COVID-19 with respiratory failure. N Engl J Med 2020;383(16):1522-3415.
- [5] Wu BB, Gu D-Z, Yu JN, Yang J, Shen WQ. Association between ABO blood groups and COVID-19 infection, severity and demise: a systematic review and meta-analysis. Infect Genet Evol 2020;84:104485 Oct.
- [6] Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020;370(6515) Oct 23.
- [7] Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020:370(6515) Oct 23.
- [8] Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature 2020 Dec 11.
- [9] Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011;85(9):4122–34 May.
- [10] Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010;84(24):12658–64 Dec.
- [11] Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011;85(2):873–82 Jan.
- [12] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80 16e8.
- [13] Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020 May 6.
- [14] Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999;59(17):4180–4 Sep 1.
- [15] Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes. J Virol 2019;93(21) Nov 1.
- [16] Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001;61(4):1686–92 Feb 15.
- [17] Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020:e105114 Apr 4.
- [18] Vaarala MH, Porvari KS, Kellokumpu S, Kyllönen AP, Vihko PT. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol 2001;193(1):134–40 Jan.
- [19] Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579 (7798):270–3.
- [20] Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 ENTRY PROTEINS, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 2020;11 (11):1555–62 03.
- [21] Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Negretti NM, et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest 2021;131(1) Jan 4.
- [22] Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol 2019;15(6):93.
- [23] Li F, Han M, Dai P, Xu W, He J, Tao X, et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat Commun 2021;12(1):866. Feb 8.
- [24] Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol 2021 Apr 27.
- [25] Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012;86(12):6537–45 Jun.
- [26] Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, Rottier RJ, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. Elife 2021;10 Jan 4.
- [27] Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Nunneley JW, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015;116:76– 84 Apr.
- [28] Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021:103255 Mar 3.

- [29] ClinicalTrial. gov [Internet]. Available from: https://clinicaltrials.gov/ct2/results? cond=&term=camostat&cntry=&state=&city=&dist=
- [30] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10(6):845–58 Jun.
- [31] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69 Jan 4.
- [32] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021 Jul 15.
- [33] Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol 2019;431(11):2197–212 May 17.
- [34] Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc 2016;11(1):1–9 Jan.
- [35] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7(4):248–9 Apr.
- [36] González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score,. Condel. Am J Hum Genet 2011;88(4):440–9 Apr 8.
- [37] Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res 2005;33:W382–8 Jul 1Web Server issue.
- [38] McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun 2020;11(1):3523. Jul 9.
- [39] Edie S, Zaghloul NA, Leitch CC, Klinedinst DK, Lebron J, Thole JF, et al. Survey of human chromosome 21 gene expression effects on early development in Danio rerio. G3 (Bethesda) 2018;8(7):2215–23 Jul 2.
- [40] Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 2018;50(9):1335–41.
- [41] Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26(17):2190–1 Sep 1.
- [42] COVID-19 host genetics initiative. Mapping the human genetic architecture of COVID-19. Nature 2021 Jul 8.
- [43] Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014;10(5):e1004383 May.
- [44] GTEX Consortium. Laboratory, data analysis &coordinating center (LDACC)—analysis working group, statistical methods groups—analysis working group, enhancing GTEX (eGTEX) groups, NIH common fund, NIH/NCI, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550 (7675):204–13 Oct 11.
- [45] Aruffo A, Bowen MA, Patel DD, Haynes BF, Starling GC, Gebe JA, et al. CD6-ligand interactions: a paradigm for SRCR domain function? Immunol Today 1997;18 (10):498–504 Oct.
- [46] Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA, et al. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 1990;87(22):8810–4 Nov.
- [47] Resnick D, Pearson A, Krieger M. The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 1994;19(1):5–8 Jan.
- [48] The National Genomic Research Library v5.1, Genomics England [Internet]. Available from: https://doi.org/10.6084/m9.figshare.4530893.v6 2020.
- [49] Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014;88(2):1293–307 Jan.
- [50] Yamamoto N, Bauer G. Apparent difference in fatalities between Central Europe and East Asia due to SARS-COV-2 and COVID-19: four hypotheses for possible explanation. Med Hypotheses 2020;144:110160 Aug 5.
- [51] Wang F, Huang S, Gao R, Zhou Y, Lai C, Li Z, et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov 2020;6(1):83. Nov 10.
- [52] Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, et al. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol 2021;128(2):204–12 Feb.
- [53] Sakr Y, Bensasi H, Taha A, Bauer M, Ismail K, the UAE-Jena Research Group. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive Care Med 2021;47(6):707–9 Jun.
- [54] Gunst JD, Staerke NB, Pahus MH, Kristensen LH, Bodilsen J, Lohse N, et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with COVID-19-a double-blind randomized controlled trial. EClinicalMedicine 2021;35:100849 May.
- [55] Foipan dropped as potential coronavirus treatment [Internet]. Available from: https://www.thepharmaletter.com/in-brief/brief-foipan-dropped-as-potential-coronavirus-treatment
- [56] Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J, et al. The membraneanchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 2005;388(Pt 3):967–72.
- [57] Lam DK, Dang D, Flynn AN, Hardt M, Schmidt BL. TMPRSS2, a novel membraneanchored mediator in cancer pain. Pain 2015;156(5):923–30 May.
- [58] D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, et al. Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 1998;46(2):157–64 Feb.

- [59] Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, et al. A protective role for protease-activated receptors in the airways. Nature 1999;398 (6723):156-60 Mar 11
- [60] Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 2004;114(5):997–1008 Novquiz 1009.
- [61] Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J [Internet]. 2019;17 Mar 29 [cited 2021 Feb 3]Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440139/.
- [62] Su X, Camerer E, Hamilton JR, Coughlin SR, Matthay MA. Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms. J Immunol 2005;175(4):2598–605 Aug 15.
- [63] Matsushima R, Takahashi A, Nakaya Y, Maezawa H, Miki M, Nakamura Y, et al. Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway. Am J Physiol Lung Cell Mol Physiol 2006;290(2):L385–95 Feb.
- [64] Chokki M, Yamamura S, Eguchi H, Masegi T, Horiuchi H, Tanabe H, et al. Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells. Am J Respir Cell Mol Biol 2004;30(4):470–8 Apr.
- [65] David A, Khanna T, Beykou M, Hanna G, Sternberg MJ. Structure, function and variants analysis of the androgen-regulated TMPRSS2, a drug target candidate for COVID-19 infection. BioRxiv 2020 May.

Appendix 1: GenOMICC Consortium

GenOMICC Co-Investigators

J. Kenneth Baillie^{1,2}, Colin Begg³, Sara Clohisey¹, Charles Hinds⁴, Peter Horby⁵, Julian Knight⁶, Lowell Ling⁷, David Maslove⁸, Danny McAuley^{9,10}, Johnny Millar¹, Hugh Montgomery¹¹, Alistair Nichol¹², Peter J.M. Openshaw^{13,14}, Alexandre C Pereira¹⁵, Chris P Ponting¹⁶, Kathy Rowan¹⁷, Malcolm G Semple^{18,19}, Manu Shankar-Hari²⁰, Charlotte Summers²¹, Timothy Walsh².

Management, Laboratory and Data team

Latha Aravindan²², Ruth Armstrong¹, J. Kenneth Baillie^{1,2}, Heather Biggs²³, Ceilia Boz¹, Adam Brown¹, Richard Clark²⁴, Sara Clohisey¹, Audrey Coutts²⁴, Judy Coyle¹, Louise Cullum¹, Sukamal Das²², Nicky Day¹, Lorna Donnelly²⁴, Esther Duncan¹, Angie Fawkes²⁴, Paul Finernan¹, Max Head Fourman¹, Anita Furlong²³, James Furniss¹, Bernadette Gallagher¹, Tammy Gilchrist²⁴, Ailsa Golightly¹, Fiona Griffiths¹, Katarzyna Hafezi²⁴, Debbie Hamilton¹, Ross Hendry¹, Andy Law¹, Dawn Law¹, Rachel Law¹, Sarah Law¹, Rebecca Lidstone-Scott¹, Louise Macgillivray²⁴, Alan Maclean²⁴, Hanning Mal¹, Sarah McCafferty²⁴, Ellie Mcmaster¹, Jen Meikle¹, Shona C Moore¹⁸, Kirstie Morrice²⁴, Lee Murphy²⁴, Sheena Murphy²², Mybaya Hellen¹, Wilna Oosthuyzen¹, Chenqing Zheng²⁵, Jiantao Chen²⁵, Nick Parkinson¹, Trevor Paterson¹, Katherine Schon²³, Andrew Stenhouse¹, Mihaela Das²², Maaike Swets^{1,26}, Helen Szoor-McElhinney¹, Filip Taneski¹, Lance Turtle¹⁸, Tony Wackett¹, Mairi Ward¹, Jane Weaver¹, Nicola Wrobel²⁴, Marie Zechner¹, Mybaya Hellen¹.

Guys and St Thomas' Hospital, London, UK

Gill Arbane²⁷, Aneta Bociek²⁷, Sara Campos²⁷, Neus Grau²⁷, Tim Owen Jones²⁷, Rosario Lim²⁷, Martina Marotti²⁷, Marlies Ostermann²⁷, Manu Shankar-Hari²⁷, Christopher Whitton²⁷.

Barts Health NHS Trust, London, UK

Zoe Alldis²⁸, Raine Astin-Chamberlain²⁸, Fatima Bibi²⁸, Jack Biddle²⁸, Sarah Blow²⁸, Matthew Bolton²⁸, Catherine Borra²⁸, Ruth Bowles²⁸, Maudrian Burton²⁸, Yasmin Choudhury²⁸, David Collier²⁸, Amber Cox²⁸, Amy Easthope²⁸, Patrizia Ebano²⁸, Stavros Fotiadis²⁸, Jana Gurasashvili²⁸, Rosslyn Halls²⁸, Pippa Hartridge²⁸, Delordson Kallon²⁸, Jamila Kassam²⁸, Ivone Lancoma-Malcolm²⁸, Maninderpal Matharu²⁸, Peter May²⁸, Oliver Mitchelmore²⁸, Tabitha Newman²⁸, Mital Patel²⁸, Jane Pheby²⁸, Irene Pinzuti²⁸, Zoe Prime²⁸, Oleksandra Prysyazhna²⁸, Julian Shiel²⁸, Melanie Taylor²⁸, Carey Tierney²⁸, Suzanne Wood²⁸, Anne Zak²⁸, Olivier Zongo²⁸.

- [66] Monticelli M, Mele BH, Andreotti G, Cubellis MV, Riccio G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur J Med Genet 2021;64(6):104227 Jun.
- [67] Zarubin A, Stepanov V, Markov A, Kolesnikov N, Marusin A, Khitrinskaya I, et al. Structural variability, expression profile, and pharmacogenetic properties of TMPRSS2 gene as a potential target for COVID-19 therapy. Genes (Basel) 2020;12 (1):E19. Dec 25.
- [68] Vargas-Alarcón G, Posadas-Sánchez R, Ramírez-Bello J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci 2020;260:118313 Nov 1.
- [69] Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020;18(1):216. Jul 15.
- [70] Paniri A, Hosseini MM, Akhavan-Niaki H. First comprehensive computational analysis of functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different populations. J Biomol Struct Dyn 2021;39(10):3576–93 Jul.
- [71] Senapati S, Kumar S, Singh AK, Banerjee P, Bhagavatula S. Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human. J Genet 2020;99(1):53.
- [72] Sah P, Fitzpatrick MC, Zimmer CF, Abdollahi E, Juden-Kelly L, Moghadas SM, et al. Asymptomatic SARS-CoV-2 infection: a systematic review and meta-analysis. Proc Natl Acad Sci U S A. 2021;118(34):e2109229118 Aug 24.

James Cook University Hospital, Middlesbrough, UK Stephen Bonner²⁹, Keith Hugill²⁹, Jessica Jones²⁹, Steven Liggett²⁹, Evie Headlam²⁹.

Royal Stoke University Hospital, Staffordshire, UK Nageswar Bandla³⁰, Minnie Gellamucho³⁰, Michelle Davies³⁰, Christopher Thompson³⁰.

North Middlesex University Hospital NHS trust, London, UK Marwa Abdelrazik³¹, Dhanalakshmi Bakthavatsalam³¹, Munzir Elhassan³¹, Arunkumar Ganesan³¹, Anne Haldeos³¹, Jeronimo Moreno-Cuesta³¹, Dharam Purohit³¹, Rachel Vincent³¹, Kugan Xavier³¹, kumar Rohit³², Frater Alasdair³¹, Malik Saleem³¹, Carter David³¹, Jenkins Samuel³¹, Zoe Lamond³¹, Wall Alanna³¹.

The Royal Liverpool University Hospital, Liverpool, UK

Jaime Fernandez-Roman³³, David O. Hamilton³³, Emily Johnson³³, Brian Johnston³³, Maria Lopez Martinez³³, Suleman Mulla³³, David Shaw³³, Alicia A.C. Waite³³, Victoria Waugh³³, Ingeborg D. Welters³³, Karen Williams³³.

King's College Hospital, London, UK

Anna Cavazza³⁴, Maeve Cockrell³⁴, Eleanor Corcoran³⁴, Maria Depante³⁴, Clare Finney³⁴, Ellen Jerome³⁴, Mark McPhail³⁴, Monalisa Nayak³⁴, Harriet Noble³⁴, Kevin O'Reilly³⁴, Evita Pappa³⁴, Rohit Saha³⁴, Sian Saha³⁴, John Smith³⁴, Abigail Knighton³⁴.

Charing Cross Hospital, St Mary's Hospital and Hammersmith Hospital, London, UK

David Antcliffe³⁵, Dorota Banach³⁵, Stephen Brett³⁵, Phoebe Coghlan³⁵, Ziortza Fernandez³⁵, Anthony Gordon³⁵, Roceld Rojo³⁵, Sonia Sousa Arias³⁵, Maie Templeton³⁵.

Nottingham University Hospital, Nottingham, UK

Megan Meredith³⁶, Lucy Morris³⁶, Lucy Ryan³⁶, Amy Clark³⁶, Julia Sampson³⁶, Cecilia Peters³⁶, Martin Dent³⁶, Margaret Langley³⁶, Saima Ashraf³⁶, Shuying Wei³⁶, Angela Andrew³⁶.

John Radcliffe Hospital, Oxford, UK Archana Bashyal³⁷, Neil Davidson³⁷, Paula Hutton³⁷, Stuart McKechnie³⁷, Jean Wilson³⁷. Kingston Hospital, Surrey, UK

David Baptista³⁸, Rebecca Crowe³⁸, Rita Fernandes³⁸, Rosaleen Herdman-Grant³⁸, Anna Joseph³⁸, Denise O'Connor³⁹, Meryem Allen³⁸, Adam Loveridge³⁸, India McKenley³⁸, Eriko Morino³⁸, Andres Naranjo³⁸, Richard Simms³⁸, Kathryn Sollesta³⁸, Andrew Swain³⁸, Harish Venkatesh³⁸, Jacyntha Khera³⁸, Jonathan Fox³⁸.

Royal Infirmary of Edinburgh, Edinburgh, UK

Gillian Andrew⁴⁰, J. Kenneth Baillie⁴⁰, Lucy Barclay⁴⁰, Marie Callaghan⁴⁰, Rachael Campbell⁴⁰, Sarah Clark⁴⁰, Dave Hope⁴⁰, Lucy Marshall⁴⁰, Corrienne McCulloch⁴⁰, Kate Briton⁴⁰, Jo Singleton⁴⁰, Sohphie Birch⁴⁰.

Queen Alexandra Hospital, Portsmouth, UK

Lutece Brimfield⁴¹, Zoe Daly⁴¹, David Pogson⁴¹, Steve Rose⁴¹.

Morriston Hospital, Swansea, UK

Ceri Battle⁴², Elaine Brinkworth⁴², Rachel Harford⁴², Carl Murphy⁴², Luke Newey⁴², Tabitha Rees⁴², Marie Williams⁴², Sophie Arnold⁴².

Addenbrooke's Hospital, Cambridge, UK

Petra Polgarova⁴³, Katerina Stroud⁴³, Charlotte Summers⁴³, Eoghan Meaney⁴³, Megan Jones⁴³, Anthony Ng⁴³, Shruti Agrawal⁴³, Nazima Pathan⁴³, Deborah White⁴³, Esther Daubney⁴³, Kay Elston⁴³.

BHRUT (Barking Havering) - Queens Hospital and King George Hospital. Essex. UK

Lina Grauslyte⁴⁴, Musarat Hussain⁴⁴, Mandeep Phull⁴⁴, Tatiana Pogreban⁴⁴, Lace Rosaroso⁴⁴, Erika Salciute⁴⁴, George Franke⁴⁴, Joanna Wong⁴⁴, Aparna George⁴⁴.

Royal Sussex County Hospital, Brighton, UK

Laura Ortiz-Ruiz de Gordoa⁴⁵, Emily Peasgood⁴⁵, Claire Phillips⁴⁵, Laura Ortiz-Ruiz de Gordoa⁴⁵, Emily Peasgood⁴⁵, Claire Phillips⁴⁵.

Oueen Elizabeth Hospital, Birmingham, UK

Michelle Bates⁴⁶, Jo Dasgin⁴⁶, Jaspret Gill⁴⁶, Annette Nilsson⁴⁶, Iames Scriven⁴⁶.

St George's Hospital, London, UK

Carlos Castro Delgado⁴⁷, Deborah Dawson⁴⁷, Lijun Ding⁴⁷, Georgia Durrant⁴⁷, Obiageri Ezeobu⁴⁷, Sarah Farnell-Ward⁴⁷, Abiola Harrison⁴⁷, Rebecca Kanu⁴⁷, Susannah Leaver⁴⁷, elena Maccacari⁴⁷, Soumendu Manna⁴⁷, Romina Pepermans Saluzzio⁴⁷, Joana Queiroz⁴⁷, Tinashe Samakomva⁴⁷, Christine Sicat⁴⁷, Joana Texeira⁴⁷, Edna Fernandes Da Gloria⁴⁷, Ana Lisboa⁴⁷, John Rawlins⁴⁷, Jisha Mathew⁴⁷, Ashley Kinch⁴⁷, William James Hurt⁴⁷, Nirav Shah⁴⁷, Victoria Clark⁴⁷, Maria Thanasi⁴⁷, Nikki Yun⁴⁷, Kamal Patel⁴⁷.

Stepping Hill Hospital, Stockport, UK

Sara Bennett⁴⁸, Emma Goodwin⁴⁸, Matthew Jackson⁴⁸, Alissa Kent⁴⁸, Clare Tibke⁴⁸, Wiesia Woodyatt⁴⁸, Ahmed Zaki⁴⁸.

Countess of Chester Hospital, Chester, UK

Azmerelda Abraheem⁴⁹, Peter Bamford⁴⁹, Kathryn Cawley⁴⁹, Charlie Dunmore⁴⁹, Maria Faulkner⁴⁹, Rumanah Girach⁴⁹, Helen Jeffrey⁴⁹, Rhianna Jones⁴⁹, Emily London⁴⁹, Imrun Nagra⁴⁹, Farah Nasir⁴⁹, Hannah Sainsbury⁴⁹, Clare Smedley⁴⁹.

Royal Blackburn Teaching Hospital, Blackburn, UK

Tahera Patel⁵⁰, Matthew Smith⁵⁰, Srikanth Chukkambotla⁵⁰, Aayesha Kazi⁵⁰, Janice Hartley⁵⁰, Joseph Dykes⁵⁰, Muhammad Hijazi⁵⁰, Sarah Keith⁵⁰, Meherunnisa Khan⁵⁰, Janet Ryan-Smith⁵⁰, Philippa Springle⁵⁰, Jacqueline Thomas⁵⁰, Nick Truman⁵⁰, Samuel Saad⁵⁰, Dabheoc Coleman⁵⁰, Christopher Fine⁵⁰, Roseanna Matt⁵⁰, Bethan Gay⁵⁰,

Jack Dalziel⁵⁰, Syamlan Ali⁵⁰, Drew Goodchild⁵⁰, Rhiannan Harling⁵⁰, Ravi Bhatterjee⁵⁰, Wendy Goddard⁵⁰, Chloe Davison⁵⁰, Stephen Duberly⁵⁰, Jeanette Hargreaves⁵⁰, Rachel Bolton⁵⁰.

The Tunbridge Wells Hospital and Maidstone Hospital, Kent, UK Miriam Davey⁵¹, David Golden⁵¹, Rebecca Seaman⁵¹.

Royal Gwent Hospital, Newport, UK

Shiney Cherian⁵², Sean Cutler⁵², Anne Emma Heron⁵², Anna Roynon-Reed⁵², Tamas Szakmany⁵², Gemma Williams⁵², Owen Richards⁵², Yusuf Cheema⁵².

Pinderfields General Hospital, Wakefield, UK

Hollie Brooke⁵³, Sarah Buckley⁵³, Jose Cebrian Suarez⁵³, Ruth Charlesworth⁵³, Karen Hansson⁵³, John Norris⁵³, Alice Poole⁵³, Alastair Rose⁵³, Rajdeep Sandhu⁵³, Brendan Sloan⁵³, Elizabeth Smithson⁵³, Muthu Thirumaran⁵³, Veronica Wagstaff⁵³, Alexandra Metcalfe⁵³.

Royal Berkshire NHS Foundation Trust, Berkshire, UK

Mark Brunton⁵⁴, Jess Caterson⁵⁴, Holly Coles⁵⁴, Matthew Frise⁵⁴, Sabi Gurung Rai⁵⁴, Nicola Jacques⁵⁴, Liza Keating⁵⁴, Emma Tilney⁵⁴, Shauna Bartley⁵⁴, Parminder Bhuie⁵⁴.

Broomfield Hospital, Chelmsford, UK

Sian Gibson⁵⁵, Amanda Lyle⁵⁵, Fiona McNeela⁵⁵, Jayachandran Radhakrishnan⁵⁵, Alistair Hughes⁵⁵.

Northumbria Healthcare NHS Foundation Trust, North Shields, UK Bryan Yates⁵⁶, Jessica Reynolds⁵⁶, Helen Campbell⁵⁶, Maria Thompsom⁵⁶, Steve Dodds⁵⁶, Stacey Duffy⁵⁶.

Whiston Hospital, Prescot, UK

Sandra Greer⁵⁷, Karen Shuker⁵⁷, Ascanio Tridente⁵⁷.

Croydon University Hospital, Croydon, UK

Reena Khade⁵⁸, Ashok Sundar ⁵⁸, George Tsinaslanidis⁵⁸.

York Hospital, York, UK

Isobel Birkinshaw⁵⁹, Joseph Carter⁵⁹, Kate Howard⁵⁹, Joanne Ingham⁵⁹, Rosie Joy⁵⁹, Harriet Pearson⁵⁹, Samantha Roche⁵⁹, Zoe Scott⁵⁹.

Heartlands Hospital, Birmingham, UK

Hollie Bancroft⁶⁰, Mary Bellamy⁶⁰, Margaret Carmody⁶⁰, Jacqueline Daglish⁶⁰, Faye Moore⁶⁰, Joanne Rhodes⁶⁰, Mirriam Sangombe⁶⁰, Salma Kadiri⁶⁰, James Scriven⁶⁰.

Ashford and St Peter's Hospital, Surrey, UK Maria Croft⁶¹, Ian White⁶¹, Victoria Frost⁶¹, Maia Aquino⁶¹.

Barnet Hospital, London, UK

Rajeev Jha⁶², Vinodh Krishnamurthy⁶², Lai Lim⁶², Rajeev Jha⁶², Vinodh Krishnamurthy⁶², Li Lim⁶².

East Surrey Hospital, Redhill, UK

Edward Combes⁶³, Teishel Joefield⁶³, Sonja Monnery⁶³, Valerie Beech⁶³, Sallyanne Trotman⁶³.

Ninewells Hospital, Dundee, UK

Christine Almaden-Boyle⁶⁴, Pauline Austin⁶⁴, Louise Cabrelli⁶⁴, Stephen Cole⁶⁴, Matt Casey⁶⁴, Susan Chapman⁶⁴, Stephen Cole⁶⁴, Clare Whyte⁶⁴.

Worthing Hospital, Worthing, UK and St Richard's Hospital, Chichester, UK

Yolanda Baird⁶⁵, Aaron Butler⁶⁵, Indra Chadbourn⁶⁵, Linda Folkes⁶⁵, Heather Fox⁶⁵, Amy Gardner⁶⁵, Raquel Gomez⁶⁵, Gillian Hobden⁶⁵, Luke Hodgson⁶⁵, Kirsten King⁶⁵, Michael Margarson⁶⁵, Tim Martindale⁶⁵, Emma Meadows⁶⁵, Dana Raynard⁶⁵, Yvette Thirlwall⁶⁵, David Helm⁶⁵, Jordi Margalef⁶⁵.

Southampton General Hospital, Southampton, UK

Kristine Criste⁶⁶, Rebecca Cusack⁶⁶, Kim Golder⁶⁶, Hannah Golding⁶⁶, Oliver Jones⁶⁶, Samantha Leggett⁶⁶, Michelle Male⁶⁶, Martyna Marani⁶⁶, Kirsty Prager⁶⁶, Toran Williams⁶⁶, Belinda Roberts⁶⁶, Karen Salmon⁶⁶

The Alexandra Hospital, Redditch and Worcester Royal Hospital, Worcester, UK

Peter Anderson⁶⁷, Katie Archer⁶⁷, Karen Austin⁶⁷, caroline Davis⁶⁷, Alison Durie⁶⁷, Olivia Kelsall⁶⁷, Jessica Thrush⁶⁷, Charlie Vigurs⁶⁷, Laura Wild⁶⁷, Hannah-Louise Wood⁶⁷, Helen Tranter⁶⁷, Alison Harrison⁶⁷, Nicholas Cowley⁶⁷, Michael McAlindon⁶⁷, Andrew Burtenshaw⁶⁷, Stephen Digby⁶⁷, Emma Low⁶⁷, Aled Morgan⁶⁷, Naiara Cother⁶⁷, Tobias Rankin⁶⁷, Sarah Clayton⁶⁷, Alex McCurdy⁶⁷.

Sandwell General Hospital and City Hospital, Birmingham, UK Cecilia Ahmed⁶⁸, Balvinder Baines⁶⁸, Sarah Clamp⁶⁸, Julie Colley⁶⁸, Risna Haq⁶⁸, Anne Hayes⁶⁸, Jonathan Hulme⁶⁸, Samia Hussain⁶⁸, Sibet Joseph⁶⁸, Rita Kumar⁶⁸, Zahira Maqsood⁶⁸, Manjit Purewal⁶⁸.

Blackpool Victoria Hospital, Blackpool, UK

Leonie Benham⁶⁹, Zena Bradshaw⁶⁹, Joanna Brown⁶⁹, Melanie Caswell⁶⁹, Jason Cupitt⁶⁹, Sarah Melling⁶⁹, Stephen Preston⁶⁹, Nicola Slawson⁶⁹, Emma Stoddard⁶⁹, Scott Warden⁶⁹.

Royal Glamorgan Hospital, Pontyclun, UK

Bethan Deacon⁷⁰, Ceri Lynch⁷⁰, Carla Pothecary⁷⁰, Lisa Roche⁷⁰, Gwenllian Sera Howe⁷⁰, Jayaprakash Singh⁷⁰, Keri Turner⁷⁰, Hannah Ellis⁷⁰, Natalie Stroud⁷⁰.

The Royal Oldham Hospital, Manchester, UK

Jodie Hunt⁷¹, Joy Dearden⁷¹, Emma Dobson⁷¹, Andy Drummond⁷¹, Michelle Mulcahy⁷¹, Sheila Munt⁷¹, Grainne O'Connor⁷¹, Jennifer Philbin⁷¹, Chloe Rishton⁷¹, Redmond Tully⁷¹, Sarah Winnard⁷¹.

Glasgow Royal Infirmary, Glasgow, UK

Susanne Cathcart⁷², Katharine Duffy⁷², Alex Puxty⁷², Kathryn Puxty⁷², Lynne Turner⁷², Jane Ireland⁷², Gary Semple⁷².

St James's University Hospital and Leeds General Infirmary, Leeds, UK Kate Long⁷³, Simon Whiteley⁷³, Elizabeth Wilby⁷³, Bethan Ogg⁷³.

University Hospital North Durham, Darlington, UK and Darlington Memorial Hospital, Darlington, UK

Amanda Cowton⁷⁴, Andrea Kay⁷⁴, Melanie Kent⁷⁴, Kathryn Potts⁷⁴, Ami Wilkinson⁷⁴, Suzanne Campbell⁷⁴, Ellen Brown ⁷⁴.

Fairfield General Hospital, Bury, UK

Julie Melville⁷⁵, Jay Naisbitt⁷⁵, Rosane Joseph⁷⁵, Maria Lazo⁷⁵, Olivia Walton⁷⁵, Alan Neal⁷⁵.

Wythenshawe Hospital, Manchester, UK

Peter Alexander⁷⁶, Schvearn Allen⁷⁶, Joanne Bradley-Potts⁷⁶, Craig Brantwood⁷⁶, Jasmine Egan⁷⁶, Timothy Felton⁷⁶, Grace Padden⁷⁶, Luke Ward⁷⁶, Stuart Moss⁷⁶, Susannah Glasgow⁷⁶.

Royal Alexandra Hospital, Paisley, UK

Lynn Abel⁷⁷, Michael Brett⁷⁷, Brian Digby⁷⁷, Lisa Gemmell⁷⁷, James Hornsby⁷⁷, Patrick MacGoey⁷⁷, Pauline O'Neil⁷⁷, Richard Price⁷⁷, Natalie Rodden⁷⁷, Kevin Rooney⁷⁷, Radha Sundaram⁷⁷, Nicola Thomson⁷⁷.

Good Hope Hospital, Birmingham, UK

Bridget Hopkins⁷⁸, James Scriven⁷⁸, Laura Thrasyvoulou⁷⁸, Heather Willis⁷⁸.

Tameside General Hospital, Ashton Under Lyne, UK

Martyn Clark⁷⁹, Martina Coulding⁷⁹, Edward Jude⁷⁹, Jacqueline McCormick⁷⁹, Oliver Mercer⁷⁹, Darsh Potla⁷⁹, Hafiz Rehman⁷⁹, Heather Savill⁷⁹, Victoria Turner⁷⁹.

Royal Derby Hospital, Derby, UK

Charlotte Downes⁸⁰, Kathleen Holding⁸⁰, Katie Riches⁸⁰, Mary Hilton⁸⁰, Mel Hayman⁸⁰, Deepak Subramanian⁸⁰, Priya Daniel⁸⁰.

Medway Maritime Hospital, Gillingham, UK

Oluronke Adanini⁸¹, Nikhil Bhatia⁸¹, Maines Msiska⁸¹, Rebecca Collins⁸¹.

Royal Victoria Infirmary, Newcastle Upon Tyne, UK

Ian Clement⁸², Bijal Patel ⁸², A Gulati⁸², Carole Hays⁸², K Webster⁸², Anne Hudson⁸², Andrea Webster⁸², Elaine Stephenson⁸², Louise McCormack⁸², Victoria Slater⁸², Rachel Nixon⁸², Helen Hanson⁸², Maggie fearby⁸², Sinead Kelly⁸², Victoria Bridgett⁸², Philip Robinson⁸².

Poole Hospital, Poole, UK

Julie Camsooksai⁸³, Charlotte Humphrey⁸³, Sarah Jenkins⁸³, Henrik Reschreiter⁸³, Beverley Wadams⁸³, Yasmin Death⁸³.

Bedford Hospital, Bedford, UK

Victoria Bastion⁸⁴, Daphene Clarke⁸⁴, Beena David⁸⁴, Harriet Kent⁸⁴, Rachel Lorusso⁸⁴, Gamu Lubimbi⁸⁴, Sophie Murdoch⁸⁴, Melchizedek Penacerrada⁸⁴, Alastair Thomas⁸⁴, Jennifer Valentine⁸⁴, Ana Vochin⁸⁴, Retno Wulandari⁸⁴, Brice Djeugam⁸⁴.

Queens Hospital Burton, Burton-On-Trent, UK Gillian Bell⁸⁵, Katy English⁸⁵, Amro Katary⁸⁵, Louise Wilcox⁸⁵.

North Manchester General Hospital, Manchester, UK

Michelle Bruce⁸⁶, Karen Connolly⁸⁶, Tracy Duncan⁸⁶, Helen T-Michael⁸⁶, Gabriella Lindergard⁸⁶, Samuel Hey ⁸⁶, Claire Fox⁸⁶, Jordan Alfonso⁸⁶, Laura Jayne Durrans⁸⁶, Jacinta Guerin⁸⁶, Bethan Blackledge⁸⁶, Jade Harris⁸⁶, Martin Hruska⁸⁶, Ayaa Eltayeb⁸⁶, Thomas Lamb⁸⁶, Tracey Hodgkiss⁸⁶, Lisa Cooper⁸⁶, Joanne Rothwell⁸⁶.

Aberdeen Royal Infirmary, Aberdeen, UK

Angela Allan⁸⁷, Felicity Anderson⁸⁷, Callum Kaye⁸⁷, Jade Liew⁸⁷, Jasmine Medhora⁸⁷, Teresa Scott⁸⁷, Erin Trumper⁸⁷, Adriana Botello⁸⁷.

Derriford Hospital, Plymouth, UK

Liana Lankester⁸⁸, Nikitas Nikitas⁸⁸, Colin Wells⁸⁸, Bethan Stowe⁸⁸, Kayleigh Spencer⁸⁸.

Manchester Royal Infirmary, Manchester, UK

Craig Brandwood⁸⁹, Lara Smith⁸⁹, Richard Clark⁸⁹, Katie Birchall⁸⁹, Laurel Kolakaluri⁸⁹, Deborah Baines ⁸⁹, Anila Sukumaran⁸⁹.

Salford Royal Hospital, Manchester, UK

Elena Apetri⁹⁰, Cathrine Basikolo⁹⁰, Bethan Blackledge⁹⁰, Laura Catlow⁹⁰, Bethan Charles⁹⁰, Paul Dark⁹⁰, Reece Doonan⁹⁰, Jade Harris⁹⁰, Alice Harvey⁹⁰, Daniel Horner⁹⁰, Karen Knowles⁹⁰, Stephanie Lee⁹⁰, Diane Lomas⁹⁰, Chloe Lyons⁹⁰, Tracy Marsden⁹⁰, Danielle McLaughlan⁹⁰, Liam McMorrow⁹⁰, Jessica Pendlebury⁹⁰, Jane Perez⁹⁰, Maria Poulaka⁹⁰, Nicola Proudfoot⁹⁰, Melanie Slaughter⁹⁰, Kathryn Slevin⁹⁰, Melanie Taylor⁹⁰, Vicky Thomas⁹⁰, Danielle Walker⁹⁰, Angiy Michael ⁹⁰, Matthew Collis⁹⁰.

William Harvey Hospital, Ashford, UK

Tracey Cosier⁹¹, Gemma Millen⁹¹, Neil Richardson⁹¹, Natasha Schumacher⁹¹, Heather Weston⁹¹, James Rand⁹¹.

Queen Elizabeth University Hospital, Glasgow, UK

Nicola Baxter⁹², Steven Henderson⁹², Sophie Kennedy-Hay⁹², Christopher McParland⁹², Laura Rooney⁹², Malcolm Sim⁹², Gordan McCreath⁹².

Bradford Royal Infirmary, Bradford, UK

Louise Akeroyd⁹³, Shereen Bano⁹³, Matt Bromley⁹³, Lucy Gurr⁹³, Tom Lawton⁹³, James Morgan⁹³, Kirsten Sellick⁹³, Deborah Warren⁹³, Brian Wilkinson⁹³, Janet McGowan⁹³, Camilla Ledgard⁹³, Amelia Stacey⁹³, Kate Pye⁹³, Ruth Bellwood⁹³, Michael Bentley⁹³.

Bristol Royal Infirmary, Bristol, UK

Jeremy Bewley⁹⁴, Zoe Garland⁹⁴, Lisa Grimmer⁹⁴, Bethany Gumbrill⁹⁴, Rebekah Johnson⁹⁴, Katie Sweet⁹⁴, Denise Webster⁹⁴, Georgia Efford⁹⁴.

Norfolk and Norwich University hospital (NNUH), Norwich, UK Karen Convery⁹⁵, Deirdre Fottrell-Gould⁹⁵, Lisa Hudig⁹⁵, Jocelyn Keshet-Price⁹⁵, Georgina Randell⁹⁵, Katie Stammers⁹⁵.

Queen Elizabeth Hospital Gateshead, Gateshead, UK

Maria Bokhari⁹⁶, Vanessa Linnett⁹⁶, Rachael Lucas⁹⁶, Wendy McCormick⁹⁶, Jenny Ritzema⁹⁶, Amanda Sanderson⁹⁶, Helen Wild⁹⁶.

Sunderland Royal Hospital, Sunderland, UK

Anthony Rostron⁹⁷, Alistair Roy⁹⁷, Lindsey Woods⁹⁷, Sarah Cornell⁹⁷, Fiona Wakinshaw⁹⁷, Kimberley Rogerson⁹⁷, Jordan Jarmain⁹⁷.

Aintree University Hospital, Liverpool, UK

Robert Parker⁹⁸, Amie Reddy⁹⁸, Ian Turner-Bone⁹⁸, Laura Wilding⁹⁸, Peter Harding⁹⁸.

Hull Royal Infirmary, Hull, UK

Caroline Abernathy⁹⁹, Louise Foster⁹⁹, Andrew Gratrix⁹⁹, Vicky Martinson⁹⁹, Priyai Parkinson⁹⁹, Elizabeth Stones⁹⁹, Llucia Carbral-Ortega¹⁰⁰.

University College Hospital, London, UK

Georgia Bercades¹⁰¹, David Brealey¹⁰¹, Ingrid Hass¹⁰¹, Niall Mac-Callum¹⁰¹, Gladys Martir¹⁰¹, Eamon Raith¹⁰¹, Anna Reyes¹⁰¹, Deborah Smyth¹⁰¹.

Royal Devon and Exeter Hospital, Exeter, UK

Letizia Zitter¹⁰², Sarah Benyon¹⁰², Suzie Marriott¹⁰², Linda Park¹⁰², Samantha Keenan¹⁰², Elizabeth Gordon¹⁰², Helen Quinn¹⁰², Kizzy Baines¹⁰².

The Royal Papworth Hospital, Cambridge, UK

Lenka Cagova¹⁰³, Adama Fofano¹⁰³, Lucie Garner¹⁰³, Helen Holcombe¹⁰³, Sue Mepham¹⁰³, Alice Michael Mitchell¹⁰³, Lucy

Mwaura¹⁰³, Krithivasan Praman¹⁰³, Alain Vuylsteke¹⁰³, Julie Zamikula¹⁰³.

*Ipswich Hospital, Ipswich, UK*Bally Purewal¹⁰⁴, Vanessa Rivers¹⁰⁴, Stephanie Bell¹⁰⁴.

Southmead Hospital, Bristol, UK

Hayley Blakemore¹⁰⁵, Borislava Borislavova¹⁰⁵, Beverley Faulkner¹⁰⁵, Emma Gendall¹⁰⁵, Elizabeth Goff¹⁰⁵, Kati Hayes¹⁰⁵, Matt Thomas¹⁰⁵, Ruth Worner¹⁰⁵, Kerry Smith¹⁰⁵, Deanna Stephens¹⁰⁵.

Milton Keynes University Hospital, Milton Keynes, UK Louise Mew¹⁰⁶, Esther Mwaura¹⁰⁶, Richard Stewart¹⁰⁶, Felicity Williams¹⁰⁶, Lynn Wren¹⁰⁶, Sara-Beth Sutherland ¹⁰⁶.

Royal Hampshire County Hospital, Hampshire, UK Emily Bevan¹⁰⁷, Jane Martin¹⁰⁷, Dawn Trodd¹⁰⁷, Geoff Watson¹⁰⁷, Caroline Wrey Brown¹⁰⁷.

Queen Elizabeth Hospital, Woolwich, London, UK Amy Collins¹⁰⁸, Waqas Khaliq¹⁰⁸, Estefania Treus Gude¹⁰⁸.

Great Ormond St Hospital and UCL Great Ormond St Institute of Child Health NIHR Biomedical Research Centre, London, UK

Olugbenga Akinkugbe¹⁰⁹, Alasdair Bamford¹⁰⁹, Emily Beech¹⁰⁹, Holly Belfield¹⁰⁹, Michael Bell¹⁰⁹, Charlene Davies¹⁰⁹, Gareth A. L. Jones¹⁰⁹, Tara McHugh¹⁰⁹, Hamza Meghari¹⁰⁹, Lauran O'Neill¹⁰⁹, Mark J. Peters¹⁰⁹, Samiran Ray¹⁰⁹, Ana Luisa Tomas¹⁰⁹.

Stoke Mandeville Hospital, Buckinghamshire, UK

Iona Burn¹¹⁰, Geraldine Hambrook¹¹⁰, Katarina Manso¹¹⁰, Ruth Penn¹¹⁰, Pradeep Shanmugasundaram¹¹⁰, Julie Tebbutt¹¹⁰, Danielle Thornton¹¹⁰.

University Hospital of Wales, Cardiff, UK Jade Cole¹¹¹, Michelle Davies¹¹¹, Rhys Davies¹¹¹, Donna Duffin¹¹¹, Helen Hill¹¹¹, Ben Player¹¹¹, Emma Thomas¹¹¹, Angharad Williams¹¹¹.

Basingstoke and North Hampshire Hospital, Basingstoke, UK
Denise Griffin¹¹², Nycola Muchenje¹¹², Mcdonald Mupudzi¹¹²,
Richard Partridge¹¹², Jo-Anna Conyngham¹¹², Rachel Thomas¹¹²,
Mary Wright¹¹², Maria Alvarez Corral¹¹².

Arrowe Park Hospital, Wirral, UK Reni Jacob¹¹³, Cathy Jones¹¹³, Craig Denmade¹¹³.

Chesterfield Royal Hospital Foundation Trust, Chesterfield, UK Sarah Beavis¹¹⁴, Katie Dale¹¹⁴, Rachel Gascoyne¹¹⁴, Joanne Hawes¹¹⁴, Kelly Pritchard¹¹⁴, Lesley Stevenson¹¹⁴, Amanda Whileman¹¹⁴.

Musgrove Park Hospital, Taunton, UK

Patricia Doble¹¹⁵, Joanne Hutter¹¹⁵, corinne Pawley¹¹⁵, Charmaine Shovelton¹¹⁵, Marius Vaida¹¹⁵.

Peterborough City Hospital, Peterborough, UK and Hinchingbrooke Hospital. Huntingdon. UK

Deborah Butcher¹¹⁶, Susie O'Sullivan¹¹⁶, Nicola Butterworth-Cowin¹¹⁶.

Royal Hallamshire Hospital and Northern General Hospital, Sheffield, UK

Norfaizan Ahmad¹¹⁷, Joann Barker¹¹⁷, Kris Bauchmuller¹¹⁷, Sarah Bird¹¹⁷, Kay Cawthron¹¹⁷, Kate Harrington¹¹⁷, Yvonne Jackson¹¹⁷,

Faith Kibutu¹¹⁷, Becky Lenagh¹¹⁷, Shamiso Masuko¹¹⁷, Gary H Mills¹¹⁷, Ajay Raithatha¹¹⁷, Matthew Wiles¹¹⁷, Jayne Willson¹¹⁷, Helen Newell¹¹⁷, Alison Lye¹¹⁷, Lorenza Nwafor¹¹⁷, Claire Jarman¹¹⁷, Sarah Rowland-Jones¹¹⁷, David Foote¹¹⁷, Joby Cole¹¹⁷, Roger Thompson¹¹⁷, James Watson¹¹⁷, Lisa Hesseldon¹¹⁷, Irene Macharia¹¹⁷, Luke Chetam ¹¹⁷, Jacqui Smith¹¹⁷, Amber Ford¹¹⁷, Samantha Anderson¹¹⁷, Kathryn Birchall¹¹⁷, Kay Housley¹¹⁷, Sara Walker¹¹⁷, Leanne Milner¹¹⁷, Helena Hanratty¹¹⁷, Helen Trower¹¹⁷, Patrick Phillips¹¹⁷, Simon Oxspring¹¹⁷, Ben Donne¹¹⁷.

Dumfries and Galloway Royal Infirmary, Dumfries, UK Catherine Jardine¹¹⁸, Dewi Williams¹¹⁸, Alasdair Hay¹¹⁸.

Royal Bolton Hospital, Bolton, UK

Rebecca Flanagan¹¹⁹, Gareth Hughes¹¹⁹, scott Latham¹¹⁹, Emma McKenna¹¹⁹. Jennifer Anderson¹¹⁹. Robert Hull¹¹⁹. Kat Rhead¹¹⁹.

Lister Hospital, Stevenage, UK Carina Cruz¹²⁰, Natalie Pattison¹²⁰.

Craigavon Area Hospital, County Armagh, NI Rob Charnock¹²¹, Denise McFarland¹²¹, Denise Cosgrove¹²¹.

Southport and Formby District General Hospital, Ormskirk, UK Ashar Ahmed¹²², Anna Morris¹²², Srinivas Jakkula¹²².

Calderdale Royal Hospital, Halifax, UK and Huddersfield Royal Infirmary, Huddersfield, UK Asifa Ali¹²³.

Calderdale Royal Hospital, Halifax, UK

Calderdale Royal Hospital, Halifax, UK
Megan Brady¹²³, Sam Dale¹²³, Annalisa Dance¹²³, Lisa Gledhill¹²³,
Jill Greig¹²³, Kathryn Hanson¹²³, Kelly Holdroyd¹²³, Marie Home¹²³,
Diane Kelly¹²³, Ross Kitson¹²³, Lear Matapure¹²³, Deborah Melia¹²³,
Samantha Mellor¹²³, Tonicha Nortcliffe¹²³, Jez Pinnell¹²³, Matthew
Robinson¹²³, Lisa Shaw¹²³, Ryan Shaw¹²³, Lesley Thomis¹²³, Alison
Wilson¹²³, Tracy Wood¹²³, Lee-Ann Bayo¹²³, Ekta Merwaha¹²³, Tahira
Ishaq¹²³, Sarah Hanley¹²³.

Prince Charles Hospital, Merthyr Tydfil, UK

Bethan Deacon¹²⁴, Meg Hibbert¹²⁴, Carla Pothecary¹²⁴, Dariusz Tetla¹²⁴, Chrsitopher Woodford¹²⁴, Latha Durga¹²⁴, Gareth Kennard-Holden ¹²⁴.

Royal Bournemouth Hospital, Bournemouth, UK

Debbie Branney¹²⁵, Jordan Frankham¹²⁵, Sally Pitts¹²⁵, Nigel White¹²⁵.

Royal Preston Hospital, Preston, UK Shondipon Laha¹²⁶, Mark Verlander¹²⁶, Alexandra Williams¹²⁶.

Whittington Hospital, London, UK

Abdelhakim Altabaibeh¹²⁷, Ana Alvaro¹²⁷, Kayleigh Gilbert¹²⁷, Louise Ma¹²⁷, Loreta Mostoles¹²⁷, Chetan Parmar¹²⁷, Kathryn Simpson¹²⁷, Champa Jetha¹²⁷, Lauren Booker¹²⁷, Anezka Pratley¹²⁷.

Princess Royal Hospital, Telford and Royal Shrewsbury Hospital, Shrewsbury, UK

Colene Adams¹²⁸, Anita Agasou¹²⁸, Tracie Arden¹²⁸, Amy Bowes¹²⁸, Pauline Boyle¹²⁸, Mandy Beekes¹²⁸, Heather Button¹²⁸, Nigel Capps¹²⁸, Mandy Carnahan¹²⁸, Anne Carter¹²⁸, Danielle Childs¹²⁸, Denise Donaldson¹²⁸, Kelly Hard¹²⁸, Fran Hurford¹²⁸, Yasmin Hussain¹²⁸, Ayesha Javaid¹²⁸, James Jones¹²⁸, Sanal Jose¹²⁸, Michael Leigh¹²⁸, Terry Martin¹²⁸, Helen Millward¹²⁸, Nichola Motherwell¹²⁸, Rachel Rikunenko¹²⁸, Jo Stickley¹²⁸, Julie Summers¹²⁸, Louise Ting¹²⁸, Helen Tivenan¹²⁸, Louise Tonks¹²⁸, Rebecca Wilcox¹²⁸.

Macclesfield District General Hospital, Macclesfield, UK

Maureen Holland¹²⁹, Natalie Keenan¹²⁹, Marc Lyons¹²⁹, Helen Wassall¹²⁹, Chris Marsh¹²⁹, Mervin Mahenthran¹²⁹, Emma Carter¹²⁹, Thomas Kong¹²⁹.

Royal Surrey County Hospital, Guildford, UK

Helen Blackman¹³⁰, Ben Creagh-Brown¹³⁰, Sinead Donlon¹³⁰. Natalia Michalak-Glinska¹³⁰, Sheila Mtuwa¹³⁰, Veronika Pristopan¹³⁰, Armorel Salberg¹³⁰, Eleanor Smith¹³⁰, Sarah Stone¹³⁰, Charles Piercy¹³⁰, Jerik Verula¹³⁰, Dorota Burda¹³⁰, Rugia Montaser¹³⁰, Lesley Harden¹³⁰, Irving Mayangao¹³⁰, Cheryl Marriott¹³⁰, Paul Bradley¹³⁰, Celia Harris¹³⁰.

Hereford County Hospital, Hereford, UK

Susan Anderson¹³¹, Eleanor Andrews¹³¹, Janine Birch¹³¹, Emma Collins¹³¹, Kate Hammerton¹³¹, Ryan O'Leary¹³¹.

University Hospital of North Tees, Stockton on Tees, UK Michele Clark¹³², Sarah Purvis¹³².

Lincoln County Hospital, Lincoln, UK

Russell Barber¹³³, Claire Hewitt¹³³, Annette Hilldrith¹³³, Karen lackson-Lawrence¹³³, Sarah Shepardson¹³³, Maryanne Wills¹³³, Susan Butler ¹³³, Silvia Tavares ¹³³, Amy Cunningham ¹³³, Julia Hindale ¹³³, Sarwat Arif 133

Royal Cornwall Hospital, Truro, UK Sarah Bean¹³⁴, Karen Burt¹³⁴, Michael Spivey¹³⁴.

Royal United Hospital, Bath, UK

Carrie Demetriou¹³⁵, Charlotte Eckbad¹³⁵, Sarah Hierons¹³⁵, Lucy Howie¹³⁵, Sarah Mitchard¹³⁵, Lidia Ramos¹³⁵, Alfredo Serrano-Ruiz¹³⁵, Katie White¹³⁵, Fiona Kelly¹³⁵.

Royal Brompton Hospital, London, UK

Daniele Cristiano¹³⁶, Natalie Dormand¹³⁶, Zohreh Farzad¹³⁶, Mahitha Gummadi¹³⁶, Kamal Liyanage¹³⁶, Brijesh Patel¹³⁶, Sara Salmi¹³⁶, Geraldine Sloane¹³⁶, Vicky Thwaites¹³⁶, Mathew Varghese¹³⁶, Anelise C Zborowski¹³⁶.

University Hospital Crosshouse, Kilmarnock, UK

John Allan¹³⁷, Tim Geary¹³⁷, Gordon Houston¹³⁷, Alistair Meikle¹³⁷, Peter O'Brien¹³⁷.

Basildon Hospital, Basildon, UK

Miranda Forsey¹³⁸, Agilan Kaliappan¹³⁸, Anne Nicholson¹³⁸, Joanne Riches¹³⁸, Mark Vertue¹³⁸, Miranda Forsey¹³⁸, Agilan Kaliappan¹³⁸, Anne Nicholson¹³⁸, Joanne Riches¹³⁸, Mark Vertue¹³⁸.

Glan Clwyd Hospital, Bodelwyddan, UK

Elizabeth Allan¹³⁹, Kate Darlington¹³⁹, Ffyon Davies¹³⁹, Jack Easton¹³⁹, Sumit Kumar¹³⁹, Richard Lean¹³⁹, Daniel Menzies¹³⁹, Richard Pugh¹³⁹, Xinyi Qiu¹³⁹, Llinos Davies¹³⁹, Hannah Williams ¹³⁹, Jeremy Scanlon¹³⁹, Gwyneth Davies ¹³⁹, Callum Mackay¹³⁹, Joannne Lavid¹³⁹, Chaphagica Basa¹³⁹ Lewis¹³⁹, Stephanie Rees¹³⁹.

West Middlesex Hospital, Isleworth, UK Metod Oblak¹⁴⁰, Monica Popescu¹⁴⁰, Mini Thankachen¹⁴⁰. Royal Lancaster Infirmary, Lancaster, UK Andrew Higham¹⁴¹, Kerry Simpson¹⁴¹, Jayne Craig¹⁴¹.

Western General Hospital, Edinburgh, UK

Rosie Baruah¹⁴², Sheila Morris¹⁴², Susie Ferguson¹⁴², Amy

Chelsea & Westminster NHS Foundation Trust, London, UK

Luke Stephen Prockter Moore¹⁴³, Marcela Paola Vizcavchipi¹⁴³. Laura Gomes de Almeida Martins¹⁴³, Jaime Carungcong¹⁴³.

The Queen Elizabeth Hospital, King's Lynn, UK

Inthakab Ali Mohamed Ali¹⁴⁴, Karen Beaumont¹⁴⁴, Mark Blunt¹⁴⁴, Zoe Coton¹⁴⁴, Hollie Curgenven¹⁴⁴, Mohamed Elsaadany¹⁴⁴, Kay Fernandes¹⁴⁴, Sameena Mohamed Ally¹⁴⁴, Harini Rangarajan¹⁴⁴, Varun Sarathy¹⁴⁴, Sivarupan Selvanayagam¹⁴⁴, Dave Vedage¹⁴⁴, Matthew White¹⁴⁴

King's Mill Hospital, Nottingham, UK

Mandy Gill¹⁴⁵, Paul Paul¹⁴⁵, Valli Ratnam¹⁴⁵, Sarah Shelton¹⁴⁵, Inez Wynter¹⁴⁵.

Watford General Hospital, Watford, UK Siobhain Carmody¹⁴⁶, Valerie Joan Page¹⁴⁶.

University Hospital Wishaw, Wishaw, UK

Claire Marie Beith¹⁴⁷, Karen Black¹⁴⁷, Suzanne Clements¹⁴⁷, Alan Morrison¹⁴⁷, Dominic Strachan¹⁴⁷, Margaret Taylor¹⁴⁷, Michelle Clarkson¹⁴⁷, Stuart D'Sylva¹⁴⁷, Kathryn Norman¹⁴⁷.

Forth Valley Royal Hospital, Falkirk, UK

Fiona Auld¹⁴⁸, Joanne Donnachie¹⁴⁸, Ian Edmond¹⁴⁸, Lynn Prentice¹⁴⁸, Nikole Runciman¹⁴⁸, Dario Salutous¹⁴⁸, Lesley Symon¹⁴⁸ Anne Todd¹⁴⁸, Patricia Turner¹⁴⁸, Abigail Short¹⁴⁸, Laura Sweeney¹⁴⁸, Euan Murdoch¹⁴⁸, Dhaneesha Senaratne¹⁴⁸.

George Eliot Hospital NHS Trust, Nuneaton, UK Michaela Hill¹⁴⁹, Thogulava Kannan¹⁴⁹, Wild Laura¹⁴⁹.

Barnsley Hospital, Barnsley, UK

Rikki Crawley¹⁵⁰, Abigail Crew¹⁵⁰, Mishell Cunningham¹⁵⁰, Allison Daniels¹⁵⁰, Laura Harrison¹⁵⁰, Susan Hope¹⁵⁰, Ken Inweregbu¹⁵⁰, Sian Jones¹⁵⁰, Nicola Lancaster¹⁵⁰, Jamie Matthews¹⁵⁰, Alice Nicholson¹⁵⁰, Gemma Wray¹⁵⁰.

The Great Western Hospital, Swindon, UK

Helen Langton¹⁵¹, Rachel Prout¹⁵¹, Malcolm Watters¹⁵¹, Catherine Novis¹⁵¹.

Harefield Hospital, London, UK

Anthony Barron¹⁵², Ciara Collins¹⁵², Sundeep Kaul¹⁵², Heather Passmore¹⁵², Claire Prendergast¹⁵², Anna Reed¹⁵², Paula Rogers¹⁵², Rajvinder Shokkar¹⁵², Meriel Woodruff¹⁵², Hayley Middleton ¹⁵², Oliver Polgar¹⁵², Claire Nolan ¹⁵², Vicky Thwaites¹⁵², Kanta Mahay¹⁵².

Rotherham General Hospital, Rotherham, UK

Dawn Collier¹⁵³, Anil Hormis¹⁵³, Victoria Maynard¹⁵³, Cheryl Graham¹⁵³, Rachel Walker¹⁵³, Victoria Maynard¹⁵³.

Ysbyty Gwynedd, Bangor, UK

Ellen Knights¹⁵⁴, Alicia Price¹⁵⁴, Alice Thomas¹⁵⁴, Chris Thorpe¹⁵⁴.

Diana Princess of Wales Hospital, Grimsby, UK

Teresa Behan¹⁵⁵, Caroline Burnett¹⁵⁵, Jonathan Hatton¹⁵⁵, Elaine Heeney¹⁵⁵, Atideb Mitra¹⁵⁵, Maria Newton¹⁵⁵, Rachel Pollard¹⁵⁵, Rachael Stead¹⁵⁵.

Russell's Hall Hospital, Dudley, UK

Vishal Amin¹⁵⁶, Elena Anastasescu¹⁵⁶, Vikram Anumakonda¹⁵⁶, Komala Karthik¹⁵⁶, Rizwana Kausar¹⁵⁶, Karen Reid¹⁵⁶, Jacqueline Smith¹⁵⁶, Janet Imeson-Wood¹⁵⁶,

Princess Royal Hospital

Denise Skinner¹⁵⁷, Jane Gaylard¹⁵⁷, Dee Mullan¹⁵⁷, Julie Newman¹⁵⁷.

Princess Royal Hospital, Haywards Heath, UK

Denise Skinner¹⁵⁷, Jane Gaylard¹⁵⁷, Dee Mullan¹⁵⁷, Julie Newman¹⁵⁷

St Mary's Hospital, Newport, UK

Alison Brown¹⁵⁸, Vikki Crickmore¹⁵⁸, Gabor Debreceni¹⁵⁸, Joy Wilkins¹⁵⁸, Liz Nicol¹⁵⁸.

University Hospital Lewisham, London, UK Waqas Khaliq¹⁵⁹, Rosie Reece-Anthony¹⁵⁹, Mark Birt¹⁵⁹.

Colchester General Hospital, Colchester, UK Alison Ghosh¹⁶⁰, Emma Williams¹⁶⁰.

Queen Elizabeth the Queen Mother Hospital, Margate, UK Louise Allen¹⁶¹, Eva Beranova¹⁶¹, Nikki Crisp¹⁶¹, Joanne Deery¹⁶¹, Tracy Hazelton¹⁶¹, Alicia Knight¹⁶¹, Carly Price¹⁶¹, Sorrell Tilbey¹⁶¹, Salah Turki¹⁶¹, Sharon Turney¹⁶¹.

Royal Albert Edward Infirmary, Wigan, UK

Joshua Cooper¹⁶², Cheryl Finch¹⁶², Sarah Liderth¹⁶², Alison Quinn¹⁶², Natalia Waddington¹⁶².

Victoria Hospital, Kirkcaldy, UK

Tina Coventry¹⁶³, Susan Fowler¹⁶³, Michael MacMahon¹⁶³, Amanda McGregor¹⁶³.

Eastbourne District General Hospital, East Sussex, UK and Conquest Hospital, East Sussex, UK

Anne Cowley¹⁶⁴, Judith Highgate¹⁶⁴, Anne Cowley¹⁶⁴, Judith Highgate¹⁶⁴.

Cumberland Infirmary, Carlisle, UK

Alison Brown¹⁶⁵, Jane Gregory¹⁶⁵, Susan O'Connell¹⁶⁵, Tim Smith¹⁶⁵, Luigi Barberis¹⁶⁵.

New Cross Hospital, Wolverhampton, UK

Shameer Gopal 166, Nichola Harris 166, Victoria Lake 166, Stella Metherell¹⁶⁶, Elizabeth Radford¹⁶⁶.

The Princess Alexandra Hospital, Harlow, UK

Amelia Daniel¹⁶⁷, Joanne Finn¹⁶⁷, Rajnish Saha¹⁶⁷, Nikki White¹⁶⁷, Amy Easthope¹⁶⁷.

Salisbury District Hospital, Salisbury, UK Phil Donnison¹⁶⁸, Fiona Trim¹⁶⁸, Beena Eapen¹⁶⁸.

Dorset County Hospital, Dorchester, UK

Jenny Birch¹⁶⁹, Laura Bough¹⁶⁹, Josie Goodsell¹⁶⁹, Rebecca Tutton¹⁶⁹, Patricia Williams¹⁶⁹, Sarah Williams¹⁶⁹, Barbara Winter-Goodwin¹⁶⁹.

University College Dublin, St Vincent's University Hospital, Dublin,

Ailstair Nichol¹⁷⁰, Kathy Brickell¹⁷⁰, Michelle Smyth ¹⁷⁰, Lorna Murphy¹⁷⁰.

Glangwili General Hospital, Camarthen, UK

Samantha Coetzee¹⁷¹, Alistair Gales¹⁷¹, Igor Otahal¹⁷¹, Meena Raj¹⁷¹, Craig Sell¹⁷¹.

Gloucestershire Royal Hospital, Gloucester, UK

Paula Hilltout¹⁷², Jayne Evitts¹⁷², Amanda Tyler¹⁷², Joanne Waldron¹⁷².

Yeovil Hospital, Yeovil, UK

Kate Beesley¹⁷³, Sarah Board¹⁷³, Agnieszka Kubisz-Pudelko¹⁷³, Alison Lewis¹⁷³, Jess Perry¹⁷³, Lucy Pippard¹⁷³, Di Wood¹⁷³, Clare Buckley¹⁷³.

Leicester Royal Infirmary, Leicester, UK

Peter Barry¹⁷⁴, Neil Flint¹⁷⁴, Patel Rekha ¹⁷⁴, Dawn Hales¹⁷⁴.

Royal Manchester Children's Hospital, Manchester, UK

Lara Bunni¹⁷⁵, Claire Jennings¹⁷⁵, Monica Latif¹⁷⁵, Rebecca Marshall¹⁷⁵, Gayathri Subramanian¹⁷⁵.

Royal Victoria Hospital, Belfast, NI

Peter J McGuigan¹⁷⁶, Christopher Wasson¹⁷⁶, Stephanie Finn¹⁷⁶, Jackie Green¹⁷⁶, Erin Collins¹⁷⁶, Bernadette King¹⁷⁶.

Wrexham Maelor Hospital, Wrexham, Wales

Andy Campbell¹⁷⁷, Sara Smuts¹⁷⁷, Joseph Duffield¹⁷⁷, Oliver Smith¹⁷⁷, Lewis Mallon¹⁷⁷, Watkins Claire¹⁷⁷.

Walsall Manor Hospital, Walsall, UK

Liam Botfield¹⁷⁸, Joanna Butler¹⁷⁸, Catherine Dexter¹⁷⁸, Jo Fletcher¹⁷⁸, Atul Garg¹⁷⁸, Aditya Kuravi¹⁷⁸, Poonam Ranga¹⁷⁸, Emma Virgilio¹⁷⁸.

Darent Valley Hospital, Dartford, UK

Zakaula Belagodu¹⁷⁹, Bridget Fuller¹⁷⁹, Anca Gherman¹⁷⁹, Olumide Olufuwa¹⁷⁹, Remi Paramsothy¹⁷⁹, Carmel Stuart¹⁷⁹, Naomi Oakley¹⁷⁹, Charlotte Kamundi¹⁷⁹, David Tyl¹⁷⁹, Katy Collins¹⁷⁹, Pedro Silva¹⁷⁹, June Taylor¹⁷⁹, Laura King¹⁷⁹, Charlotte Coates¹⁷⁹, Maria Crowley¹⁷⁹, Phillipa Wakefield¹⁷⁹, Jane Beadle ¹⁷⁹, Laura Johnson¹⁷⁹, Janet Sargeant¹⁷⁹, Madeleine Anderson¹⁷⁹.

Warrington General Hospital, Warrington, UK

Ailbhe Brady¹⁸⁰, Rebekah Chan¹⁸⁰, Jeff Little¹⁸⁰, Shane McIvor¹⁸⁰, Helena Prady¹⁸⁰, Helen Whittle¹⁸⁰, Bijoy Mathew¹⁸⁰.

Warwick Hospital, Warwick, UK

Ben Attwood¹⁸¹. Penny Parsons¹⁸¹.

University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK

Geraldine Ward¹⁸², Pamela Bremmer¹⁸².

University Hospital Monklands, Airdrie, UK

West Joe¹⁸³, Baird Tracy¹⁸³, Ruddy Jim¹⁸³.

Princess of Wales Hospital, Llantrisant, UK

Ellie Davies¹⁸⁴, Lisa Roche¹⁸⁴, Sonia Sathe¹⁸⁴.

Northwick Park Hospital, London, UK

Catherine Dennis¹⁸⁵, Alastair McGregor¹⁸⁵, Victoria Parris¹⁸⁵, Sinduya Srikaran¹⁸⁵, Anisha Sukha¹⁸⁵.

Raigmore Hospital, Inverness, UK

Rachael Campbell¹⁸⁶, Noreen Clarke¹⁸⁶, Jonathan Whiteside¹⁸⁶, Mairi Mascarenhas¹⁸⁶, Avril Donaldson¹⁸⁶, Joanna Matheson¹⁸⁶, Fiona Barrett¹⁸⁶. Marianne O'Hara¹⁸⁶, Laura Okeefe¹⁸⁶, Clare Bradley¹⁸⁶.

Royal Free Hospital, London, UK

Christine Eastgate-Jackson¹⁸⁷, Helder Filipe¹⁸⁷, Daniel Martin¹⁸⁷, Amitaa Maharajh¹⁸⁷, Sara Mingo Garcia¹⁸⁷, Glykeria Pakou¹⁸⁷, Mark De Neef¹⁸⁷

Scunthorpe General Hospital, Scunthorpe, UK

Kathy Dent¹⁸⁸, Elizabeth Horsley¹⁸⁸, Muhmmad Nauman Akhtar¹⁸⁸, Sandra Pearson¹⁸⁸, Dorota Potoczna¹⁸⁸, Sue Spencer¹⁸⁸.

West Cumberland Hospital, Whitehaven, UK

Melanie Clapham¹⁸⁹, Rosemary Harper¹⁸⁹, Una Poultney¹⁸⁹, Polly Rice¹⁸⁹, Tim Smith¹⁸⁹, Rachel Mutch¹⁸⁹, Luigi Barberis¹⁸⁹.

Airedale General Hospital, Keighley, UK

Lisa Armstrong¹⁹⁰, Hayley Bates¹⁹⁰, Emma Dooks¹⁹⁰, Fiona Farquhar¹⁹⁰, Brigid Hairsine¹⁹⁰, Chantal McParland¹⁹⁰, Sophie Packham¹⁹⁰.

Birmingham Children's Hospital, Birmingham, UK Rehana Bi¹⁹¹, Barney Scholefield¹⁹¹, Lydia Ashton¹⁹¹.

Liverpool Heart and Chest Hospital, Liverpool, UK Linsha George¹⁹², Sophie Twiss¹⁹², David Wright¹⁹².

Pilgrim Hospital, Lincoln, UK

Manish Chablani¹⁹³, Amy Kirkby¹⁹³, Kimberley Netherton¹⁹³.

Prince Philip Hospital, Lianelli, UK

Kim Davies¹⁹⁴, Linda O'Brien¹⁹⁴, Zohra Omar¹⁹⁴, Igor Otahal¹⁹⁴, Emma Perkins¹⁹⁴, Tracy Lewis¹⁹⁴, Isobel Sutherland¹⁹⁴.

Furness General Hospital, Barrow-in-Furness, UK Karen Burns¹⁹⁵, Andrew Higham¹⁹⁵.

Scarborough General Hospital, Scarborough, UK

Dr Ben Chandler¹⁹⁶, Kerry Elliott¹⁹⁶, Janine Mallinson¹⁹⁶, Alison Turnbull¹⁹⁶.

Southend University Hospital, Westcliff-on-Sea, UK

Prisca Gondo¹⁹⁷, Bernard Hadebe¹⁹⁷, Abdul Kayani¹⁹⁷, Bridgett Masunda¹⁹⁷.

Alder Hey Children's Hospital, Liverpool, UK

Taya Anderson¹⁹⁸, Dan Hawcutt¹⁹⁸, Laura O'Malley¹⁹⁸, Laura Rad¹⁹⁸, Naomi Rogers¹⁹⁸, Paula Saunderson¹⁹⁸, Kathryn Sian Allison¹⁹⁸, Deborah Afolabi¹⁹⁸, jennifer whitbread¹⁹⁸, Dawn jones ¹⁹⁸, Rachael Dore 198.

Torbay Hospital, Torquay, UK

Matthew Halkes¹⁹⁹, Pauline Mercer¹⁹⁹, Lorraine Thornton¹⁹⁹.

Borders General Hospital, Melrose, UK

Joy Dawson²⁰⁰, Sweyn Garrioch²⁰⁰, Melanie Tolson²⁰⁰, Jonathan Aldridge²⁰⁰.

Kent & Canterbury Hospital, Canterbury, UK Ritoo Kapoor²⁰¹, David Loader²⁰¹, Karen Castle²⁰¹. West Suffolk Hospital, Bury St Edmunds, UK Sally humphreys²⁰², Ruth Tampsett²⁰².

James Paget University Hospital NHS Trust, Great Yarmouth, UK Katherine Mackintosh²⁰³, Amanda Ayers²⁰³, Wendy Harrison²⁰³, Julie North²⁰³.

The Christie NHS Foundation Trust, Manchester, UK Suzanne Allibone²⁰⁴, Roman Genetu²⁰⁴, Vidya Kasipandian²⁰⁴, Amit Patel²⁰⁴, Ainhi Mac²⁰⁴, Anthony Murphy²⁰⁴, Parisa Mahjoob²⁰⁴, Roonak Nazari²⁰⁴, Lucy Worsley²⁰⁴, Andrew Fagan²⁰⁴.

The Royal Marsden Hospital, London, UK

Thomas Bemand²⁰⁵, Ethel Black²⁰⁵, Arnold Dela Rosa²⁰⁵, Ryan Howle²⁰⁵, Shaman Jhanji²⁰⁵, Ravishankar Rao Baikady²⁰⁵, Kate Colette Tatham²⁰⁵, Benjamin Thomas²⁰⁵.

University Hospital Hairmyres, East Kilbride, UK Dina Bell²⁰⁶, Rosalind Boyle²⁰⁶, Katie Douglas²⁰⁶, Lynn Glass²⁰⁶, Emma Lee²⁰⁶, Liz Lennon²⁰⁶, Austin Rattray²⁰⁶.

Withybush General Hospital, Pembrokeshire, Wales

Abigail Taylor²⁰⁷, Rachel Anne Hughes²⁰⁷, Helen Thomas²⁰⁷, Alun Rees²⁰⁷, Michaela Duskova²⁰⁷, Janet Phipps²⁰⁷, Suzanne Brooks²⁰⁷, Michelle Edwards²⁰⁷.

Ealing Hospital, Southall, UK Victoria Parris²⁰⁸, Sheena Quaid²⁰⁸, Ekaterina Watson²⁰⁸.

North Devon District Hospital, Barnstaple, UK

Adam Brayne²⁰⁹, Emma Fisher²⁰⁹, Jane Hunt²⁰⁹, Peter Jackson²⁰⁹, Duncan Kaye²⁰⁹, Nicholas Love²⁰⁹, Juliet Parkin²⁰⁹, Victoria Tuckey²⁰⁹, Lynne Van Koutrik²⁰⁹, Sasha Carter²⁰⁹, Benedict Andrew²⁰⁹, Louise Findlay²⁰⁹, Katie Adams²⁰⁹.

St John's Hospital Livingston, Livingston, UK Jen Service²¹⁰, Alison Williams²¹⁰, Claire Cheyne²¹⁰, Anne Saunderson²¹⁰, Sam Moultrie²¹⁰, Miranda Odam²¹⁰.

Northampton General Hospital NHS Trust, Northampton, UK Kathryn Hall²¹¹, Isheunesu Mapfunde ²¹¹, Charlotte Willis²¹¹, Alex Lyon²¹¹.

Harrogate and District NHS Foundation Trust, Harrogate, UK Chunda Sri-Chandana 212 , Joslan Scherewode 212 , Lorraine Stephenson 212 , Sarah Marsh 212 .

National Hospital for Neurology and Neurosurgery, London, UK David Brealey²¹³, John Hardy²¹³, Henry Houlden²¹³, Eleanor Moncur²¹³, Eamon Raith²¹³, Ambreen Tariq²¹³, Arianna Tucci²¹³.

Bronglais General Hospital, Aberystwyth, UK
Maria Hobrok²¹⁴, Ronda Loosley²¹⁴, Heather McGuinness²¹⁴,
Helen Tench²¹⁴. Rebecca Wolf-Roberts²¹⁴.

Golden Jubilee National Hospital, Clydebank, UK Val Irvine²¹⁵, Benjamin Shelley²¹⁵.

Homerton University Hospital Foundation NHS Trust, London UK Amy Easthope²¹⁶, Claire Gorman²¹⁶, Abhinav Gupta²¹⁶, Elizabeth Timlick²¹⁶, Rebecca Brady²¹⁶.

Royal Hospital for Children, Glasgow, UK Colin Begg³, Barry Milligan³.

Sheffield Children's Hospital, Sheffield, UK

Arianna Bellini²¹⁷, Jade Bryant²¹⁷, Anton Mayer²¹⁷, Amy Pickard²¹⁷, Nicholas Roe²¹⁷, Jason Sowter²¹⁷, Alex Howlett ²¹⁷.

The Royal Alexandra Children's Hospital, Brighton, UK Katy Fidler²¹⁸, Emma Tagliavini²¹⁸, Kevin Donnelly²¹⁸.

¹Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK

²Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK

³Royal Hospital for Children, Glasgow, UK

⁴William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK

⁵Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK

⁶Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK

⁷Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China

⁸Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, ON, Canada

⁹Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK

¹⁰Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, Northern Ireland, UK

 $^{11}\mbox{UCL}$ Centre for Human Health and Performance, London, W1T 7HA, UK

¹²Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland

¹³National Heart and Lung Institute, Imperial College London, London, UK

¹⁴Imperial College Healthcare NHS Trust:London,London,UK

¹⁵Heart Institute, University of Sao Paulo, Brazil

¹⁶MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK

¹⁷Intensive Care National Audit & Research Centre, London, UK

¹⁸NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, L69 7BE, UK

¹⁹Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK

²⁰Department of Intensive Care Medicine, Guy's and St. Thomas NHS Foundation Trust, London, UK

²¹Department of Medicine, University of Cambridge, Cambridge,

²²NIHR Clinical Research Network (CRN), North West London Core Team, 3rd Floor Administrative Block South, Clock Tower, Hammersmith Hospital, Du Cane Road, London W12 0HS

²³Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 OQQ, UK

²⁴Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, EH4 2XU, UK

²⁵Biostatistics Group, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China

²⁶Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

²⁷Guys and St Thomas' Hospital, London, UK

²⁸Barts Health NHS Trust, London, UK

²⁹ James Cook University Hospital, Middlesbrough, UK

³⁰Royal Stoke University Hospital, Staffordshire, UK

³¹North Middlesex University Hospital NHS trust, London, UK

- ³²north Middlesex University Hospital NHS trust, London, UK
- ³³The Royal Liverpool University Hospital, Liverpool, UK
- ³⁴King's College Hospital, London, UK
- ³⁵Charing Cross Hospital, St Mary's Hospital and Hammersmith Hospital, London, UK
 - ³⁶Nottingham University Hospital, Nottingham, UK
 - ³⁷John Radcliffe Hospital, Oxford, UK
 - ³⁸Kingston Hospital, Surrey, UK
 - ³⁹kingston Hospital, Surrey, UK
 - ⁴⁰Royal Infirmary of Edinburgh, Edinburgh, UK
 - ⁴¹Queen Alexandra Hospital, Portsmouth, UK
 - ⁴²Morriston Hospital, Swansea, UK
 - ⁴³Addenbrooke's Hospital, Cambridge, UK
- ⁴⁴BHRUT (Barking Havering) Queens Hospital and King George Hospital, Essex, UK
 - ⁴⁵Royal Sussex County Hospital, Brighton, UK
 - ⁴⁶Queen Elizabeth Hospital, Birmingham, UK
 - ⁴⁷St George's Hospital, London, UK
 - ⁴⁸Stepping Hill Hospital, Stockport, UK
 - ⁴⁹Countess of Chester Hospital, Chester, UK
 - ⁵⁰Royal Blackburn Teaching Hospital, Blackburn, UK
 - ⁵¹The Tunbridge Wells Hospital and Maidstone Hospital, Kent, UK
 - ⁵²Royal Gwent Hospital, Newport, UK
 - ⁵³Pinderfields General Hospital, Wakefield, UK
 - ⁵⁴Royal Berkshire NHS Foundation Trust, Berkshire, UK
 - ⁵⁵Broomfield Hospital, Chelmsford, UK
- ⁵⁶Northumbria Healthcare NHS Foundation Trust, North Shields,
- UK
 - ⁵⁷Whiston Hospital, Prescot, UK
 - ⁵⁸Croydon University Hospital, Croydon, UK
 - ⁵⁹York Hospital, York, UK
 - ⁶⁰Heartlands Hospital, Birmingham, UK
 - ⁶¹Ashford and St Peter's Hospital, Surrey, UK
 - ⁶²Barnet Hospital, London, UK
 - ⁶³East Surrey Hospital, Redhill, UK
 - ⁶⁴Ninewells Hospital, Dundee, UK
- $^{65}\mbox{Worthing}$ Hospital, Worthing, UK and St Richard's Hospital, Chichester, UK
 - ⁶⁶Southampton General Hospital, Southampton, UK
- ⁶⁷The Alexandra Hospital, Redditch and Worcester Royal Hospital, Worcester, UK
 - ⁶⁸Sandwell General Hospital and City Hospital, Birmingham, UK
 - ⁶⁹Blackpool Victoria Hospital, Blackpool, UK
 - ⁷⁰Royal Glamorgan Hospital, Pontyclun, UK
 - ⁷¹The Royal Oldham Hospital, Manchester, UK
 - ⁷²Glasgow Royal Infirmary, Glasgow, UK
- ⁷³St James's University Hospital and Leeds General Infirmary, Leeds, UK
- ⁷⁴University Hospital North Durham, Darlington, UK and Darlington Memorial Hospital, Darlington, UK
 - ⁷⁵Fairfield General Hospital, Bury, UK
 - ⁷⁶Wythenshawe Hospital, Manchester, UK
 - ⁷⁷Royal Alexandra Hospital, Paisley, UK
 - ⁷⁸Good Hope Hospital, Birmingham, UK
 - ⁷⁹Tameside General Hospital, Ashton Under Lyne, UK
 - ⁸⁰Royal Derby Hospital, Derby, UK
 - 81 Medway Maritime Hospital, Gillingham, UK
 - 82 Royal Victoria Infirmary, Newcastle Upon Tyne, UK
 - ⁸³Poole Hospital, Poole, UK
 - 84Bedford Hospital, Bedford, UK
 - ⁸⁵Queens Hospital Burton, Burton-On-Trent, UK
 - ⁸⁶North Manchester General Hospital, Manchester, UK
 - ⁸⁷Aberdeen Royal Infirmary, Aberdeen, UK
 - ⁸⁸Derriford Hospital, Plymouth, UK
 - ⁸⁹Manchester Royal Infirmary, Manchester, UK
 - ⁹⁰Salford Royal Hospital, Manchester, UK

- 91William Harvey Hospital, Ashford, UK
- 92 Oueen Elizabeth University Hospital, Glasgow, UK
- 93Bradford Royal Infirmary, Bradford, UK
- ⁹⁴Bristol Royal Infirmary, Bristol, UK
- 95 Norfolk and Norwich University hospital (NNUH), Norwich, UK
- ⁹⁶Queen Elizabeth Hospital Gateshead, Gateshead, UK
- ⁹⁷Sunderland Royal Hospital, Sunderland, UK
- 98 Aintree University Hospital, Liverpool, UK
- ⁹⁹Hull Royal Infirmary, Hull, UK
- ¹⁰⁰Hull Royal Infirmary, Hull, Uk
- ¹⁰¹University College Hospital, London, UK
- ¹⁰²Royal Devon and Exeter Hospital, Exeter, UK
- ¹⁰³The Royal Papworth Hospital, Cambridge, UK
- ¹⁰⁴Ipswich Hospital, Ipswich, UK
- ¹⁰⁵Southmead Hospital, Bristol, UK
- ¹⁰⁶Milton Keynes University Hospital, Milton Keynes, UK
- ¹⁰⁷Royal Hampshire County Hospital, Hampshire, UK
- ¹⁰⁸Queen Elizabeth Hospital, Woolwich, London, UK
- ¹⁰⁹Great Ormond St Hospital and UCL Great Ormond St Institute of
- Child Health NIHR Biomedical Research Centre, London, UK
 - ¹¹⁰Stoke Mandeville Hospital, Buckinghamshire, UK
 - ¹¹¹University Hospital of Wales, Cardiff, UK
 - ¹¹²Basingstoke and North Hampshire Hospital, Basingstoke, UK
 - ¹¹³Arrowe Park Hospital, Wirral, UK
 - ¹¹⁴Chesterfield Royal Hospital Foundation Trust, Chesterfield, UK
 - ¹¹⁵Musgrove Park Hospital, Taunton, UK
- ¹¹⁶Peterborough City Hospital, Peterborough, UK and Hinching-brooke Hospital, Huntingdon, UK
- ¹¹⁷Royal Hallamshire Hospital and Northern General Hospital, Sheffield, UK
 - ¹¹⁸Dumfries and Galloway Royal Infirmary, Dumfries, UK
 - ¹¹⁹Royal Bolton Hospital, Bolton, UK
 - ¹²⁰Lister Hospital, Stevenage, UK
 - 121 Craigavon Area Hospital, County Armagh, NI
 - ¹²²Southport and Formby District General Hospital, Ormskirk, UK
- ¹²³Calderdale Royal Hospital, Halifax, UK and Huddersfield Royal Infirmary, Huddersfield, UK
 - ¹²⁴Prince Charles Hospital, Merthyr Tydfil, UK
 - ¹²⁵Royal Bournemouth Hospital, Bournemouth, UK
 - ¹²⁶Royal Preston Hospital, Preston, UK
 - ¹²⁷Whittington Hospital, London, UK
- $^{128}\mbox{Princess}$ Royal Hospital, Telford and Royal Shrewsbury Hospital, Shrewsbury, UK
 - ¹²⁹Macclesfield District General Hospital, Macclesfield, UK
 - ¹³⁰Royal Surrey County Hospital, Guildford, UK
 - 131 Hereford County Hospital, Hereford, UK
 - ¹³²University Hospital of North Tees, Stockton on Tees, UK
 - ¹³³Lincoln County Hospital, Lincoln, UK
 - ¹³⁴Royal Cornwall Hospital, Truro, UK
 - ¹³⁵Royal United Hospital, Bath, UK
 - ¹³⁶Royal Brompton Ĥospital, London, UK
 - ¹³⁷University Hospital Crosshouse, Kilmarnock, UK
 - 138 Basildon Hospital, Basildon, UK
 - ¹³⁹Glan Clwyd Hospital, Bodelwyddan, UK ¹⁴⁰West Middlesex Hospital, Isleworth, UK
 - ¹⁴¹Royal Lancaster Infirmary, Lancaster, UK
 - ¹⁴²Western General Hospital, Edinburgh, UK
 - ¹⁴³Chelsea & Westminster NHS Foundation Trust, London, UK
 - ¹⁴⁴The Queen Elizabeth Hospital, King's Lynn, UK
 - ¹⁴⁵King's Mill Hospital, Nottingham, UK
 - ¹⁴⁶Watford General Hospital, Watford, UK
 - ¹⁴⁷University Hospital Wishaw, Wishaw, UK
 - ¹⁴⁸Forth Valley Royal Hospital, Falkirk, UK
 - ¹⁴⁹George Eliot Hospital NHS Trust, Nuneaton, UK
 - ¹⁵⁰Barnsley Hospital, Barnsley, UK
 - ¹⁵¹The Great Western Hospital, Swindon, UK

- ¹⁵²Harefield Hospital, London, UK
- ¹⁵³Rotherham General Hospital, Rotherham, UK
- 154Ysbyty Gwynedd, Bangor, UK
- ¹⁵⁵Diana Princess of Wales Hospital, Grimsby, UK
- 156Russell's Hall Hospital, Dudley, UK
- ¹⁵⁷Princess Royal Hospital, Haywards Heath, UK
- ¹⁵⁸St Mary's Hospital, Newport, UK
- ¹⁵⁹University Hospital Lewisham, London, UK
- ¹⁶⁰Colchester General Hospital, Colchester, UK
- ¹⁶¹Queen Elizabeth the Queen Mother Hospital, Margate, UK
- ¹⁶²Royal Albert Edward Infirmary, Wigan, UK
- ¹⁶³Victoria Hospital, Kirkcaldy, UK
- ¹⁶⁴Eastbourne District General Hospital, East Sussex, UK and Conquest Hospital, East Sussex, UK
 - ¹⁶⁵Cumberland Infirmary, Carlisle, UK
 - ¹⁶⁶New Cross Hospital, Wolverhampton, UK
 - ¹⁶⁷The Princess Alexandra Hospital, Harlow, UK
 - ¹⁶⁸Salisbury District Hospital, Salisbury, UK
 - ¹⁶⁹Dorset County Hospital, Dorchester, UK
- ¹⁷⁰University College Dublin, St Vincent's University Hospital, Dublin, Ireland
 - ¹⁷¹Glangwili General Hospital, Camarthen, UK
 - ¹⁷²Gloucestershire Royal Hospital, Gloucester, UK
 - ¹⁷³Yeovil Hospital, Yeovil, UK
 - ¹⁷⁴Leicester Royal Infirmary, Leicester, UK
 - ¹⁷⁵Royal Manchester Children's Hospital, Manchester, UK
 - ¹⁷⁶Royal Victoria Hospital, Belfast, NI
 - ¹⁷⁷Wrexham Maelor Hospital, Wrexham, Wales
 - ¹⁷⁸Walsall Manor Hospital, Walsall, UK
 - ¹⁷⁹Darent Valley Hospital, Dartford, UK
 - ¹⁸⁰Warrington General Hospital, Warrington, UK
 - ¹⁸¹Warwick Hospital, Warwick, UK
- $^{182}\mbox{University Hospitals Coventry}$ & Warwickshire NHS Trust, Coventry, UK
 - ¹⁸³University Hospital Monklands, Airdrie, UK
 - ¹⁸⁴Princess of Wales Hospital, Llantrisant, UK
 - ¹⁸⁵Northwick Park Hospital, London, UK
 - ¹⁸⁶Raigmore Hospital, Inverness, UK
 - ¹⁸⁷Royal Free Hospital, London, UK
 - ¹⁸⁸Scunthorpe General Hospital, Scunthorpe, UK
 - ¹⁸⁹West Cumberland Hospital, Whitehaven, UK
 - ¹⁹⁰Airedale General Hospital, Keighley, UK
 - ¹⁹¹Birmingham Children's Hospital, Birmingham, UK
 - ¹⁹²Liverpool Heart and Chest Hospital, Liverpool, UK
 - ¹⁹³Pilgrim Hospital, Lincoln, UK
 - ¹⁹⁴Prince Philip Hospital, Lianelli, UK
 - ¹⁹⁵Furness General Hospital, Barrow-in-Furness, UK
 - ¹⁹⁶Scarborough General Hospital, Scarborough, UK
 - ¹⁹⁷Southend University Hospital, Westcliff-on-Sea, UK
 - ¹⁹⁸Alder Hey Children's Hospital, Liverpool, UK
 - ¹⁹⁹Torbay Hospital, Torquay, UK
 - ²⁰⁰Borders General Hospital, Melrose, UK
 - ²⁰¹Kent & Canterbury Hospital, Canterbury, UK
 - ²⁰²West Suffolk Hospital, Bury St Edmunds, UK
- ²⁰³James Paget University Hospital NHS Trust, Great Yarmouth,
- UK
 - ²⁰⁴The Christie NHS Foundation Trust, Manchester, UK
 - ²⁰⁵The Royal Marsden Hospital, London, UK
 - ²⁰⁶University Hospital Hairmyres, East Kilbride, UK
 - ²⁰⁷Withybush General Hospital, Pembrokeshire, Wales
 - ²⁰⁸Ealing Hospital, Southall, UK
 - ²⁰⁹North Devon District Hospital, Barnstaple, UK
 - ²¹⁰St John's Hospital Livingston, Livingston, UK
 - ²¹¹Northampton General Hospital NHS Trust, Northampton, UK
 - ²¹²Harrogate and District NHS Foundation Trust, Harrogate, UK
 - ²¹³National Hospital for Neurology and Neurosurgery, London, UK

- ²¹⁴Bronglais General Hospital, Aberystwyth, UK
- ²¹⁵Golden Jubilee National Hospital, Clydebank, UK
- $^{\rm 216} Homerton$ University Hospital Foundation NHS Trust, London UK
 - ²¹⁷Sheffield Children's Hospital, Sheffield, UK
 - ²¹⁸The Royal Alexandra Children's Hospital, Brighton, UK

Appendix 2: ISARIC4C Investigators

Consortium Lead Investigator: I Kenneth Baillie.

Chief Investigator: Malcolm G Semple.

Co-Lead Investigator: Peter JM Openshaw.

ISARIC Clinical Coordinator: Gail Carson.

Co-Investigator: Beatrice Alex, Petros Andrikopoulos, Benjamin Bach, Wendy S Barclay, Debby Bogaert, Meera Chand, Kanta Chechi, Graham S Cooke, Ana da Silva Filipe, Thushan de Silva, Annemarie B Docherty, Gonçalo dos Santos Correia, Marc-Emmanuel Dumas, Jake Dunning, Tom Fletcher, Christoper A Green, William Greenhalf, Julian L Griffin, Rishi K Gupta, Ewen M Harrison, Julian A Hiscox, Antonia Ying Wai Ho, Peter W Horby, Samreen Ijaz, Saye Khoo, Paul Klenerman, Andrew Law, Matthew R Lewis, Sonia Liggi, Wei Shen Lim, Lynn Maslen, Alexander J Mentzer, Laura Merson, Alison M Meynert, Shona C Moore, Mahdad Noursadeghi, Michael Olanipekun, Anthonia Osagie, Massimo Palmarini, Carlo Palmieri, William A Paxton. Georgios Pollakis, Nicholas Price, Andrew Rambaut, David L Robertson, Clark D Russell, Vanessa Sancho-Shimizu, Caroline I Sands, Ianet T Scott, Louise Sigfrid, Tom Solomon, Shiranee Sriskandan, David Stuart, Charlotte Summers, Olivia V Swann, Zoltan Takats, Panteleimon Takis, Richard S Tedder, AA Roger Thompson, Emma C Thomson, Ryan S Thwaites, Lance CW Turtle, Maria Zambon.

Project Manager: Hayley Hardwick, Chloe Donohue, Fiona Griffiths, Wilna Oosthuyzen.

Project Administrator: Cara Donegan, Rebecca G. Spencer.

Data Analyst: Lisa Norman, Riinu Pius, Thomas M Drake, Cameron J Fairfield, Stephen R Knight, Kenneth A Mclean, Derek Murphy, Catherine A Shaw.

Data and Information System Manager: Jo Dalton, Michelle Girvan, Egle Saviciute, Stephanie Roberts, Janet Harrison, Laura Marsh, Marie Connor, Sophie Halpin, Clare Jackson, Carrol Gamble, Daniel Plotkin, James Lee.

Data Integration and Presentation: Gary Leeming, Andrew Law, Murray Wham, Sara Clohisey, Ross Hendry, James Scott-Brown.

Material Management: Victoria Shaw, Sarah E McDonald.

Patient Engagement: Seán Keating.

Outbreak Laboratory Staff and Volunteers: Katie A. Ahmed, Jane A Armstrong, Milton Ashworth, Innocent G Asiimwe, Siddharth Bakshi, Samantha L Barlow, Laura Booth, Benjamin Brennan, Katje Bullock, Benjamin WA Catterall, Jordan J Clark, Emily A Clarke, Sarah Cole, Louise Cooper, Helen Cox, Christopher Davis, Oslem Dincarslan, Chris Dunn, Philip Dyer, Angela Elliott, Anthony Evans, Lorna Finch, Lewis WS Fisher, Terry Foster, Isabel Garcia-Dorival, Philip Gunning, Catherine Hartley, Rebecca L Jensen, Christopher B Jones, Trevor R Jones, Shadia Khandaker, Katharine King, Robyn T. Kiy, Chrysa Koukorava, Annette Lake, Suzannah Lant, Diane Latawiec, Lara Lavelle-Langham, Daniella Lefteri, Lauren Lett, Lucia A Livoti, Maria Mancini, Sarah McDonald, Laurence McEvoy, John McLauchlan, Soeren Metelmann, Nahida S Miah, Joanna Middleton, Joyce Mitchell, Shona C Moore, Ellen G Murphy, Rebekah Penrice-Randal, Jack Pilgrim, Tessa Prince, Will Reynolds, P. Matthew Ridley, Debby Sales, Victoria E Shaw, Rebecca K Shears, Benjamin Small, Krishanthi S Subramaniam, Agnieska Szemiel, Aislynn Taggart, Jolanta Tanianis-Hughes, Jordan Thomas, Erwan Trochu, Libby van Tonder, Eve Wilcock, J. Eunice Zhang, Lisa Flaherty, Nicole Maziere, Emily Cass, Alejandra Doce Carracedo, Nicola Carlucci, Anthony Holmes, Hannah Massey.

Edinburgh Laboratory Staff and Volunteers: Lee Murphy, Sarah McCafferty, Richard Clark, Angie Fawkes, Kirstie Morrice, Alan

Maclean, Nicola Wrobel, Lorna Donnelly, Audrey Coutts, Katarzyna Hafezi, Louise MacGillivray, Tammy Gilchrist.

Local Principal Investigators: Kayode Adeniji, Daniel Agranoff, Ken Agwuh, Dhiraj Ail, Erin L. Aldera, Ana Alegria, Sam Allen, Brian Angus, Abdul Ashish, Dougal Atkinson, Shahedal Bari, Gavin Barlow, Stella Barnass, Nicholas Barrett, Christopher Bassford, Sneha Basude, David Baxter, Michael Beadsworth, Jolanta Bernatoniene, John Berridge, Colin Berry, Nicola Best, Pieter Bothma, David Chadwick, Robin Brittain-Long, Naomi Bulteel, Tom Burden, Andrew Burtenshaw, Vikki Caruth, David Chadwick, Duncan Chambler, Nigel Chee, Jenny Child, Srikanth Chukkambotla, Tom Clark, Paul Collini, Catherine Cosgrove, Jason Cupitt, Maria-Teresa Cutino-Moguel, Paul Dark, Chris Dawson, Samir Dervisevic, Phil Donnison, Sam Douthwaite, Andrew Drummond, Ingrid DuRand, Ahilanadan Dushianthan, Tristan Dyer, Cariad Evans, Chi Eziefula, Chrisopher Fegan, Adam Finn, Duncan Fullerton, Sanjeev Garg, Sanjeev Garg, Atul Garg, Effrossyni Gkrania-Klotsas, Jo Godden, Arthur Goldsmith, Clive Graham, Elaine Hardy, Stuart Hartshorn, Daniel Harvey, Peter Havalda, Daniel B Hawcutt, Maria Hobrok, Luke Hodgson, Anil Hormis, Michael Jacobs, Susan Jain, Paul Jennings, Agilan Kaliappan, Vidya Kasipandian, Stephen Kegg, Michael Kelsey, Jason Kendall, Caroline Kerrison, Ian Kerslake, Oliver Koch, Gouri Koduri, George Koshy, Shondipon Laha, Steven Laird, Susan Larkin, Tamas Leiner, Patrick Lillie, James Limb, Vanessa Linnett, Jeff Little, Mark Lyttle, Michael MacMahon, Emily MacNaughton, Ravish

Mankregod, Huw Masson, Elijah Matovu, Katherine McCullough, Ruth McEwen, Manjula Meda, Gary Mills, Jane Minton, Mariyam Mirfenderesky, Kavya Mohandas, Quen Mok, James Moon, Elinoor Moore, Patrick Morgan, Craig Morris, Katherine Mortimore, Samuel Moses, Mbive Mpenge, Rohinton Mulla, Michael Murphy, Megan Nagel, Thapas Nagarajan, Mark Nelson, Lillian Norris, Matthew K. O'Shea, Igor Otahal, Marlies Ostermann, Mark Pais, Carlo Palmieri, Selva Panchatsharam, Danai Papakonstantinou, Hassan Paraiso, Brij Patel, Natalie Pattison, Justin Pepperell, Mark Peters, Mandeep Phull, Stefania Pintus, Jagtur Singh Pooni, Tim Planche, Frank Post, David Price, Rachel Prout, Nikolas Rae, Henrik Reschreiter, Tim Reynolds, Neil Richardson, Mark Roberts, Devender Roberts, Alistair Rose, Guy Rousseau, Bobby Ruge, Brendan Ryan, Taranprit Saluja, Matthias L Schmid, Aarti Shah, Prad Shanmuga, Anil Sharma, Anna Shawcross, Jeremy Sizer, Manu Shankar-Hari, Richard Smith, Catherine Snelson, Nick Spittle, Nikki Staines, Tom Stambach, Richard Stewart, Pradeep Subudhi, Tamas Szakmany, Kate Tatham, Jo Thomas, Chris Thompson, Robert Thompson, Ascanio Tridente, Darell Tupper-Carey, Mary Twagira, Nick Vallotton, Rama Vancheeswaran, Lisa Vincent-Smith, Shico Visuvanathan, Alan Vuylsteke, Sam Waddy, Rachel Wake, Andrew Walden, Ingeborg Welters, Tony Whitehouse, Paul Whittaker, Ashley Whittington, Padmasayee Papineni, Meme Wijesinghe, Martin Williams, Lawrence Wilson, Sarah Cole, Stephen Winchester, Martin Wiselka, Adam Wolverson, Daniel G Wootton, Andrew Workman, Bryan Yates, Peter Young.