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a b s t r a c t 

Supervised machine learning methods have been widely developed for segmentation tasks in recent 

years. However, the quality of labels has high impact on the predictive performance of these algorithms. 

This issue is particularly acute in the medical image domain, where both the cost of annotation and the 

inter-observer variability are high. Different human experts contribute estimates of the ”actual” segmen- 

tation labels in a typical label acquisition process, influenced by their personal biases and competency 

levels. The performance of automatic segmentation algorithms is limited when these noisy labels are 

used as the expert consensus label. In this work, we use two coupled CNNs to jointly learn, from purely 

noisy observations alone, the reliability of individual annotators and the expert consensus label distribu- 

tions. The separation of the two is achieved by maximally describing the annotator’s “unreliable behav- 

ior” (we call it “maximally unreliable”) while achieving high fidelity with the noisy training data. We first 

create a toy segmentation dataset using MNIST and investigate the properties of the proposed algorithm. 

We then use three public medical imaging segmentation datasets to demonstrate our method’s efficacy, 

including both simulated (where necessary) and real-world annotations: 1) ISBI2015 (multiple-sclerosis 

lesions); 2) BraTS (brain tumors); 3) LIDC-IDRI (lung abnormalities). Finally, we create a real-world mul- 

tiple sclerosis lesion dataset (QSMSC at UCL: Queen Square Multiple Sclerosis Center at UCL, UK) with 

manual segmentations from 4 different annotators (3 radiologists with different level skills and 1 expert 

to generate the expert consensus label). In all datasets, our method consistently outperforms competing 

methods and relevant baselines, especially when the number of annotations is small and the amount of 

disagreement is large. The studies also reveal that the system is capable of capturing the complicated 

spatial characteristics of annotators’ mistakes. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The performance of downstream supervised machine learning 

odels is known to be influenced by substantial inter-reader vari- 

bility when segmenting anatomical structures in medical images 

26] . This issue is especially acute in the medical image domain, 
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here labelled data is commonly scarce due to the high cost of 

nnotations. For instance, because of the heterogeneity in lesion lo- 

ation, size, shape, and anatomical variability across patients [29] , 

ccurate identification of multiple sclerosis (MS) lesions in MRIs is 

ifficult even for experienced experts. Another example [21] shows 

hat glioblastoma (a kind of brain tumour) segmentation had an 

verage inter-reader variability of 74–85%. Segmentation annota- 

ions of structures in medical image suffer from substantial anno- 

ation variations, which is exacerbated by disparities in biases and 

evel of expertise [18] . As a result, despite the current quantity of 

edical imaging data due to almost two decades of digitisation, 
he world still lacks access to data with curated labels that can be 
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sed by machine learning [14] , necessitating the use of intelligent 

lgorithms to learn robustly from such noisy annotations. 

Different pre-processing techniques are often used to curate 

egmentation annotations by fusing labels from different experts 

n order to minimise inter-reader differences. The most basic and 

idely used approach is based on a majority vote, with the most 

epresentative expert opinion being treated as the expert consen- 

us label. In the aggregation of brain tumour segmentation labels, 

 smarter variant [21] that accounts for class similarity has proven 

ffective. 

However, one major limitation with such approaches is that all 

xperts are presumed to be equally trustworthy [25] . proposed a 

abel fusion approach, which is called STAPLE. This method explic- 

tly models individual expert reliability and uses that knowledge 

o ”weight” their judgments in the label aggregation step. STAPLE 

as been the go-to label fusion method in the construction of pub- 

ic medical image segmentation datasets, such as ISLES [27] , MSSeg 

11] , and Gleason’19 [12] datasets, after demonstrating its superior- 

ty over traditional majority-vote pre-processing in various appli- 

ations. Asman further extended this strategy in [4] by accounting 

or voxel-wise consensus to solve the issue of annotators’ reliabil- 

ty being under-estimated. Another extension [5] was proposed to 

odel the annotator’s reliability across different pixels in images. 

ore recently, STAPLE has been modified in numerous ways to en- 

ode the information of the underlying images into the label aggre- 

ation process in the context of multi-atlas segmentation problems 

2,16] where image registration is used to warp segments from la- 

elled images (”atlases”) onto a new scan. STEP, which is a way 

o further incorporate the local morphological similarity between 

tlases and target images in [8] , is a notable example, and sev- 

ral extensions of this approach, such as [1,6] , have subsequently 

een examined. However, all of the previous label fusion methods 

ave one major limitation: they don’t have a way to integrate in- 

ormation from distinct training images. This severely restricts the 

cope of applications to situations in which each image has a rea- 

onable number of annotations from multiple experts, which can 

e prohibitively expensive in practise. Moreover, to model the re- 

ationship between observed noisy annotations, expert consensus 

abel and reliability of experts, relatively simplistic functions are 

tilized, which may fail to capture complex characteristics of hu- 

an annotators. 

In this paper, we introduce and fully evaluate an unique end- 

o-end segmentation approach that predicts the reliability of mul- 

iple human annotators and the expert consensus label based on 

oisy labels alone. We use the Morpho-MNIST framework [9] to 

erform morphometric operations on the MNIST dataset to simu- 

ate a variety of annotator types for evaluation. We also demon- 

trate the potential in several public medical imaging datasets, 

amely (i) MS lesion segmentation dataset (ISBI2015) from the ISBI 

015 challenge [7] , (ii) Brain tumour segmentation dataset (BraTS) 

21] and (iii) Lung nodule segmentation dataset (LIDC-IDRI) [3] . 

urthermore, we create a practical MS lesion segmentation dataset 

ith 4 different annotators (3 radiologists with different level skills 

nd 1 expert to generate the expert consensus label) to evaluate 

ur model’s performance in real-world data. Experiments on all 

atasets demonstrate that our method consistently leads to bet- 

er segmentation performance compared to widely adopted label- 

usion methods and other relevant baselines, especially when the 

umber of available labels for each image is low and the degree 

f annotator disagreement is high. The main contributions of our 

pproach are: 

(1) A novel deep CNN architecture is proposed for jointly learn- 

ng the expert consensus label and the annotator’s label. The pro- 

osed architecture ( Fig. 1 ) consists of two coupled CNNs where one 

stimates the expert consensus label probabilities and the other 
2 
odels the characteristics of individual annotators (e.g., tendency 

o over-segmentation, mix-up between different classes, etc) by es- 

imating the pixel-wise confusion matrices (CMs) on a per image 

asis. Unlike STAPLE [25] and its variants, our method models, and 

isentangles with deep neural networks, the complex mappings 

rom the input images to the annotator behaviours and to the ex- 

ert consensus label. 

(2) The parameters of our CNNs are “global variables” that are 

ptimised across different image samples; this enables the model 

o disentangle robustly the annotators’ mistakes and the expert 

onsensus label based on correlations between similar image sam- 

les, even when the number of available annotations is small per 

mage (e.g., a single annotation per image). In contrast, this would 

ot be possible with STAPLE [25] and its variants [5,8] where the 

nnotators’ parameters are estimated on every target image sepa- 

ately. 

(3) This paper extends the preliminary version of our method 

resented at the NeurIPS Thirty-fourth Annual Conference on Neu- 

al Information Processing Systems [30] , by extensively evaluat- 

ng our model on a new created real-world multiple sclerosis le- 

ion dataset (QSMSC at UCL: Queen Square Multiple Sclerosis Cen- 

er at UCL, UK). This dataset is generated with manual segmen- 

ations from 4 different annotators (3 radiologists with different 

evel skills and 1 expert to generate the expert consensus label). 

dditionally, we presented a comprehensive discussion about our 

odel’s potential applications (e.g., estimate annotator’s quality 

nd annotation’s quality), the future works we are going to explore, 

nd the potential limitations of our model. 

. Methodology 

.1. Problem set-up 

In this work, we look at the problem of developing a super- 

ised segmentation model using noisy labels provided by mul- 

iple human annotators. In particular, we explore a situation in 

hich a set of images { x n ∈ R 

W ×H×C } N n =1 (with W, H, C denoting 

he width, height and channels of the image) are assigned with 

oisy segmentation labels { ̃ y (r) 
n ∈ Y 

W ×H } r∈ S(x i ) 

n =1 , ... ,N 
from multiple an- 

otators where ˜ y (r) 
n denotes the label from annotator r ∈ { 1 , . . . , R }

nd S(x n ) denotes the set of all annotators who labelled image x n 
nd Y = [1 , 2 , . . . , L ] denotes the set of classes. 

We suppose that each image x has been annotated by at least 

ne person i.e., | S(x ) | ≥ 1 , and no expert consensus label { y n ∈
 

W ×H } n =1 , ... ,N are available. Here the problem of interest comes 

nto learning the unobserved expert consensus label distribution p( y | 
 ) from such noisy labelled dataset D = { x n , ̃  y (r) 

n } r∈ S(x n ) 
n =1 , ... ,N 

i.e., the 

ombination of images, noisy labels and labels of experts’ identi- 

ies (which label was obtained from whom). 

We also emphasise that during inference time, the goal is to seg- 

ent a particular unlabeled test image, not to fuse multiple acces- 

ible labels, as is typically done in multi-atlas segmentation tech- 

iques [16] . 

.2. Probabilistic model and proposed architecture 

In this section, we present the probabilistic model of the ob- 

erved noisy labels from various annotators. Given the input image, 

e make two key assumptions: (1) annotators are statistically in- 

ependent, and (2) annotations over different pixels are indepen- 

ent. With these assumptions, the probability of observing noisy 

abels { ̃ y (r) } r∈ S(x ) on x factorises as: 
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p({ ̃ y (r) } r∈ S(x ) | x ) = 

∏ 

r∈ S(x ) 

p( ̃ y (r) | x ) 

= 

∏ 

r∈ S(x ) 

∏ 

w ∈{ 1 , ... ,W } 
h ∈{ 1 , ... ,H} 

p( ̃  y (r) 
wh 

| x ) (1) 

here ˜ y (r) 
wh 

∈ [1 , . . . , L ] denotes the (w, h ) th elements of ˜ y (r) ∈
 

W ×H . The probability of observing each noisy label on each pixel 

w, h ) is now rewritten as: 

p( ̃  y (r) 
wh 

| x ) = 

L ∑ 

y wh =1 

p( ̃  y (r) 
wh 

| y wh , x ) · p(y wh | x ) (2) 

here p(y wh | x ) denotes the expert consensus label distribution 

ver the (w, h ) th pixel in the image x , and p( ̃  y (r) 
wh 

| y wh , x ) de-

cribes the noisy labelling process by which annotator r corrupts 

he expert consensus label. In particular, we refer to the L × L ma- 

rix whose each (i, j) th element is defined by the second term 

 

(r) (x , w, h ) i j := p( ̃  y (r) 
wh 

= i | y wh = j, x ) as the CM of annotator r at

ixel (w, h ) in image x . 

We present a CNN-based architecture for modelling the differ- 

nt constituents of the joint probability distribution in the above 

p({ ̃ y (r) } r∈ S(x ) | x ) as illustrated in Fig. 1 . The model consists of two

omponents: (1) Segmentation Network , parametrised by θ , which 

stimates the expert consensus label probability map, ˆ p θ ( x ) ∈ 

 

W ×H×L whose each (w, h, i ) th element approximates p(y wh = i | 
 ) ;(2) Annotator Network , parametrised by φ, that generate esti- 

ates of the pixel-wise CMs of respective annotators as a func- 

ion of the input image, { ̂  A 

(r) 

φ ( x ) ∈ [0 , 1] W ×H×L ×L } R 
r=1 

whose each

w, h, i, j) th element approximates p( ̃  y (r) 
wh 

= i | y wh = j, x ) . Each

roduct ˆ p 

(r) 
θ,φ

( x ) := 

ˆ A 

(r) 

φ ( x ) · ˆ p θ ( x ) represents the estimated seg- 

entation probability map of the corresponding annotator. Note 
ig. 1. The schematic pipeline of 3 annotators in different characteristics: over-segme

wo parts: (1) segmentation network parametrised by θ that generates an estimate of t

arametrised by φ, that estimates the pixelwise confusion matrices { A (r) 
φ

( x ) } 3 r=1 of the an

ributions ˆ p 
(r) 
θ,φ ( x ) := A (r) 

φ
( x ) · p θ ( x ) are computed, and the parameters { θ, φ} are learned

oisy segmentation labels ˜ y (r) , and the trace of the estimated CMs. At test time, the outp

3 
hat here “ · ” denotes the element-wise matrix multiplications in 

he spatial dimensions W, H. At inference time, we use the output 

f the segmentation network ˆ p θ ( x ) to segment test images. 

.3. Learning spatial confusion matrices and expert consensus label 

Recently, several combined loss functions have been designed 

nd used to solve different problems [13] . In this section, we 

resent the details of how we combined the parameters of the 

egmentation network, θ , and the parameters of the annotator net- 

ork, φ, to optimise them. In short, we use stochastic gradient de- 

cent to minimise the negative log-likelihood of the probabilistic 

odel plus a regularisation component. The following is a more 

xtensive description. 

Given training input X = { x n } N n =1 
and noisy labels ˜ Y 

(r) = 

 ̃ y (r) 
n : r ∈ S(x n ) } N n =1 

for r = 1 , . . . , R , we optimize the parame-

ers { θ, φ} by minimizing the negative log-likelihood (NLL), 

log p( ̃  Y 

(1) 
, . . . , ̃  Y 

(R ) | X ) . From eqs. 1 and 2 , this optimization ob- 

ective equates to the sum of cross-entropy losses between the ob- 

erved noisy segmentations and the estimated annotator label dis- 

ributions: 

− log p( ̃  Y 

(1) 
, . . . , ̃  Y 

(R ) | X ) 

= 

N ∑ 

n =1 

R ∑ 

r=1 

I ( ̃ y (r) 
n ∈ S( x n )) · CE 

(
ˆ A 

(r) 

φ ( x ) · ˆ p θ ( x n ) , ˜ y (r) 
n 

)
(3) 

Keeping the above to a minimum encourages each annotator’s 

redictions ˆ p 

(r) 
θ,φ

( x ) to be as close as feasible to the annotator’s 

rue noisy label distribution p 

(r) ( x ) . This loss function, however, 

s insufficient to distinguish the annotation noise from the expert 

onsensus label distribution; there are many combinations of pairs 

ˆ 
 

(r) 

φ (x ) and segmentation model ˆ p θ (x ) such that ˆ p 

(r) 
θ,φ

( x ) perfectly 
ntation, under-segmentation and mixing up two classes. The model consists of 

he unobserved expert consensus label probabilities, p θ ( x ) ; (2) annotator network , 

notators for the given input image x . During training, the estimated annotators dis- 

 by minimizing the sum of their cross-entropy losses with respect to the acquired 

ut of the segmentation network, ˆ p θ ( x ) is used to yield the prediction. 
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atches the true annotator’s distribution p 

(r) (x ) for any input x 

e.g., permutations of rows in the CMs). To combat this problem, 

nspired by [24] , which addressed an analogous issue for classifi- 

ation tasks, we add the trace of the estimated CMs to the loss 

unction in Eq. 2.3 as a regularisation term. We thus optimize the 

ombined loss: 

 total (θ, φ) := 

N ∑ 

n =1 

R ∑ 

r=1 

I ( ̃ y (r) 
n ∈ S( x i )) 

·
[ 

CE 

(
ˆ A 

(r) 

φ ( x ) · ˆ p θ ( x n ) , ˜ y (r) 
n 

)
+ λ · tr 

(
ˆ A 

(r) 

φ (x n ) 
)] 

(4) 

here S( x )) denotes the set of all labels available for image x , and

r ( A ) denotes the trace of matrix A . The average probability that 

 randomly selected annotator would provide an accurate label is 

epresented by the mean trace. Minimizing the trace, on the other 

and, encourages the predicted annotators to be as unreliable as 

ossible while minimising the cross entropy ensures fidelity with 

bserved noisy annotators. We minimise this combined loss via 

tochastic gradient descent to learn both { θ, φ} . 

.4. Justification for the trace norm 

We present a further justification for employing trace regulari- 

ation in this section. If the average CM of annotators is diagonally 

ominant and the cross-entropy term in the loss function is zero, 

24] demonstrated that minimising the trace of the estimated CMs 

ecovers the true CMs uniquely. However, rather than individual 

ata samples, their results address properties of the average CMs 

f both the annotators and the classifier over the entire population. 

n the sample-specific regime, we show a comparable but slightly 

eaker result, which is more relevant because we estimate CMs of 

orresponding annotators on every input image. 

First, let us set up the notations. For brevity, for a given in- 

ut image x ∈ R 

W ×H×C , we denote the estimated CM of annota- 

or r at (i, j) th pixel by ˆ A 

(r) 
:= [ A 

(r) (x ) i j ] ∈ [0 , 1] L ×L . We also define

he mean CM A 

∗ := 

∑ R 
r=1 πr ̂  A 

(r) 
and its estimate ˆ A 

∗
:= 

∑ R 
r=1 πr ̂  A 

(r) 

here πr ∈ [0 , 1] is the probability that the annotator r labels im- 

ge x . Lastly, as we stated earlier, we assume there is a single

xpert consensus label per image — thus the true L -dimensional 

robability vector at pixel (i, j) takes the form of a one-hot vector 

.e., p ( x ) = e k for, say, class k ∈ [1 , . . . , L ] . Then, the following result

otivates the use of the trace regularisation: 

heorem 1. If the annotator’s segmentation probabilities are per- 

ectly modelled by the model for the given image i.e., ˆ A 

(r) 
ˆ p θ ( x ) = 

 

(r) p ( x ) ∀ r = 1 , . . . , R , and the average true confusion matrix A 

∗ at

 given pixel and its estimate ˆ A 

∗
satisfy that a ∗

kk 
> a ∗

k j 
for j � =

 and ˆ a ∗
ii 

> ˆ a ∗
i j 

for all i, j such that j � = i , then A 

(1) 
, . . . , A 

(R ) =
rgmin 

ˆ A 
(1) 

, ... , ̂ A 
(R ) [ tr ( ̂  A 

∗
) ] and such solutions are unique in the k th 

olumn where k is the correct pixel class. 

The corresponding proof is provided in the supplementary ma- 

erial. The above result shows that if each estimated annotator’s 

istribution 

ˆ A 

(r) 
ˆ p θ (x ) is very close to the true noisy distribu- 

ion p 

(r) (x ) (which is encouraged by minimizing the cross-entropy 

oss), and for a given pixel, the average CM has the k th diagonal

ntry larger than any other entries in the same row 

2 , then mini- 

izing its trace will drive the estimates of the k th (‘correct class’) 
2 For the standard “majority vote” label to capture the correct expert consensus 

abel, one requires the k th diagonal element in the average CM to be larger than the 

um of the remaining elements in the same row, which is a more strict condition. 

e

m

c

a

a

4 
olumns in the respective annotator’s CMs to match the true val- 

es. The single-ground-truth assumption indicates that the remain- 

ng values of the CMs are uniformly equal to 1 /L , and therefore it

uffices to recover the column of the proper class, even though this 

esult is weaker than what was shown in [24] for the population 

cenario rather than individual samples. 

We use identity matrices to encourage { ̂  A 

(1) , . . . , ̂  A 

(R ) } to be di- 

gonally dominant by training the annotation network to maximise 

he trace for a sufficient number of iterations as a warm-up period. 

ntuitively, the trace term and cross-entropy combination separates 

he expert consensus label distribution from the annotation noise 

y locating the maximum amount of confusion that adequately ex- 

lains the noisy observations. 

.5. Model implementation and optimization 

Low-rank Approximation. Low-rank approximation is an effec- 

ive model compression technique to not only reduce parameter 

torage requirements, but to also reduce computations. For con- 

olutional neural networks (CNNs), however, well-known low-rank 

pproximation methods, such as Tucker or CP decomposition, re- 

ult in degraded model accuracy because decomposed layers hin- 

er training convergence. We note that each spatial CM, ˆ A 

(r) 

φ ( x ) 

ontains W HL 2 variables, and calculating the corresponding anno- 

ator’s prediction ˆ p 

(r) 
θ,φ

( x ) requires W H(2 L − 1) L floating-point op- 

rations, potentially incurring a large time/space cost when the 

umber of classes is large. We also investigate a low-rank approx- 

mation (rank = 1 ) approach to alleviate this issue whenever ap- 

licable, despite the fact that it is not the focus of our study (as 

e are concerned with medical imaging applications for which the 

umber of classes is typically limited to less than 10). 

Analogous to Chandra and Kokkinos’s work [10] where they em- 

loyed a similar approximation for estimating the pairwise terms 

n densely connected CRF, we parametrise the spatial CM, ˆ A 

(r) 

φ ( x ) = 

 

(r) 
1 ,φ

( x ) · B 

T, (r) 
2 ,φ

( x ) as a product of two smaller rectangular matrices 

 

(r) 
1 ,φ

and B 

(r) 
2 ,φ

of size W × H × L × l where l << L . In this case, the

nnotator network outputs B 

(r) 
1 ,φ

and B 

(r) 
2 ,φ

for each annotator in lieu 

f the full CM. Two separate rectangular matrices are used here 

ince the confusion matrices are not necessarily symmetric. Such 

ow-rank approximation reduces the total number of variables to 

 W HLl from W HL 2 and the number of floating-point operations 

FLOPs) to W H(4 L (l − 0 . 25) − l) from W H(2 L − 1) L . 

Training without Sample Bias. Traditionally, machine learn- 

ng methods can learn model parameters automatically with the 

raining samples and thus it can provide models with good per- 

ormance which can satisfy the special requirements of various 

pplications. In medical image computing tasks, we usually have 

he longitudinal study (e.g., our practical MS segmentation data), 

hich is an observational study and the data is gathered from the 

ame sample repeatedly over an extended period of time. Sample 

ias would occur when our training data only have a limited num- 

er of patients from the dataset, which does not reflect the real- 

ties of the environment in which a machine learning model will 

un. For example, certain facial recognition systems are trained pri- 

arily on images of white men. These models have considerably 

ower levels of accuracy with women and people of different eth- 

icities. 

In order to train our model without sample bias and make our 

odel robust to the data generalization, we utilize the product of 

xperts [15] to factor the potential sample biases out of the learned 

odel. Our annotator network is firstly trained with the standard 

ross-entropy loss from multiple annotators to discover sample bi- 

ses in the dataset. We then investigate the biases on which the 

nnotator network relies and show that they match the identified 
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ample bias existing in the longitudinal dataset. We also follow the 

raining approaches in [23] , which is decomposed into two suc- 

essive stages: (a) training the annotator network with a standard 

ross-entropy loss and (b) training the segmentation network via 

he product of experts to learn from the CMs of the multiple anno- 

ators. The core intuition of this training approach is to encourage 

he robust model to learn to predict the true label distribution that 

akes into account each annotator’s mistakes (CMs). The final goal 

s to produce the segmentation network. After training, the anno- 

ator network is frozen and used only as part of the product of 

xperts. Since the annotator network is frozen, only the segmenta- 

ion network receives gradient updates during training. 

Network Details. With the introduction of CNNs in recent 

ears, image segmentation approaches have improved substan- 

ially. CNNs have been applied to both image and model-based 

egmentation problems with this method outperforming tradi- 

ional techniques. With regards to the former, the most noticeable 

reakthrough was the introduction of the U-Net for 2D segmenta- 

ion by [22] . Subsequently, different variations of the U-Net were 

roposed, which have extended the method to 3D, dealt with the 

ssue of class imbalance and made full use of the advantages of 

patial information. In this work, we implement our model and 

valuate on both natural image dataset and medical image datasets 

n 2D and 3D version based on U-net. 

For 2D natural image segmentation tasks, our aim is to study 

he properties of the proposed model that could estimate the ex- 

ert consensus label from multiple annotators. Meanwhile, it is 

lso easy to describe and to be understood the theoretical back- 

round of our model from the 2D level and suitable to applied 

n most datasets by exploring this topic on 2D version. For these 

easons, we build our model on a 2D U-net [22] with 4 down- 

ampling stages and channel counts of 32, 64, 128, 256 for each 

ncoder. We also replaced the batch normalisation layers with in- 

tance normalisation. Apart from the last layer in the U-net de- 

oder, our segmentation and annotator networks share the same 

arameters. In essence, the overall architecture is implemented as 

 U-net with multiple output last layers: one for expert consensus 

abel prediction and the others for noisy segmentation prediction. 

he output of the last layer of a segmentation network has c chan- 

els, where c is the number of classes. 

To deal with the more complicated segmentation problems in 

D medical image community, we also implement our model to 

D version. We use the original implementation with some mi- 

or modifications. Like our 2D version model, the overall 3D ar- 

hitecture is implemented as a U-net with multiple output last 

ayers: one for expert consensus label prediction and the others 

or noisy segmentation prediction. In the symmetric encoder path, 

ach layer contains two 3 × 3 × 3 convolutions each followed by a 

ectified linear unit ( ReLu ) , and then a 2 × 2 × 2 max pooling with

trides of two in each dimension. In the synthesis path, each layer 

onsists of an upconvolution of 2 × 2 × 2 by strides of two in each

imension, followed by two 3 × 3 × 3 convolutions each followed 

y a ReLu. Shortcut connections from layers of equal resolution in 

he analysis path provide the essential high-resolution features to 

he synthesis path. The last layer that has 1 x 1 x 1 kernel and c num-

er of channels as output. In this case, we use ReLu non-linearity 

nd the skip-connections are joined with a concatenation step. The 

etwork outputs a c-channel segmentation map with the training 

abels as well as a softmax. 

By default, the output of the last layer for calculating CMs at 

ach spatial position in an annotator network has L × L number of 

hannels; when low-rank approximation is employed, the output 

f the last layer has 2 L × L number of channels. For fair compar-

son, we adjusted the number of the channels and the depth of 

he U-net backbone in Probabilistic U-net [20] to match with our 

etworks. 
5

. Experiments 

.1. Dataset description 

We evaluate our method on a variety of datasets including both 

ynthetic and real-world scenarios:1) for MNIST segmentation and 

SBI2015 MS lesion segmentation challenge dataset [17] , we apply 

orphological operations to generate synthetic noisy labels in bi- 

ary segmentation tasks; 2) for BraTS 2019 dataset [21] , we apply 

imilar simulation to create noisy labels in a multi-class segmen- 

ation task; 3) we also consider the LIDC-IDRI dataset which con- 

ains multiple annotations per input acquired from different clini- 

al experts as the evaluation in practice. 4) We create a real-world 

ultiple sclerosis lesion dataset with manual segmentations from 

 different annotators to verify our method in practical situation. 

.2. Comparison methods and evaluation metrics 

Our experiments are based on the assumption that no ex- 

ert consensus label is available a priori, hence, we compare our 

ethod against multiple label fusion methods. In particular, we 

onsider four label fusion baselines: a) mean of all of the noisy la- 

els; b) mode labels by taking the “majority vote”; c) label fusion 

ia the original STAPLE method [25] ; d) Spatial STAPLE, a more 

ecent extension of STAPLE that accounts for spatial variations in 

Ms. For STAPLE and Spatial STAPLE methods, we used the toolkit 3 . 

o get an upper-bound performance, we also include the oracle 

odel that is directly trained on the expert consensus label an- 

otations. To test the value of the proposed image-dependent spa- 

ial CMs, we also include “Global CM” model where a single CM 

s learned per annotator but fixed across pixels and images (analo- 

ous to [19,24] , but in segmentation task). Lastly, we also compare 

gainst a recent method called Probabilistic U-net [20] as another 

aseline, which has been shown to capture inter-reader variations 

ccurately. 

For evaluation metrics, we use: 1) root-MSE between estimated 

Ms and real CMs; 2) Dice coefficient (DICE) between estimated 

egmentation ˆ p θ ( x ) and expert consensus label y GT : 

 c = 

2 × ∑ 

i 

∑ 

j | ̂  p θ ( x ) · y GT · U c | ∑ 

i 

∑ 

j | ̂  p θ ( x ) · U c | + 

∑ 

i 

∑ 

j | y GT · U c | (5) 

here U c means the one-hot vector for class c, U c = 

U 1 , . . . , U N ) , U i = { 0(i � = c) 

1(i = c) 
, c = 1 , 2 , . . . , N; 3) The generalized

nergy distance proposed in [20] to measure the quality of the 

stimated annotator’s labels. 4) We use the incompetence score, 

hich is defined by calculating the absolute error between the 

stimated CM and the real CM, to show the learning performance 

f annotator CNN. 5) We also evaluate our model on both dense 

abels (multiple labels per image) and single label (randomly 

elected 1 label per image) in each dataset to show the robustness 

n sparse labels. 

.3. Performance on synthetic datasets 

MNIST and ISBI2015 Datasets: On both datasets, our proposed 

odel achieves a higher dice similarity coefficient than STAPLE on 

he dense label case and, even more prominently, on the single 

abel (i.e., 1 label per image) case (shown in Tables 1 & 2 ). In ad-

ition, our model outperforms STAPLE without or with trace norm, 

n terms of CM estimation, specifically, we achieve an increase at 

 . 3% . Additionally, Fig. 2 and Fig. 3 include the performance for 

ifferent regularisation coefficient and the comparison of the seg- 

entation accuracy on MNIST and ISBI2015 for a range of average 
https://www.nitrc.org/projects/masi-fusion/ 

https://www.nitrc.org/projects/masi-fusion/
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Table 1 

Comparison of segmentation accuracy and error of CM estimation for different methods with dense labels (mean ± standard deviation). Numbers in bold indicate the best 

method that statistically ( p < . 01 ) better than other methods by computing the p values of paired t-tests on DICE and CM estimation metrics, respectively. 

MNIST MNIST ISBI2015 ISBI2015 

Models DICE (%) CM estimation DICE (%) CM estimation 

Mean labels 41.94 n/a 42.29 n/a 

Mode labels 58.52 n/a 50.65 n/a 

Naive CNN on mean labels 38.36 ± 0.41 n/a 46.55 ± 0.53 n/a 

Naive CNN on mode labels 62.89 ± 0.63 n/a 47.82 ± 0.76 n/a 

Probabilistic U-net 65.12 ± 0.83 n/a 46.15 ± 0.59 n/a 

Separate CNNs on annotators 70.44 ± 0.65 n/a 46.84 ± 1.24 n/a 

STAPLE 78.03 ± 0.29 0.1241 ± 0.0011 55.05 ± 0.53 0.1502 ± 0.0026 

Spatial STAPLE 78.96 ± 0.22 0.1195 ± 0.0013 58.37 ± 0.47 0.1483 ± 0.0031 

Ours with Global CMs 79.21 ± 0.41 0.1132 ± 0.0028 61.58 ± 0.59 0.1449 ± 0.0051 

Ours without Trace 79.63 ± 0.53 0.1125 ± 0.0037 65.77 ± 0.62 0.1342 ± 0.0053 

Ours 82.92 ± 0.19 0.0893 ± 0.0009 67.55 ± 0.31 0.0811 ± 0.0024 

Oracle (with known CMs) 83.29 ± 0.11 0.0238 ± 0.0005 78.86 ± 0.14 0.0415 ± 0.0017 

Table 2 

Comparison of segmentation accuracy and error of CM estimation for different methods with one label per image (mean ± standard deviation). Numbers in bold indicate 

the best method that statistically ( p < . 01 ) better than other methods by computing the p values of paired t-tests on DICE and CM estimation metrics, respectively. We note 

that ‘Naive CNN’ is trained on randomly selected annotations for each image. 

MNIST MNIST ISBI2015 ISBI2015 

Models DICE (%) CM estimation DICE (%) CM estimation 

Naive CNN 32.79 ± 1.13 n/a 27.41 ± 1.45 n/a 

STAPLE 54.07 ± 0.68 0.2617 ± 0.0064 35.74 ± 0.84 0.2833 ± 0.0081 

Spatial STAPLE 56.73 ± 0.53 0.2384 ± 0.0061 38.21 ± 0.71 0.2591 ± 0.0074 

Ours with Global CMs 59.01 ± 0.65 0.1953 ± 0.0041 40.32 ± 0.68 0.1974 ± 0.0063 

Ours without Trace 74.48 ± 0.37 0.1538 ± 0.0029 54.76 ± 0.66 0.1745 ± 0.0044 

Ours 76.48 ± 0.25 0.1329 ± 0.0012 56.43 ± 0.47 0.1542 ± 0.0023 

Fig. 2. Curves of validation accuracy during training of our model on MNIST for a range of hyperparameters. For our method, the scaling of trace regularizer is varied in 

[0.001, 0.01, 0.1, 0.4, 0.7, 0.9].). 
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ice where labels are generated by a group of 5 simulated annota- 

ors. 

BraTS Dataset: For multi-class segmentation, our proposed 

odel achieves a higher dice similarity coefficient than STAPLE and 

patial STAPLE on both of the dense labels and single label scenar- 

os (shown in Table 3 . In addition, our model outperforms STAPLE 

n terms of DICE by a large margin at 14 . 4% on BraTS. In Fig. 4 , we

isualized the segmentation results and the corresponding annota- 

ors’ predictions. Even in multi-class segmentation task, our model 

an capture each annotator’s characters on annotation. 

Here we also show our preliminery results on the employed 

ow-rank approximation of confusion matrices for BraTS dataset, 
6 
recluded in the main text. Table 4 compares the performance of 

ur method with the default implementation and the one with 

ank-1 approximation. We see that the low-rank approximation 

an halve the number of parameters in CMs and the number of 

oating-point-operations (FLOPs) in computing the annotator pre- 

iction while resonably retaining the performance on both seg- 

entation and CM estimation. We note, however, the practical 

ain of this approximation in this task is limited since the num- 

er of classes is limited to 4 as indicated by the marginal reduc- 

ion in the overall GPU usage for one example. We expect the 

ain to increase when the number of classes is larger as shown in 

ig. 5 . 
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Fig. 3. Segmentation accuracy of different models on MNIST (a, b) and MS (c, d) dataset for a range of annotation noise (measured in averaged Dice with respect to expert 

consensus label. 

Table 3 

Comparison of segmentation accuracy and error of CM estimation for different methods trained with dense labels and single label (mean ± standard deviation), respectively. 

For BraTS dataset, we present the results for the target class. Numbers in bold indicate the best method that statistically ( p < . 01 ) better than other methods by computing 

the p values of paired t-tests on DICE and CM estimation metrics, respectively. Note that we count out the Oracle from the model ranking as it forms a theoretical upper- 

bound on the performance where expert consensus label is known on the training data. 

BraTS BraTS BraTS BraTS 

Models DICE (%) CM estimation DICE (%) CM estimation 

(Dense Labels) (Dense Labels) (Single Label) (Single Label) 

Mean labels 34.72 n/a n/a n/a 

Mode labels 35.74 n/a n/a n/a 

Naive CNN on mean labels 29.42 ± 0.58 n/a 36.12 ± 0.93 n/a 

Naive CNN on mode labels 34.12 ± 0.45 n/a 36.12 ± 0.93 n/a 

Probabilistic U-net 40.53 ± 0.75 n/a n/a n/a 

STAPLE 46.73 ± 0.17 0.2147 ± 0.0103 38.74 ± 0.85 0.2956 ± 0.1047 

Spatial STAPLE 47.31 ± 0.21 0.1871 ± 0.0094 41.59 ± 0.74 0.2543 ± 0.0867 

Ours with Global CMs 47.33 ± 0.28 0.1673 ± 0.1021 41.76 ± 0.71 0.2419 ± 0.0829 

Ours without Trace 49.03 ± 0.34 0.1569 ± 0.0072 43.74 ± 0.49 0.1825 ± 0.0724 

Ours 53.47 ± 0.24 0.1185 ± 0.0056 46.21 ± 0.28 0.1576 ± 0.0487 

Oracle (with known CMs) 67.13 ± 0.14 0.0843 ± 0.0029 n/a n/a 

Table 4 

Comparison between the default implementation and low-rank ( = 1) approximation on BraTS. GPU memory consumption is estimated for the case with batch size = 1. Bot 

the total number of variables in the confusion matrices, and the number of FLOPs required in computing the annotator predictions. 

Rank Dice CM estimation GPU Memory No. Parameters FLOPs 

Default 53.47 ± 0.24 0.1185 ± 0.0056 2.68GB 589,824 1,032,192 

rank 1 50.56 ± 2.00 0.1925 ± 0.0314 2.57GB 294,912 405504 
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Table 5 

Comparison of Generalised Energy Distance on different datasets (mean ± standard 

deviation). The distance metric used here is Dice. 

Models MNIST MS BraTS LIDC-IDRI 

Prob. U-net [20] 1.46 ± 0.04 1.91 ± 0.03 3.23 ± 0.07 1.97 ± 0.03 

Ours 1.24 ± 0.02 1.67 ± 0.03 3.14 ± 0.05 1.87 ± 0.04 

t

g

p

t

c

t

b
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.4. Performance on LIDC-IDRI dataset 

In this section, we present our model’s performance on LIDC- 

DRI dataset, which has annotation masks generated from 4 radi- 

logists for lesions that they independently detected and consid- 

red to be abnormal. Our model (with trace) outperforms STAPLE 

n single label by a large margin at 18.8%. Since LIDC dataset didn’t 

rovide the annotator identity, we cannot compute the average CM 

stimation result for each annotator. Thus, we randomly select sev- 

ral samples to visualize the segmentation results and analyse the 

egmentation performance on different consensus groups. Fig. 6 

resents three examples of the segmentation results and the cor- 

esponding four annotator contours, as well as the consensus. As 

hown in the figure, our model successfully predicts both the seg- 

entation of lesions and the variations of each annotator in dif- 

erent cases. We also measure the inter-reader consensus levels by 

omputing the Intersection over Union (IoU) of multiple annota- 
7 
ions, and compare the segmentation performance in three sub- 

roups of different consensus levels (low, medium and high). 

Additionally, as shown in Table 5 , our model consistently out- 

erforms Probabilistic U-Net on generalized energy distance across 

he four test different datasets, indicating our method can better 

apture the inter-annotator variations than the baseline Probabilis- 

ic U-Net. This result shows that the information about which la- 

els are acquired from whom is useful in modelling the variability 

n the observed segmentation labels. 
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Fig. 4. The final segmentation of our model on BraTS and each annotator network predictions visualization. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 

Table 6 

Comparison of segmentation accuracy and error of CM estimation for differ- 

ent methods trained with dense labels (mean ± standard deviation). The best 

results are shown in bold. Numbers in bold indicate the best method that sta- 

tistically ( p < . 01 ) better than other methods by computing the p values of 

paired t-tests on DICE and CM estimation metrics, respectively. Note that we 

count out the Oracle from the model ranking as it forms a theoretical upper- 

bound on the performance where expert consensus label is known on the 

training data. 

QSMSC QSMSC 

Models DICE (%) CM estimation 

Mean labels 40.12 n/a 

Mode labels 42.95 n/a 

Naive CNN on mean labels 42.31 ± 0.28 n/a 

Naive CNN on mode labels 45.84 ± 0.37 n/a 

Probabilistic U-net [20] 53.19 ± 0.65 n/a 

STAPLE [25] 58.36 ± 0.26 0.3327 ± 0.1026 

Spatial STAPLE [5] 61.34 ± 0.29 0.2761 ± 0.1146 

Ours with Global CMs 62.08 ± 0.43 0.1869 ± 0.1728 

Ours without Trace 63.72 ± 0.72 0.1479 ± 0.0924 

Ours 69.81 ± 0.26 0.1317 ± 0.0769 

Oracle (Ours but with known CMs) 78.49 ± 0.17 0.0715 ± 0.0245 
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.5. Performance on real-World MS dataset 

In Fig. 7 and Table 6 , we compared the performance of differ- 

nt methods on our practical dataset. We can see that our model 

chieved the best result on segmentation accuracy and dice sim- 

larity coefficient compared with the state-of-art deep learning 

ased method and the widely used STAPLE, Spatial STAPLE mod- 

ls. We also show the visualization of each annotator contours and 

he consensus, and the confusion matrices on our practical dataset 

n Fig. 8 . As shown in the figure, our model successfully predicts 

oth the segmentation of lesions and the variations of each anno- 
8 
ator in different cases. In the meantime, the confusion matrices 

n Fig. 8 illustrate our model can capture the patterns of mistakes 

or each annotator. We also notice that our model is consistently 

ore accurate than the global CM model, indicating the value of 

mage-dependent pixel-wise CMs. 

Furthermore, we show the annotator confidence score of each 

esting example and corresponding CM errors in Fig. 9 . For each 

nnotator, we can tell that if the annotator is not confident on la- 

elling the sample, the lower confidence score will be given and 

he corresponding CM error will be higher. If different annotators 

ave the same confidence score for one sample but corresponding 

ncompetence score is different, the annotator who has the lowest 

ncompetence score has the best ability to label the data. For ex- 

mple, annotator 3 labelled the four testing examples with high 

onfidence and the learned CMs show the lowest incompetence 

core, we can consider annotator 3 has the best ability to label 

he data. To further verify the annotator who has the best anno- 

ation ability, we show the correlation between annotator’s confi- 

ence score and corresponding dice coefficient for each testing ex- 

mple in Fig. 10 . We can see that the annotator 3 also has the best

erformance on dice coefficient but with lowest CM incompetence 

core for each testing example. From both figures, we can tell the 

nnotator 3 has the best ability to give labels for the MS lesions. 

. Discussion 

In this work, we integrate two coupled CNNs into an end-to- 

nd supervised segmentation framework to jointly estimate the re- 

iability of multiple human annotators and expert consensus label 

rom noisy labels alone, which is applicable to different medical 

mage segmentation tasks. Our method is very lightweight and can 

e trained in an end-to-end manner. In the following, we present 
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Fig. 5. Comparison of time and space complexity between the default implementation and the low-rank counterparts. (a) compares the number of parameters in the 

confusion matrices while (b) shows the number of FLOPs required to compute the annotator predictions (the product between the confusion matrices and the estimated 

true segmentation probabilities). 
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 comprehensive discussion for some questions we are concerning 

n this work and the future extension of our model, such as the 

otential application on the education of teaching people how to 

abel the image data and selecting the best annotator from multi- 

le annotators. 

.1. Evaluation on 3D multi-class segmentation 

For most multi-class image segmentation problems, the num- 

er of pixels in each class is different from each other which po- 

entially leads to less accurate predictions for some classes than 

thers. Additionally, some of the image regions are easier to be 

lassified (i.e. higher segmentation accuracy) than others due to 

ore distinct local image characteristics. In our work, to validate 

he synthetic noisy labels in multi-class segmentation for 3D med- 

cal images, e.g., BraTS dataset, we choose a target class and treat 

he other classes as ”background”. In Table 3 & 4, we only present 

he dice coefficient and the CM estimation for the target class for 

rats image. To validate the segmentation model’s performance, we 

lso show the dice coefficient for all classes and the entire image 

 total by judging prediction is correct or incorrect with Eq. 6 : 

 total = 

2 × ∑ 

i 

∑ 

j | ̂  p θ (x ) · y GT | ∑ 

i 

∑ 

j | ̂  p θ (x ) | + 

∑ 

i 

∑ 

j | y GT | (6) 
9 
Quantitative results from the comparison models are presented 

n Table 7 and 8 . Our model show the best performance in all pre-

ented methods. The segmentation accuracy was improved roughly 

4% and 17% compared to STAPLE and Spatial STAPLE in dense 

abels and single label, respectively. This means that our model 

orked well for capturing the annotator’s character even with 

ulti-class lesions in the images. 

.2. Learn Annotator’s quality 

In the experiments on practical MS dataset, we measure each 

nnotator’s incompetence score of the confusion matrices, confi- 

ence score for the annotation and the computed dice coefficient. 

n Fig. 9 and 10 , we plot the correlations of the CM incompetence

core vs. the annotator confidence score and the dice coefficient, 

espectively. This is done for the testing cases, which we selected 

he middle 20 slices for each and annotated by the 3 different an- 

otators. From Fig. 9 we can tell that the more confident the an- 

otator, the smaller CM incompetence score, so we could choose 

he annotator 3 as the best one in this stage. Furthermore, we cal- 

ulated the mean dice coefficient of the selected slices for each 

esting case. From the results shown in Fig. 10 , we can tell that 

nnotator 3 still show the best performance with higher dice co- 
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Fig. 6. Segmentation results on LIDC-IDRI dataset and the visualization of each annotator contours and the consensus. 

Fig. 7. Curves of validation accuracy during training of different models on our practical dataset. 

10 
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Fig. 8. Visualisation of each annotator contours and the consensus (red for Annotator 1, yellow for Annotator 2, blue for Annotator 3 and purple for consensus), and the 

confusion matrices on our practical dataset (white is the true positive, green is the false negative, red is the false positive and black is the true negative. The background 

label is learned as true negative and false negative.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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fficient and smaller CM incompetence score. Overall, by comput- 

ng the three criterias, we could rank the practical annotators’ abil- 

ty on data labelling ( Annotator1 < Annotator2 < Annotator3 in this 

ork). 

.3. Learning with metadata 

Metadata is an useful and powerful machine learning tool to be 

ollected in any data scientists’ toolbox, regardless of the model we 
11 
re using. Unfortunately, there is a paucity of quality literature on 

his topic and metadata is often overlooked when building a ac- 

urate machine learning model. In this work, the metadata can in- 

lude information about each annotator’s experience, fatigue, moti- 

ation, concentration. For example, annotator’s experience (e.g., ex- 

ert, senior, junior) is different for different types of lesions, which 

equire different levels and types of expertise. The different anno- 

ation experience also affect annotation quality and availability of 

 worker base. As for the setup, annotator motivation is also one of 
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Fig. 9. The annotator confidence score of each testing example and corresponding CM incompetence score. We select the middle 20 slices and compute the CM mean error 

for each example. 

Table 7 

Dice coefficients for multi-class segmentation results with different comparison models trained with dense labels per image (mean ± standard deviation). Average Dice is the 

average of each class’s dice coefficient, Total Dice is the average of entire image dice coefficient. Numbers in bold indicate the best method that statistically ( p < . 01 ) better 

than other methods by computing the p values of paired t-tests on DICE metric. 

Class 1 Class 2 Class 3 Average Dice Total Dice 

Models (Necrosis: Target) (Enhancing) (Edema) (All Classes) (Entire Image) 

Mean labels 34.72 32.72 36.97 34.80 69.54 

Mode labels 35.74 33.69 38.36 35.93 71.32 

Naive CNN on mean label 29.42 ± 0.58 25.26 ± 0.42 32.87 ± 0.29 29.18 ± 0.43 73.85 ± 0.36 

Naive CNN on mode label 34.12 ± 0.45 31.95 ± 0.33 39.27 ± 0.41 35.11 ± 0.39 75.67 ± 0.42 

Probabilistic U-net 40.53 ± 0.75 38.69 ± 0.28 44.12 ± 0.38 41.11 ± 0.47 80.69 ± 0.52 

STAPLE 46.73 ± 0.17 45.38 ± 0.32 48.59 ± 0.24 46.90 ± 0.24 81.28 ± 0.34 

Spatial STAPLE 47.31 ± 0.21 48.11 ± 0.34 48.67 ± 0.25 48.03 ± 0.27 84.39 ± 0.47 

Ours with Global CMs 47.33 ± 0.28 48.36 ± 0.41 49.71 ± 0.33 48.47 ± 0.34 85.14 ± 0.33 

Ours without Trace 49.03 ± 0.34 47.59 ± 0.49 52.34 ± 0.31 49.65 ± 0.38 85.81 ± 0.49 

Ours 53.47 ± 0.24 51.94 ± 0.51 55.69 ± 0.42 53.70 ± 0.39 87.24 ± 0.32 

Oracle (with known CMs) 67.13 ± 0.14 66.02 ± 0.23 68.85 ± 0.17 67.33 ± 0.18 90.18 ± 0.25 

Table 8 

Dice coefficients for multi-class segmentation results with different comparison models trained with only one label available per image (mean ± standard deviation). Average 

Dice is the average of each class’s dice coefficient, Total Dice is the average of entire image dice coefficient. Numbers in bold indicate the best method that statistically 

( p < . 01 ) better than other methods by computing the p values of paired t-tests on DICE metric. 

Class 1 Class 2 Class 3 Average Dice Total Dice 

Models (Necrosis: Target) (Enhancing) (Edema) (All Classes) (Entire Image) 

Naive CNN 36.12 ± 0.93 35.62 ± 0.74 39.64 ± 0.58 37.13 ± 0.75 76.34 ± 0.52 

STAPLE 38.74 ± 0.85 38.02 ± 0.92 40.62 ± 0.67 39.13 ± 0.81 78.39 ± 0.57 

Spatial STAPLE 41.59 ± 0.74 40.37 ± 0.68 43.59 ± 0.72 41.85 ± 0.71 80.26 ± 0.64 

Ours with Global CMs 41.76 ± 0.71 41.38 ± 0.59 44.62 ± 0.71 42.59 ± 0.67 80.73 ± 0.51 

Ours without Trace 43.74 ± 0.49 42.29 ± 0.61 45.87 ± 0.49 43.97 ± 0.53 84.69 ± 0.57 

Ours 46.21 ± 0.28 45.76 ± 0.38 48.91 ± 0.34 46.96 ± 0.33 85.26 ± 0.27 

12 
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Fig. 10. The annotator confidence score of each testing example and corresponding dice coefficient. We select the middle 20 slices and compute the CM mean error for each 

example. 
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he key aspects determining the cost of annotations. In the future 

ork, to improve the segmentation accuracy, we plan to integrate 

ll the available metadata in the proposed method. 

. Conclusion 

We introduced a novel, robust learning method based on CNNs 

or simultaneously recovering the label noise of multiple anno- 

ators and the expert consensus label distribution for supervised 

egmentation problems. We demonstrated this method on real- 

orld datasets with synthetic annotations and real-world anno- 

ations. Our method is capable of estimating individual annota- 

ors and thereby improving robustness against label noise. Experi- 

ents have shown our model achieves considerable improvement 

ver the traditional label fusion approaches including averaging, 

he majority vote and the widely used STAPLE framework and spa- 

ially varying versions, in terms of both segmentation accuracy and 

he quality of CM estimation. 

One exciting avenue of this research is the application of the 

nnotation models in downstream tasks. Of particular interest is 

he design of active data collection schemes where the segmen- 

ation model is used to select which samples to annotate (“active 

earning”), and the annotator models are used to decide which ex- 

erts to label them (“active labelling”)—e.g., extending [28] from 

imple classification task to segmentation remains as the future 
13 
ork. Another exciting application is education of inexperienced 

nnotators; the estimated spatial characteristics of segmentation 

istakes provide further insights into their annotation behaviours, 

nd as a result, help them improve the quality of their annotations 

n the next data acquisition. At the same time, although we have 

chieved reliable performance on all experiments, it is worth to 

xplore the question that how many training samples at least to 

chieve the reliable performance for each annotator. This is also a 

uture work we will consider. 
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