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Abstract

With the increasing concerns about railway energy efficiency, two typical driving strategies
have been used in actual train operation. One includes a sequence of full power trac-
tion, cruising, coasting, and full braking (CC). The other uses coasting–remotoring (CR)
to replace cruising in CC. However, energy-saving performance by CC and CR, which can
be affected by route parameters of gradients and speed limits, has not been fully compared
and studied. This paper analyses the energy distribution of CC and CR considering various
route parameters and proposes an improved strategy for different gradients and speed lim-
its. The detailed energy flow of CC and CR is analysed by Cauchy–Bunyakovsky–Schwarz
inequality and the generalised Hölder’s inequality, and then, a novel driving strategy CC_CR
is designed. To verify the theoretical results and the effectiveness of the proposed strategy,
three simulators with CC, CR, and CC_CR driving modes have been developed and imple-
mented into case studies of four scenarios as well as a real-world metro line. Simulation
results demonstrate that CR can only outperform CC on routes with steep downhill and
CC_CR is always the best strategy. The energy savings of CC_CR can be as much as 15%
more than CR and 42% greater than CC.

1 INTRODUCTION

Energy shortage has become a global issue, particularly in
recent years. The price of energy has risen a lot because
of its scarcity. Although the railway is one of the most
energy-efficient transport, it still consumes a large amount
of energy every day. So, the research on how to improve
the energy efficiency of railway systems is of great signif-
icance. Train trajectory optimisation as a low-cost, flexible,
and easy-to-implement method to reduce the energy consump-
tion of railway systems has attracted the attention of many
researchers.

The train trajectory optimisation methods are usually divided
into direct exact, indirect exact, and heuristic methods [1].
Direct exact solution method works by discretising the
train operation process first, and then changing the prob-
lem into a static non-linear programming problem. In recent
years, dynamic programming (DP), mixed linear programming
(MILP), and pseudospectral method have been applied to solve
this problem. Reference [2] developed a distance-based DP and
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compared it with two heuristic algorithms genetic algorithm
(GA) and Ant colony algorithm (ACO). This paper showed the
effectiveness of DP in solving the train trajectory optimisation
problem, but also pointed out that it may suffer from ‘curse
of dimension’ when the solution space increases. In [3], the
mixed integer linear programming (MILP) model is built to find
the optimal solution for part of the train speed profile. MILP
was also utilised by [4] to address the train trajectory optimi-
sation problem while considering the discrete throttle settings,
neutral zones, and sectionalized tunnel resistance of high-speed
railway. Reference [5] first introduced pseudospectral method
to solve the energy-efficient train control problem and com-
pared the result with MILP, which shows that the energy saving
of this method is better than MILP, but more computational
time is needed. However, despite the long computational time,
pseudospectral optimisation also suffers from oscillation of the
solution on the singular control phases [6]. In contrast, the indi-
rect method can avoid these problems. This method is usually
based on the Pontryagin maximum principle (PMP) analysis,
which concluded that on non-steep tracks, the optimal train
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2 LIU ET AL.

driving sequence is full power traction–cruising–coasting–full
braking [7, 8].

Based on the PMP result, many papers consider the energy-
efficient train control problem as finding the optimal switching
points between the four optimal driving regimes. Such a method
is referred to as CC (cruising–coasting) strategy in this paper.
The CC strategy has been studied by many researchers in these
years. Reference [9] created a Driver Practical Training System to
determine when to switch between cruising and coasting using
an enhanced Brute Force searching algorithm. In [10], Fibonacci
algorithm and bisection method were introduced to obtain
the optimal cruising and coasting speed. Taking the passenger
points into consideration, [11] introduced the DP method to
search for the optimal switching points. Reference [12] devel-
oped a real-time driver advisory system for the high-speed
railways by finding the optimal costing regimes. An improved
brute-force search algorithm was introduced by [13] to find
the optimal switching positions. Heuristic searching algorithms
such as GA [14] and hybrid evolution algorithm [15] are also
used to solve the optimal switching points searching problem.
Reference [16] considered the section running time constraint
by adding another traction–cruising–coasting into the CC speed
profile. However, the steep hills are not considered in these pub-
lications. Although [17, 18] formulated the mathematical model
by considering steep hills in particularly, the problem is hard to
solve when it comes to practical route with complex speed limits
and gradients.

Different from the CC method, there is another driving strat-
egy called CR (coasting–remotoring), which does not include
cruising in the driving process. The speed is maintained by
coasting-remotoring pairs. This method can use coasting to save
energy during train operation instead of only coasting before
braking. Reference [19] compared GA and hierarchical GA in
searching the switching points between coasting and remo-
toring, which concluded that the GA could only be applied
when the number of coasting points is pre-determined. In
contrast, the hierarchical GA can determine the number and
position of the coasting points but cannot guarantee a fitter
solution in certain traffic conditions. As an extension of [19],
[20] applied this method on multiple trains to find the most
energy-efficient speed profiles. While taking the acceleration
and deceleration rates as control variables, [21] employed GA
to derive the most energy-efficient upper and lower bounds.
Additionally, to optimise the ATO (Automatic Train Operation
system) speed profile of the Madrid underground, [22] used the
multi-objective particle swarm optimisation search algorithm
to find the most energy-efficient cruising speed or upper and
lower bounds of CR (only one dominated mode for an inter-
station). In [23], the particle swarm and GA were combined to
optimise the speed profile under the prerequisite that the train
speed profile is composed of a series of coasting-remotoring
or coasting-braking. Reference [24] applied the Karush–Kuhn–
Tucker conditions to develop equations, the solutions of which
define the upper and lower speed limits for coasting-remotoring
pairs. Similar to the CR driving strategy, [25] obtained the
optimal sequence of coasting, full power motoring, or par-
tial braking during the trip by using a soft actor-critic-based

method. Furthermore, [26] introduced MILP to optimise the
cyclic air braking on long steep downhills for heavy-haul
trains.

There are notable distinctions between CC and CR driving
strategies. Firstly, CC relies on precise speed profile tracking
devices, especially for achieving optimal results during cruis-
ing. In contrast, CR is relatively straightforward to implement,
requiring action only when predefined speed values are reached.
Secondly, CC excels in passenger comfort compared to CR.
However, when evaluating their energy-saving performance,
a more in-depth analysis is needed. This study will serve
as the foundation for exploring the integration of CC’s and
CR’s advantages into a single strategy. Based on the descrip-
tion above, the current research gap can be summarised as
follows:

(1) CC and CR-based studies only compare their optimisation
results with the non-optimised ones or the same driving
strategy under different optimisation algorithms. No theo-
retical investigation into the distinction between CC and CR
has been carried out. For example, [9, 11, 12, 15] only con-
centrated on the algorithms to search the optimal switching
points, and [10, 27, 28] expanded the model by considering
timetable, transmission loss, and mechanical wear, or engine
shutdown during cruising. Similarly, CR-based research only
focused on the methods to find the optimal upper and lower
control bounds [19–23, 29, 30].

(2) Few studies have combined CC and CR in one speed
profile. Although [31, 32] considered CC and CR in
one optimisation problem, the two strategies are actu-
ally independent. Cruising and coasting-remotoring cannot
appear in one optimal strategy at the same time. Addi-
tionally, the conditions when CC or CR will appear in
the optimisation results have not been analysed. In [33],
the optimal speed profile includes cruising and coasting-
remotoring. But the number of these regimes is pre-defined,
and how to find a reasonable number has not been
considered.

(3) In reality, more than one optimal speed profile with dif-
ferent running times are usually needed to meet the peak
and off-peak time requirement, as well as to deal with
unexpecting disturbance [34]. Therefore, it is essential to
calculate energy usage over various operating times to assess
a method’s efficacy. This requirement is reflected in the
acquisition of the Pareto frontier, which delineates the
trade-off between travel time and energy consumption as
documented in sources [22, 33, 35, 36]. However, a compar-
ative analysis of the Pareto frontiers for CC and CR remains
unexplored.

To fill the research gaps explained above, and make full
use of the advantages of CC and CR, this paper investigates
the performance of CC and CR on routes with various gra-
dients and speed limits and develops a new energy-efficient
train control strategy that can combine the advantages of
these two strategies. The main contributions of this paper
are
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LIU ET AL. 3

FIGURE 1 Discretisation of the journey.

∙ Introduce the Cauchy–Bunyakovsky–Schwarz inequality and
the generalised Hölder’s inequality to analyse the energy
distribution of CC and CR on single gradient and speed limit

∙ Develop an improved energy-efficient train control strategy
combining the advantages of CC and CR. In this strategy,
the numbers of cruising-coasting and coating-remotoring are
also adjusted to obtain the most energy-efficient trajectory
under various running times.

∙ Verify the energy distribution analysis and energy-saving per-
formance of CC, CR, and CC_CR by comparing their Pareto
frontiers in four route scenarios.

The rest of this paper is organised as follows. In Section 2,
train operation models and the control strategies CC and CR
are introduced. In Section 3, the influence of gradient and speed
limit on energy consumption with different driving strategies is
analysed. In Section 4, an improved energy-efficient train driv-
ing strategy, CC_CR is developed. In Section 5, case studies of
applying CC, CR, and CC_CR in four scenarios are presented.
Finally, the conclusions of this paper are drawn.

2 TRAIN OPERATION MODELLING

2.1 Train dynamics

The train motion can be discretised by a distance interval �s as
shown in Figure 1. i is the distance index. v(i ) and s(i ) are the
speed and distance at the ith step.

The relationship between v(i ) and v(i + 1) is represented by
Equation (1). The speed at the start of the journey is v(1) = 0.
The acceleration a(i ) is calculated by Equation (2).

2a (i )Δs = v(i + 1)2
− v(i )2 (1)

a (i ) =
F (i ) − R (i ) − G (i )

(1 + 𝜆) M
(2)

where F (i ) is the tractive or braking effort, R(i ) is vehicle resis-
tance, G (i ) is the component effort of gravity in or opposite
to the direction of train motion, 𝜆 is the rotary allowance, M

is the mass of the rolling stock. The value of F (i ) is bounded
by a maximum electrical tractive effort curve and a maximum
electrical braking effort curve which depend on the train speed.

FIGURE 2 Maximum effort on a vehicle.

A typical pair of maximum traction and braking curves are
shown in Figure 2. In this figure, the maximum tractive effort
includes three phases: constant effort phase, constant power
phase, and power decrease phase. But the maximum electri-
cal braking curve only has constant effort and braking power
decrease phase.

The rolling resistance and component effort of gravity in
Equation (2) are calculated by Equations (3) and (4).

R (i ) = A + Bv (i ) +Cv(i )2 (3)

G (i ) = Mg × grad (i ) (4)

where A, B, and C are Davis constants [37], which are deter-
mined by the attributes of the rolling stocks, g is the acceleration
due to gravity, and grad (i ) is the gradient at the ith step.

2.2 CC driving mode

CC consists of full power traction, cruising, coasting, and the
final full braking. The full power traction is active at the start
of the journey to increase the vehicle’s speed. Here full power
means using the maximum tractive effort shown in Figure 2.
Cruising regime is applied when the train reaches a certain
speed. When the train is cruising, the resultant force is zero.
In the coasting regime, no tractive or braking effort is required.
The acceleration of the train is only caused by resistance and
gradient. Full braking is applied before a speed limit decrease or
the end of the journey. The cruising speeds (V _cr ) and coasting
speeds (V _co) vary in different speed limit sections as in [35].
The CC train speed profile is illustrated in Figure 3.

2.3 CR driving mode

In the CR control strategy, one pair of control speeds, namely
the upper bound and lower bound are set for every speed limit
section. The train will accelerate with full power to the upper
bound V _coh or speed limit V _lmt (depending on which one
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4 LIU ET AL.

FIGURE 3 CC speed profiles. CC, cruising–coasting.

FIGURE 4 CR speed profiles. CR, coasting–remotoring.

is lower) and then coast to the lower bound V _col . This pro-
cess repeats until the brake caused by the final stop or speed
limit decreases. The speed profiles of the CR strategy are shown
in Figure 4. In this schematic, the dashed yellow line and pur-
ple lines present the upper and lower bound speeds. Since the
control speed pairs are independent for different speed limit
sections, the values of yellow line in different speed limit sec-
tions can be different. Although the values of the purple line in
the second and fourth speed limit sections are the same, they
differ from those of the other speed limit sections. Note that
if the upper and lower bounds are equal or the lower bound is
not smaller than the speed limit, the train will cruise at the equal
speed or the speed limit.

3 TRAIN DRIVING ENERGY
DISTRIBUTION ANALYSIS

3.1 Traction energy distribution

To study the energy consumption of CC and CR, the Energy
Conservation Law is introduced. Figure 5 shows the energy con-
version of a train. Mechanical traction energy will be used to
accelerate the train, work against resistance (motion loss) and
gravity, as well as consumed by braking (braking loss).

FIGURE 5 Energy conversion diagram.

When the train moves from one random distance index s to
another random distance index e, the generic energy distribution
can be expressed as Equation (5).

Et (s, e) = Er (s, e) + Ek (s, e) + Eg (s, e) + Eb (s, e) (5)

Et (s, e) is the mechanical traction energy from s to e, which can
be expressed as Equation (6). Er (s, e) is the motion loss as Equa-
tion (7). Ek(s, e) is the change of kinetic energy expressed by
Equation (8). Eg(s, e) is the change of gravitational energy as
shown in Equation (9). Eb(s, e) is the braking loss as shown in
Equation (10).

Et (s, e) =
e∑

i=s

Ft (i )Δs (6)

Er (s, e) =
e∑

i=s

R (i )Δs (7)

Ek (s, e) =
1
2

Mv(e)2
−

1
2

Mv(s)2 (8)

Eg (s, e) = Mgh (e) − Mgh (s) (9)

Eb (s, e) =
e∑

i=s

Fb (i )Δs (10)

In the equations above, Δs is the distance interval, M is the
mass of the train, g is the acceleration due to gravity, h(s) and
h(e) are the altitudes at s and e, v(s) and v(e) are the speed at s and
e. Ft (i ) and Fb(i ) are the tractive and braking efforts, respectively.

3.2 Comparison section selecting

To compare the different driving strategies for the CC and CR
with the same journey time, we will select the section to be com-
pared in this part. For each CC speed profile, we can find a
CR speed profile with the same braking start speed, which is
illustrated in Figure 6. In this figure, three pairs of CC and CR
speed profiles, each pair with the same running time, are shown.
Despite the overlaps, the start point of our research is s, and
the endpoint is e as shown in Figure 6. The following analy-
sis is based on the assumption that the difference between the
speed limit and the cruising speed is big enough to realise the
coasting–remotoring.
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LIU ET AL. 5

FIGURE 6 Speed profile schematic of CC and CR. CC,
cruising–coasting; CR, coasting–remotoring.

3.3 The influence of different gradients on
energy distribution

3.3.1 Gradient classification

The gradient can be divided into five types: level, steep uphill,
steep downhill, gentle uphill, and gentle downhill. The steep
uphill section is where the train has insufficient power to main-
tain a cruising speed. The steep downhill section is where the
train accelerates while coasting [1, 38]. The gentle hill sections
include uphill and downhill sections except the steep ones.

3.3.2 Speed profiles of the two strategies on
different gradients

From Figure 6, we can see the difference between CC and CR
focuses on cruising–coasting and coasting–remotoring, which
start from s and end at e. For each type of gradient over s to
e, the coasting of CC from b to e is identical as the coasting of
CR from a to c, as illustrated in Figure 7. Therefore, comparison
between CC and CR can be transferred into comparing cruising
of CC (from s to b) and coasting–remotoring of CR (from s

to a and c to e). The remaining coasting–remotoring could be
within a single interval as CR2 in Figure 6, or divided into two
non-contiguous intervals (s to a and c to e) as CR1 and CR3.

3.3.3 Energy consumption comparison on
non-steep track

For non-steep tracks, from point s to e of Figure 7, the changes
in gravitational energy and kinetic energy of the two speed pro-
files are identical. According to Equation (5), the difference in
the traction energy consumption only relates to the motion loss.
Assume the journey time of CC from s to b is tsb, we have

tsb = tsa + tce (11)

FIGURE 7 Simplifying the comparison between CC and CR. CC,
cruising–coasting; CR, coasting–remotoring.

where tsa and tce are the journey times of CR from s to a and
c to e. After eliminating the identical coasting part (b to e of
CC and a to c of CR), we assume the time index at the start
point of comparison is k and the end point as j with the time
interval Δt . According to Equations (3) and (7), the motion loss
of cruising regime(Er_cr (k, j )) and coating–remotoring regime
(Er_csm (k, j )) can be expressed as Equations (12) and (13).

Er_cr (k, j ) = AΔt

j∑
i = k

v̄ + BΔt

j∑
i = k

v̄2 + CΔt

j∑
i = k

v̄3 (12)

Er_csm (k, j ) = AΔt

j∑
i = k

v (i ) + BΔt

j∑
i = k

v(i )2
+ CΔt

j∑
i = k

v(i )3

(13)

where v̄ is the cruising speed, as well as the average speed of
coasting–remotoring. Since the displacements from k to j are

the same, Δt
j∑

i = k

v̄ in Equation (12) is equal to Δt
j∑

i = k

v(i )

in Equation (13). According to the Cauchy–Bunyakovsky–
Schwarz inequality and the generalised Hölder’s inequality [39],
we have Equations (14) and (15).

j∑
i = k

v̄2 =
1

( j − k + 1)

(
j∑

i = k

v (i )

)2

≤

j∑
i = k

v(i )2 (14)

j∑
i = k

v̄3 =
1

( j − k + 1)2

(
j∑

i = k

v (i )

)3

≤

j∑
i = k

v(i )3 (15)

According to Equations (12) to (15), Er_cr (k, j ) ≤
Er_csm(k, j ). Er_cr (k, j )is equal to Er_csm (k, j ) only when
all the v(i ) are equal to v̄. Therefore, for the level, gentle uphill
and gentle downhill, we have Et _cr (s, e) ≤ Et _csm (s, e), which
means that the traction energy consumption of cruising is
always smaller than or equal to that of coasting–remotoring.
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6 LIU ET AL.

FIGURE 8 Cruising and coasting–remotoring speed profiles on steep
track. (a) Steep uphill, (b) steep downhill.

FIGURE 9 Schematic diagram of cruising and coasting–remotoring
speed profiles when the speed limit changes. (a) Speed limit increase, (b) speed
limit decrease.

3.3.4 Performance comparison on the steep
track

For the steep uphill section, as shown in Figure 8a, even when
full power traction is applied, the speed will also decrease. As a
result, if the cruising regime is used, the train will be using full
power traction, and its speed will decrease. If the start and end
speeds of the coasting–remotoring regime are both equal to the
cruising regime, full traction power must be applied throughout
this section. So, the two control regimes perform identically for
this type of gradient.

On the steep downhill, to maintain cruising, braking must be
applied. The speed profile is presented in Figure 8b. The speed
will increase in the coasting–remotoring regime even when
coasting is applied. Therefore, the final speed will be greater
than the cruising speed. Although neither regime requires any
power, the coasting–remotoring regime has a shorter running
time and higher final kinetic energy.

Above all, only when there is a steep downhill during the trip
can CR be more energy-efficient than CC.

3.3.5 The influence of different speed limits on
energy distribution

To study the influence of speed limit, we assume that the gra-
dient is zero. When the speed limit changes, both the cruising
regime and the coasting–remotoring regime will be interrupted.
The reactions of CC and CR are illustrated in Figure 9.

When the speed limit increases, there is a chance that the
cruising speed or the upper and lower bounds will not change.
But if these control speeds increase, the full power traction
regime will be implemented, as shown in Figure 9a. Similarly,
if the control speeds decrease with the decrease in the speed
limit, the speed profiles of CC and CR will be like Figure 9b. It
can be seen from Figures 9a and 9b that the change in speed
limit will transfer the problem into comparing CC and CR in

FIGURE 10 Example of region division and control regimes.

several subsections on a level track. According to the analysis
results of Section 3.3, the energy consumption of the cruising
regime is equal to or smaller than coasting–remotoring. There-
fore, changing the speed limit can only make CC and CR more
flexible since the control speeds will change in different speed
limit sections, but it will not make CR outperform CC.

4 IMPROVED ENERGY-EFFICIENT
DRIVING STRATEGY

From the analysis above, the optimal driving strategy is related
to the gradients and speed limits of the route. In this section,
we propose an improved energy-efficient train driving strategy
as shown in Figure 10. First, to simplify the driving strategy, the
route is divided into subsections according to the speed lim-
its, which means that there might be more than one gradient
in a substation. The control strategy and number of decision
variables for each subsection will then be determined by the gra-
dients and the analysis results in Section 3. If CC is applied in a
subsection, the decision variables will be cruising speed and the
switching speed from coasting to braking. For the CR strategy,
one upper bound and two lower bounds will be the decision
variables. In the case of the coasting before cruising strategy,
the decision variable will involve the switching speed from full
power traction to coasting. Finally, these decision variables will
be optimised using the NSGA-II algorithm, with the objectives
of minimising running time and energy consumption.

4.1 Identify the control strategies and
decision variables

There are various methods for segmenting a route into sub-
sections. These include dividing based on fixed intervals [40],
treating areas with uniform slopes or consistent speed limits as
separate subsections [41, 42], or a combination of speed lim-
its with fixed intervals [43]. However, these methods result in a
high number of subsections, which makes it challenging to pin-
point the optimal solution. In line with the analysis in Section
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LIU ET AL. 7

TABLE 1 Combination of speed limits and steep downhills.

(V̄ _s < G_s) && (G_e < V̄ _e) (V̄ _s ≥ G_s) && (V̄ _s < G_e < V̄ _e)

(V̄ _s < G_s < V̄ _e)

&& (G_e ≤ V̄ _e) (V̄ _s > G_s) && (G_e > V̄ _e)

FIGURE 11 Proposed speed profile for situation (a) to (c) and (e) to (g).

3 of this study, we divide the subsections based on speed limits,
considering the impact of gradients by examining the interplay
between gradient and speed limits.

According to the definition of the steep downhill, the mini-
mum value of steep downhill is calculated using the following
equation:

stp_g =
(
A + Bv +Cv2

)
∕Mg (16)

If the absolute value of downhill is higher than stp_g, it is
recognised as a steep downhill. Based on the analysis in Section
3.3, for routes without steep downhill, CR cannot outperform
CC. Therefore, in the subsection without steep downhill, CC
will be applied. In contrast, if the steep downhill overlaps with
the subsection, there will be eight different situations, as pre-
sented in Table 1. Assume the start and end positions of the
speed limit section and gradient section are V̄ _s, V̄ _e, G_s,
and G_e, respectively. The eight situations can be expressed by
four sets of inequations as shown in this table. Situations (a)
to (c) and (e) to (g) show the subsections that include not only
steep downhill. These situations can combine with each other.
While (d) and (h) illustrate the subsections covered by the steep
downhills. For (a) to (c) and (e) to (g) or combinations of them,
coasting–remotoring can be more energy efficient than cruis-
ing (analysis result of Section 3.3). Therefore, we set one pair of
upper and lower bounds for the coasting–remotoring regime to
use the steep downhill fully. To make full use of the final coast-
ing, another coasting control speed is set, as shown in Figure 11.
In other words, for situations other than (d) and (h), three con-
trol variables, one upper bound and two lower bounds, are set
up.

For situations (d) and (h), if coasting is needed to consume
the surplus time, the coasting regime must be before cruising.
Referring to Figure 12a, the solid green and blue lines illustrate
when coasting is applied first. The dashed lines represent the

FIGURE 12 Speed limit covered by one steep downhill section.

situation when cruising is applied first. The average speed of
the solid lines is higher than the dashed lines. However, the
energy consumption corresponding to these two strategies is
identical since energy is consumed only in the traction regime.
Even though coasting is mostly not needed in the subsection,
as shown in Figure 12b, once coasting is required, it must be
applied before cruising to improve energy efficiency. Therefore,
for the subsection covered by a steep downhill section, only one
decision variable is needed, which is the speed of the coast-
ing start point. For all combinations of the speed limits and
gradients, the procedure to identify the control strategies and
decision variables is illustrated in Figure 13.

4.2 Pareto frontier calculation with
NSGA-II

The new energy-efficient speed profile is constructed by a set of
optimal control speeds. By considering the energy consumption
and running time as two objectives, we formulate the optimal
driving problem as a multi-objective model, which is given as

min
N∑

i = 1
Et (i )

min
N∑

i = 1
T (i )

s.t .

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v (0) = 0, v (N ) = 0

s (0) = 0, s (N ) = S

v (i ) ≤ V _lmt (i ) ∕3.6

V _ctl
(

p, q
)
≤ V _lmt

(
p
)

−Amax ≤ a (i ) ≤ Amax

(17)
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8 LIU ET AL.

FIGURE 13 Control strategies and decision variables identification.

where N is the number of distance intervals in an interstation,
T (i ) is the running time for every interval, S is the length of
the interstation, V _ctl (p, q) is the qth control speed of the pth
subsection, V _lmt (p) is the speed restriction value of the pth
subsection.

The optimisation method with NSGA-II can be summarised
as follows:

∙ Step 1: Determine the number of control speeds for every
subsection according to the method in Section 3.1. Use K to
represent the total number of control speeds, which are also
decision variables.

∙ Step 2: Define K genes in each chromosome based on K

control speeds. Generate the random population.
∙ Step 3: Calculate the fitness values for every individual,

specifically the energy consumption and running time.
∙ Step 4: Sort the individuals with their non-dominated level

(non-dominated individuals as the first level, the other non-
dominated individuals in the subset as the second level, and
so on, until all the individuals are ranked).

∙ Step 5: Select parents according to the non-dominated level.
∙ Step 6: Crossover and mutation. Select two individuals

randomly from the parents. Apply polynomial crossing in
this algorithm. At the same time, make sure the genes
are under the constraints after crossover. Then, choose
the chromosomes to be mutated randomly. The value of
these chromosomes after mutation is also random. Namely,
the control speeds are modified for arbitrary values under
constraint conditions.

∙ Step 7: Combine the initial population and the children.
Sort these individuals and select the population for the next
generation.

∙ Step 8: Return Step 2 if the iterations have not been
completed.

TABLE 2 Parameters of the rolling stock.

Parameters Value of the rolling stock

Static train mass [tonnes] 175.6

Rotary allowance 0.07

Train resistance [N, N/(m/s), N/(m2/s2)] [3.856, 0.267, 0.020]

Maximum traction power [kW] 2387

Maximum braking power [kW] 2377

Maximum operation speed [km/h] 80

Maximum tractive effort [kN] 191.7

Maximum braking effort [kN] 142.6

TABLE 3 Gradient data and speed limits.

Segments (km) Gradients (‰) Segments (km)

Speed limits

(km/h)

0–1.00 −15 0–0.14 40

1.00–1.20 0 0.14–1.93 80

1.20–2.62 15 1.93–2.30 55

– – 2.30–2.62 80

5 CASE STUDY

To illustrate the effectiveness of CC_CR and investigate the
performance of CC and CR, three simulators based on these
driving strategies are applied to four scenarios using MATLAB
R2021a on a PC with 2.30 GHz Intel i7-11800H CPU and 16GB
RAM. The crossover and mutation rates of NSGA-II are 0.8
and 0.1, respectively. Each optimization process involves 200
individuals and 300 iterations.

5.1 Simulation parameters

A typical metro rolling stock is used in the case study. Its
parameters are shown in Table 2. Practical gradients and speed
limits are shown in Table 3. The positive gradient value rep-
resents the uphill, and the negative value is for the downhill.
According to the definition of steep downhill, the route between
0 and 1.2 km is recognised as a steep downhill section for
the rolling stock. To investigate the performance of CC, CR,
and CC_CR on different routes, we distinguish the four sce-
narios using gradient and speed limit data, which is listed
below.

∙ Scenario 1: all gradients are zero; all speed limits are 80 km/h.
∙ Scenario 2: all gradients are zero; the speed limit changes

according to Table 3.
∙ Scenario 3: the gradient changes according to Table 3; all

speed limits are 80 km/h.
∙ Scenario 4: both gradient and speed limit change according

to Table 3.
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LIU ET AL. 9

FIGURE 14 Pareto frontiers and their differences in scenario 1. (a) Pareto
frontiers in scenario 1. (b) The difference between these Pareto frontiers.

5.2 Simulation results

Since there is a trade-off between running time and energy
consumption, the simulation results are expressed as Pareto
frontiers of these two indexes. The Pareto frontiers and their
energy consumption difference rates of CC, CR, and CC_CR in
these four scenarios are presented in the following sections.

5.2.1 Results of scenario 1

Since there is no steep downhill in scenario 1, CC_CR will use
the same strategy as CC. Figure 14 shows the Pareto frontiers
of CC, CR, and CC_CR. The Pareto frontier of CC overlaps
with CC_CR in Figure 14a, and the difference rate between CC
and CC_CR is zero in Figure 14b, which indicates that CC and
CC_CR are the same in this scenario. In Figure 14a, the Pareto
frontiers are divided into four sections. The optimal energy con-
sumption of CC and CR in Section ‘b’ and Section ‘d’ are almost
the same. That is because, in Section ‘b’, acceleration, coasting,
and final braking are all possible options for CC and CR’s best
control modes. So, the energy consumption of the two strategies
can be the same. While, for Section ‘d’, extending the sched-
uled time leads to a reduction in total energy consumption.

FIGURE 15 CC and CR when the running time is 158 s. CC,
cruising–coasting; CR, coasting–remotoring.

FIGURE 16 CC and CR when the running time is 282 s. CC,
cruising–coasting; CR, coasting–remotoring.

Therefore, their difference can be neglected. In contrast, the
difference rates between CC and CR in Section ‘a’ and ‘c’ can
reach 11% and 6% (Figure 14b), respectively.

To analyse the reason why CC consumes less energy than
CR, the speed and energy consumption profiles correspond-
ing to two pairs of points, two in Section ‘a’ and one in Section
‘c’, are illustrated in Figures 15 to 16. No matter which control
strategy is applied, the kinetic energy changes of the whole jour-
ney are zero, and the gravitational energy changes are the same.
Therefore, according to Equation (5), the energy consumption
difference between different driving strategies is only related to
the motion loss and braking loss. As a result, the motion loss
and braking loss are also presented in the figures. Their control
speeds, energy consumption, and running time are presented in
Table 4.

Figure 15 shows the results when the running time is 158 s.
Here the cruising speed of CC is lower than the speed limit.
However, the difference between cruising speed and coasting
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10 LIU ET AL.

TABLE 4 Comparison of CC and CR in Section ‘a’ and Section ‘c’, scenario 1.

Pareto points

Driving

strategy

Control speed 1

(km/h)

Control speed 2

(km/h)

Energy consumption

(kWh)

Running

time (s)

Pair 1 CC 77 (cruising speed) 54 (coasting speed) 16.8 158

CR 80 (upper bound) 61 (lower bound) 18.2 158

Pair 2 CC 39 (cruising speed) 21 (coasting speed) 7.0 282

CR 57 (upper bound) 21 (lower bound) 7.4 282

CC, cruising–coasting; CR, coasting–remotoring.

speed is 23 km/h, much higher than the difference between
cruising speed and the speed limit, which is 3 km/h. If CR
approximates the cruising speed of CC, it will start coasting at a
very high speed, which means that the running time is shorter
and the energy consumption is higher. While if CR coasts as CC,
in the end, its average speed will be much lower. So, the speed
profile of CC in Figure 15a is a compromise between these
two assumptions. Therefore, it is also because of the higher
final coasting speed that the energy consumption of CR is
higher.

Different from the points in Section ‘a’, in Section ‘c’, when
CC is applied, there will be a cruising mode at a speed much
lower than the speed limit and then coasting before braking. For
example, when the running time is 282 s. From Figure 16a, we
can see CC and CR start braking at the same speed. Therefore,
the braking loss of these two strategies overlaps. Since the brak-
ing regime is only applied before the end of the journey and the
braking start speed is 21 km/h, which is very low, there is only
a small increase in braking loss, as indicated in Figure 16c.

The difference between these two speed profiles is the cruis-
ing section (0.058–1.600 km) of CC and motoring–coasting
(0.058–1.245 km) and coasting–remotoring (1.934–2.289 km)
of CR as illustrated in Figure 16a. According to the analysis of
Section 3.3, the motion loss of CR is higher than CC, which is
demonstrated in Figure 16c. Therefore, in Section ‘c’, the higher
energy consumption of CR is caused by the motion loss.

5.2.2 Results of scenario 2

In scenario 2, the influence of speed limits is added to the route.
The Pareto frontiers of these three strategies are presented
in Figure 17a. Within our expectation, CC almost overlaps
CC_CR, because when there is no steep downhill in the route,
the control strategy of CC_CR should be the same as CC. Since
the Pareto frontiers are obtained from NSGA-II, there is a
slight variation between them, which can be seen in Figure 17b.
While the energy efficiency of CR is lower than CC and CC_CR
in Section ‘a’. This is caused by the same reasons as in Sec-
tion ‘a’ of scenario 1. According to the analysis in Section 3.4,
the speed limit data can increase the flexibility of these three
strategies by dividing the route into different control sections.
Therefore, the length of the speed deviation section between
coasting–remotoring and cruising, as shown in Figure 16a, can
be reduced. As a result, the difference between CC and CR in
Section ‘c’ of scenario 1 cannot be seen in this scenario.

FIGURE 17 Pareto frontiers and their differences in scenario 2. (a) Pareto
frontiers in scenario 2. (b) The difference between these Pareto frontiers.

5.2.3 Results of scenario 3

In scenario 3, the influence of gradient is added. As we can
see from Figure 18a, the energy efficiency of CC is similar to
CC_CR, both better than CR in Section ‘a’. The difference rate
between CR and CC_CR can reach up to 12% (Figure 18b),
similar to scenarios 1 and 2. While different from the scenarios
above, the energy efficiency of CC decreases from Section
‘b’. To analyse the cause of the change in CC and compare
these three strategies, two sets of points in Section ‘b’ and
Section ‘c’ of Figure 18a are chosen. Their control variables,
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LIU ET AL. 11

TABLE 5 Comparison of CC, CR and CC_CR in Section ‘b’ and Section ‘c’, scenario 3.

Pareto

points

Driving

strategy

Control speed 1

(km/h)

Control speed 2

(km/h)

Control speed 3

(km/h)

Energy consumption

(kWh)

Running

time (s)

Set 1 CC 80 (cruising speed) 33 (coasting speed) – 17.7 157

CR 76 (upper bound) 51 (lower bound) – 18.6 157

CC_CR 75 (upper bound) 69 (lower bound 1) 39 (lower bound 2) 17.0 157

Set 2 CC 50 (cruising) 20 (coasting) – 15.2 201

CR 61 (higher bound) 24 (lower bound) – 12.9 201

CC_CR 52 (higher bound) 46 (lower bound 1) 20 (lower bound 2) 12.2 201

CC, cruising–coasting; CR, coasting–remotoring.

FIGURE 18 Pareto frontiers and their differences in scenario 3. (a)
Pareto frontiers in scenario 3, (b) the difference between these Pareto frontiers.

energy consumption, and running times are presented in
Table 5.

The motion and energy consumption characteristics corre-
sponding to three points in Section ‘b’ with the same running
time 157 s are illustrated in Figure 19. From Figure 19c, we
can see the cruising of CC at the steep downhill leads to
about 1 kWh braking loss. In contrast, CR and CC_CR can
use the energy of the steep downhill by coasting. Therefore,

FIGURE 19 CC, CR, and CC_CR when the running time is 157 s. CC,
cruising–coasting; CR, coasting–remotoring.

when steep downhill appears during the cruising regime, CC
will lose its advantage in energy consumption. For CR, the
reason for higher energy consumption is still the last braking
loss, just as in Section ‘a’. In Section ‘c’ of the Pareto frontiers,
the energy consumptions of CC_CR and CR are lower than
CC.

The profiles of these three strategies with a running time of
201 s are presented in Figure 20. From Figure 20c, the brak-
ing loss profile of CR overlaps CC_CR. In contrast, the CC’s
braking loss grows rapidly during cruising on the steep down-
hill, which leads to a difference of 3.5 kWh between CC and the
other two strategies. Although the motion loss of CC is the low-
est, the difference between them is slight, only 1.2 and 0.8 kWh
lower than CR and CC_CR, respectively. Overall, the advantage
of CR and CC_CR is mainly due to coasting on the steep down-
hill. The performance of CC_CR is the best, regardless of the
value of the proposed running time.

5.2.4 Results of scenario 4

In the fourth scenario, the gradient and speed limit data are
both added to the route. The route is divided into four sub-
sections by the speed limits, which increases the flexibility of
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12 LIU ET AL.

TABLE 6 Comparison of CC, CR, and CC_CR when the running time is 209 s, scenario 4.

Driving

strategy

Control speed of

Section 1 (km/h)

Control speed of Section 2

(km/h)

Control speed of

Section 3 (km/h)

Control speed of

Section 4 (km/h)

Energy consumption

(kWh)

Running time

(s)

CC 37 36 76 28 33 24 59 20 13.1 209

CR 33 21 49 47 53 42 24 20 11.8 209

CC_CR 35 49 47 58 47 35 42 20 11.8 209

CC, cruising–coasting; CR, coasting–remotoring.

FIGURE 20 CC, CR, and CC_CR when the running time is 201 s. CC,
cruising–coasting; CR, coasting–remotoring.

these three strategies. Compared with scenario 3, the differ-
ence between them has decreased. CR and CC_CR are almost
the same, especially when the proposed running time is longer
than 195 s, which can be seen in Figures 21a and 21b. When
the run time exceeds 250 s, the energy and time consumption
of CC increases, so these points should not be on the Pareto
front. However, we still show these points here to compare
CC’s energy consumption with the other two strategies. The dif-
ference between CC and CC_CR is similar to that of scenario
three, except when the running time is between 180 and 250 s.
In this time range, take the running time 209 s as an example
(Figure 22).

The control variables of these three strategies are shown in
Table 6. The numbers of control variables of CC_CR for the
four subsections are 1, 3, 2, and 2, respectively. We can see
from Figure 22 that the higher energy consumption of CC is
mainly because of the braking loss in the first subsection and
the motion loss in the second subsection. Since the flexibility
of CC has been increased, the braking loss caused by cruis-
ing in the second subsection, which is the main reason for
high energy consumption in scenario 3 has been eliminated.
When the running time is less than 180 s, CC must cruise at
high speed. Similar to scenario 3, the energy of steep down-
hill is wasted. After 250 s, CC has to maintain a low speed
that cannot be affected by the speed limit. Therefore, in this
time range, the difference between CC and CC_CR is similar to
scenario 3.

FIGURE 21 Pareto frontiers and their differences in scenario 4. (a)
Pareto frontiers in scenario 4, (b) the difference between these Pareto frontiers.

5.2.5 Verification with real metro line

In this part, Guangzhou metro line 7 is introduced to verify the
effectiveness of the proposed strategy, CC_CR. The route data
and scheduled time can refer to [14]. The optimisation results
obtained by CC, CR, and CC_CR are presented in Table 7. The
optimal speed profiles are illustrated in Figure 23. IS1-8 repre-
sent the eight inter-stations. The steep downhill exists in IS 2, 4,
5, 6, and 8. Therefore, in IS 1, 3, and 7, where no steep downhill
exists, the optimisation results of CC and CC_CR are similar.
Their speed profiles almost overlap. In IS 2 and 5, CC_CR can
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LIU ET AL. 13

TABLE 7 Scheduled timetable and the optimisation results.

Optimal with CC Optimal with CR Optimal with CC_CR

Inter-station

Scheduled journey

time [s] Time [s] Energy [kWh] Time [s] Energy [kWh] Time [s] Energy [kWh]

IS 1 130 129 9.15 129 9.31 129 9.15

IS 2 170 170 21.90 170 20.75 169 20.07

IS 3 185 185 25.41 185 26.34 184 25.40

IS 4 180 180 17.70 181 17.17 177 17.00

IS 5 185 185 23.68 185 24.08 185 23.04

IS 6 220 220 17.90 220 18.21 219 17.63

IS 7 210 211 23.19 211 24.20 214 23.05

IS 8 330 328 42.07 327 43.21 329 41.91

CC, cruising–coasting; CR, coasting–remotoring.

FIGURE 22 CC, CR, and CC_CR when the running time is 209 s. CC,
cruising–coasting; CR, coasting–remotoring.

use more coasting to save energy. In contrast, CC can only use
partial braking to keep the cruising speed. Although CC can also
coast on the steep downhill sections in IS 4, 6, and 8 because of
the multiple control speed sets for different speed limit sections,
the gravitational energy may not be fully used especially in IS 4.

Figure 24 presents the energy consumption difference rates
between CC and CC_CR, as well as CR and CC_CR for each
inter-station. ‘CC vs CC_CR’ and ‘CR vs CC_CR’ means the

FIGURE 23 The optimal speed profile by CC, CR, and CC_CR. CC, cruising–coasting; CR, coasting–remotoring.

FIGURE 24 Energy consumption difference of the three strategies.

energy consumption of CC or CR minus CC_CR and then
divided by CC_CR. From this figure, we can see in IS 2 and
4, CC consumes more energy than CR and CC_CR. The dif-
ference rate between CC and CC_CR can reach about 9%.
In other inter-stations, CR consumes more energy than CC
and CC_CR. The maximum difference rate between CR and
CC_CR is 5%. Although steep downhill also exists in IS 5, 6,
and 8, the energy consumption of CR is higher than CR. This
is still consistent with the analysis results in Section 3.3 and also
illustrates the necessity of adding another coasting control speed
to traditional CR as shown in Figure 11. Finally, we can also see
that these difference rates are all positive, which means CC_CR
can achieve the lowest energy consumption in all inter-stations.
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14 LIU ET AL.

Therefore, the effectiveness of the proposed strategy is further
verified.

6 CONCLUSION

This paper analysed the performance of two typical energy-
efficient driving strategies CC and CR, and then developed a
new energy-efficient driving strategy, CC_CR based on the anal-
ysis results. The theoretical investigation of how gradients and
speed limitations affect CC and CR gives two findings. First,
only when steep downhill exists can CR consume less energy
than CC. The other one is that speed limits can improve the
flexibility of these two strategies but cannot eliminate the advan-
tage of CC. Based on these two findings, the optimal driving
strategy is developed. Simulation results with four scenarios
demonstrated the effectiveness of CC_CR in energy saving. The
Pareto frontiers of CC, CR, and CC_CR show that CC always
performs equally or better than CR, if the route does not have a
steep downhill, regardless of whether the speed limit changes or
not. On routes with steep downhill, the energy efficiency of CR
will be higher than that of CC, when the suggested travel time
is slack. In comparison, CC_CR is always the best strategy. The
energy consumption can reduce by up to 15% and 42%, respec-
tively, compared to CR and CC. The case study with Guangzhou
metro line 7 was also carried out, which further verified the
effectiveness of the proposed strategy.

NOMENCLATURE

Δs distance interval for discretisation [m]
a acceleration of the vehicle [m/s2]
v speed of the vehicle [m/s]
s vehicle position along the track [m]

F tractive or braking effort [N]
R vehicle resistance [N]
G gravity effort in the direction of train motion [N]
M mass of the vehicle [kg]
𝜆 rotary allowance
A Davis equation constant [N]
B Davis equation linear term constant [N/(m/s)]
C Davis equation quadratic term constant [N/(m/s)2]
g acceleration due to gravity [m/s2]

grad gradient of the route [‰]
Et mechanical traction energy [kWh]
Er motion loss [kWh]
Ek change of kinetic energy [kWh]
Eg change of gravitational energy [kWh]
Eb braking loss [kWh]

h altitude [m]
Ft tractive effort [N]
Fb braking effort [N]
v̄ average speed [m/s]

Δt time interval [s]
Er_cr motion loss of cruising [kWh]

Er_csm motion loss of coasting-remotoring [kWh]
Et _cr traction energy used by cruising [kWh]

Et _cr traction energy used by coasting-remotoring [kWh]
T journey time [s]
N number of distance intervals
S total length of one interstation [m]

V _lmt train maximum speed due to speed limit [km/h]
V _ctl driving control speed [km/h]

K number of control speeds
V _cr cruising speed [km/h]
V _co coasting speed [km/h]

V _coh upper bound of coasting-remotoring [km/h]
V _col lower bound of coasting-remotoring [km/h]

stp_g minimum gradient value of the steep downhill
V̄ _s start position of a speed limit section[km]
V̄ _e end position of a speed limit section[km]
G_s start position of a constant gradient section[km]
G_e end position of a constant gradient section[km]
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