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EXTREME OCCUPATION MEASURES IN MARKOV DECISION
PROCESSES WITH AN ABSORBING STATE\ast 

ALEXEY PIUNOVSKIY\dagger AND YI ZHANG\ddagger 

Abstract. In this paper, we consider a Markov decision process (MDP) with a Borel state
space X\cup \{ \Delta \} , where \Delta is an absorbing state (cemetery), and a Borel action space A. We consider
the space of finite occupation measures restricted on X \times A and the extreme points in it. It is
possible that some strategies have infinite occupation measures. Nevertheless, we prove that every
finite extreme occupation measure is generated by a deterministic stationary strategy. Then, for
this MDP, we consider a constrained problem with total undiscounted criteria and J constraints,
where the cost functions are nonnegative. By assumption, the strategies inducing infinite occupation
measures are not optimal. Then our second main result is that, under mild conditions, the solution
to this constrained MDP is given by a mixture of no more than J+1 occupation measures generated
by deterministic stationary strategies.

Key words. Markov decision process, total cost, occupation measure, mathematical program-
ming, extreme point, mixture
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1. Introduction. Perhaps the first paper where the discounted Markov decision
process (MDP) was reformulated as a linear program is [7]. The modern so-called
convex analytic approach originates from the works by Borkar [4, 5]. It is applied to
the models with total cost (discounted or not) as well as with the long-run average
cost: let us only mention the book treatments [1, 28, 31] and the survey [6]. This
approach proved to be especially fruitful in dealing with problems with constraints;
see the survey [32] and the authoritative monograph [29] on finite MDPs, i.e., MDPs
with finite state and action spaces. For the convex analytic approach to continuous-
time MDPs, see, e.g., [24, 25, 33] and the monograph [34].

The convex analytic approach is based on the reformulation of the constrained
MDP problem as a convex optimization problem in the space of occupation mea-
sures with affine objective functions and inequality constraints, where the occupation
measures are defined in accordance with the performance criteria of the MDP prob-
lem. The space of occupation measures is a convex space (i.e., a convex subset of
a cone, not necessarily of a vector space). Thus, here the relevant notions, such as
convex optimization problem, affine functions, and extreme points, are understood
with respect to (w.r.t.) the underlying convex space; see [37]. An important target to
show is the existence of an optimal strategy for the MDP problem, whose occupation
measure is the convex combination of finitely many extreme points in the space of
occupation measures, which we call extreme occupation measures. If the number of
constraints in the MDP problem is J , the mixture is over at most J + 1 extreme oc-
cupation measures. Such a strategy is called a (J +1)-mixed optimal strategy. Then
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66 ALEXEY PIUNOVSKIY AND YI ZHANG

a key ingredient in the convex analytic approach to MDPs is the characterization
of such extreme occupation measures. This task is easier when the state is discrete
(finite or countable), as considered in [1, 4, 5, 29], but our consideration in this pa-
per is a Borel MDP model, by which we mean an MDP with Borel state and action
spaces.

Let us concentrate on the literature for Borel MDP models. For discounted MDPs,
the most relevant recent works include [12, 16, 21], where by using the convex analytic
approach, optimal stationary strategies were proved. While mixed strategies were not
considered in [12, 21], in establishing the existence of a so-called optimal chattering
strategy in [16] (see also [22, 23]), the existence of an optimal (J +1)-mixed strategy
was observed; see the proof of [16, Theorem 2]. For discounted MDPs but under more
restrictive conditions, this result appeared in [31, 42]. In an absorbing MDP, there is
a costless absorbing state, called ``cemetery"" for brevity, and, given the initial state,
under each strategy, the expected time until the state process reaches the cemetery is
finite. In fact, this is equivalent to the expected absorbing time, say T,being bounded
in the set of all strategies; see [18, p. 132]. The expected absorbing time can be writ-
ten as the series of the tail probabilities of T >m over m\geq 0. If this series converges
uniformly over all strategies, then the MDP is called uniformly absorbing. This defini-
tion appeared in [17]. It was observed in [17] that discounted MDPs are special cases
of uniformly absorbing MDPs, by viewing the discount factor as the parameter of a
geometrically distributed external killing time. For uniformly absorbing MDPs, the
existence of a (J+1)-mixed optimal strategy was obtained by Feinberg and Rothblum
(see [18, Theorem 9.2]), as well as that each extreme occupation measure is generated
by a deterministic stationary strategy; see [18, Lemma 4.6]; see also [38]. The convex
analytic approach was also developed for optimal stopping problems in discrete time;
see [10] and the references therein.

In the present paper, we consider an MDP with a Borel state space X\cup \{ \Delta \} and a
Borel action spaceA. The point \Delta is a single absorbing state. We call such a model an
MDP with an absorbing state or with a cemetery, though it is also known under other
names, such as the stochastic shortest path problem (see [2]), where unconstrained
MDP problems were considered and the main interest was the characterization of
the optimal value function out of the class of so-called proper strategies in terms
of the solution to the optimality equation. It is without loss of generality that we
consider a fixed initial state rather than a fixed initial distribution. We also assume
that the cemetery \Delta is costless. For this reason, we consider occupation measures
as the total expected state-action frequencies restricted on X\times A. If a strategy has
a finite occupation measure, we call it an absorbing strategy with the given initial
state. Proper strategies as considered in [2] can be viewed as special types of absorbing
strategies. If the occupation measure of each strategy is finite, our model becomes
the absorbing model. Nevertheless, similarly to [9], here we do allow that some
strategies have infinite occupation measures. This is the main novelty compared with
the aforementioned works [12, 16, 18, 21]; see more comments on this below.

Our contributions are as follows. First, we show that every extreme point of the
space of finite occupation measures is generated by a deterministic stationary strat-
egy. Then we consider a constrained problem with total undiscounted criteria and J
constraints, where the cost functions are nonnegative. We formulate the problem as
a convex program in the space of occupation measures (see (5)). Under mild condi-
tions, we show that there exists an optimal strategy whose occupation measure is in
the form of a mixture of no more than J + 1 occupation measures of deterministic
stationary strategies.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXTREME OCCUPATION MEASURES 67

For the latter result, we make the assumption, which in particular implies that
strategies inducing infinite occupation measures are not optimal. Under this assump-
tion, for the MDP problem, instead of dealing with the whole space of occupation
measures, it is sufficient to work with the space of finite occupation measures. How-
ever, restricting an MDP to absorbing strategies is not the same as considering an
absorbing MDP. First, in an absorbing MDP, the total values of all occupation mea-
sures are bounded above, whereas if the MDP is not absorbing, then the total values
of all finite occupation measures can be unbounded. This can be seen by considering
an optimal stopping problem as in [10]: for the set of strategies, stopping at step
n = 1,2, . . . , the values of their (finite) occupation measures are unbounded. In this
connection, we mention that, for discounted MDPs (see, e.g., [31]), it is convenient
to endow the space of occupation measures with the weak topology generated by
bounded continuous functions. The same was done in [18] for absorbing MDPs. To
deal with infinite occupation measures, we endow that space with the final topol-
ogy generated by the projection mapping from the space of strategic measures to
occupation measures. These features require new proofs of the key theorems on the
characterization of the extreme finite occupation measures (see Theorem 1) and on
the sufficiency of mixtures of (occupation measures of) deterministic strategies (see
Theorem 2).

In terms of other relevant works, we mention the following. First, constrained
total undiscounted Borel MDPs with nonnegative cost functions were also studied in
[9]. Although it was not assumed a priori in [9] that there is a costless cemetery in
the state space, it was shown under some conditions that one can always construct
a costless cemetery set, after modifying the admissible action spaces on that set. By
merging this set as a costless cemetery, we may view the model in [9] in the frame-
work of the present paper and can apply to it our first result on the characterization
of extreme finite occupation measures. Except for special cases, our second result
concerning the optimal mixed strategies is not applicable to the model in [9] because
no assumption was made in [9] that strategies with infinite occupation measures were
suboptimal or infeasible. On the other hand, neither the extreme occupation mea-
sures nor the mixed strategies were considered in [9]. The paper here can be viewed
as a complement to it. Second, we note that the results in this paper are also rele-
vant to the studies in continuous-time MDPs (see [26, 35, 36]) because the problems
considered therein were eventually reduced to an MDP model; see more details in the
book [34].

Allowing the cost functions to be negative leads to a more complicated theory.
The convex analytic approach to such constrained MDPs was developed in [8, 11],
but mixtures of occupation measures were not considered there.

The rest of this paper is organized as follows. The MDP model under study is
described in section 2. Several necessary auxiliary statements are given in section 3,
including the known results on the solvability of the formulated problem. Sections 4
and 5 present the main results: characterization of the extreme occupation measures
and sufficiency of the finite mixtures of deterministic stationary strategies. The paper
ends with a conclusion in section 6. The proofs of the main statements are postponed
to the appendix.

2. Description of the model. The primitives of an MDP are the following:
\bullet The state space is X\Delta =X\cup \{ \Delta \} , where X is a nonempty topological Borel

space, endowed with the \sigma -algebra \scrB (X), and \Delta is the isolated absorbing
state (cemetery).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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68 ALEXEY PIUNOVSKIY AND YI ZHANG

\bullet The action space A is a nonempty topological Borel space, endowed with the
\sigma -algebra \scrB (A).

\bullet The transition probability p(dy| x,a) is a stochastic kernel from X\Delta \times A to
\scrB (X\Delta ); p(\{ \Delta \} | \Delta , a)\equiv 1.

\bullet The [ - \infty ,+\infty ]-valued one-step cost functions rj(\cdot , \cdot ) onX\Delta \times A, j = 0,1, . . . , J ,
where J \in \{ 0,1, . . .\} is a fixed integer; rj(\Delta , a)\equiv 0.

Usually, the initial state x0 \in X is fixed, but sometimes we consider other arbi-
trarily fixed initial states x\in X. (See, e.g., Lemma 3.)

Regarding terminology, we often refer to \{ X\Delta ,A, p,\{ rj\} Jj=0\} as an MDP model or
simply an MDP. We may also consider the ``cost-free"" MDP model \{ X\Delta ,A, p\} because
several definitions and properties presented below do not involve the properties of the
cost functions.

Definition 1 (strategy). Consider the MDP \{ X\Delta ,A, p\} .
(a) A strategy \sigma = \{ \sigma n\} \infty n=1 is a sequence of stochastic kernels such that for each

n= 1,2, . . . , \sigma n(da| x0, a1, . . . , xn - 1) is a stochastic kernel from (X\Delta \times A)n - 1\times 
X\Delta to \scrB (A), where (X\Delta \times A)0 \times X\Delta :=X\Delta .

(b) A strategy \sigma = \{ \sigma n\} \infty n=1 is Markov if for each n= 1,2, . . . , there is a stochastic
kernel \sigma M

n (da| xn - 1) from X\Delta to \scrB (A) such that

\sigma M
n (da| xn - 1) = \sigma n(da| x0, a1, . . . , xn - 1)

for each (x0, a1, . . . , xn - 1)\in (X\Delta \times A)n - 1 \times X\Delta .
(c) A strategy \sigma = \{ \sigma n\} \infty n=1 is called stationary if there is a stochastic kernel

\sigma s(da| x) from X\Delta to \scrB (A) such that

\sigma s(da| xn - 1) = \sigma n(da| x0, a1, . . . , xn - 1)

for each n = 1,2, . . . , and (x0, a1, . . . , xn - 1) \in (X\Delta \times A)n - 1 \times X\Delta . Below, a
stationary strategy is usually identified with \sigma s.

(d) If \sigma s(da| x) is concentrated on \{ \varphi (xn - 1)\} , where \varphi is an A-valued measurable
mapping, then the stationary strategy is called deterministic stationary. With
conventional abuse of notation, we often signify a deterministic stationary
strategy by \varphi .

(e) We always assume that \sigma n(\{ \^a\} | x0, a1, . . . ,\Delta ) = 1 whenever xn - 1 = \Delta . Here
\^a\in A is an arbitrarily fixed action.

As is well known, for each control strategy \sigma and initial state x0 \in X, there is
a unique strategic measure on the sample space \Omega := (X\Delta \times A)\infty , denoted as \sansP \sigma 

x0
,

which is specified by the following conditions:

\sansP \sigma 
x0
(X0 \in dy) = \delta x0

(dy),(1)

and for each n= 1,2, . . . , \Gamma X
i \in \scrB (X\Delta ) (i= 0,1, . . . , n) and \Gamma A

i \in \scrB (A) (i= 1,2, . . . , n),

\sansP \sigma 
x0
(X0 \in \Gamma X

0 , A1 \in \Gamma A
1 , . . . , Xn - 1 \in \Gamma X

n - 1, An \in \Gamma A
n )

(2)

=

\int 
\Gamma X
0 \times \Gamma A

1 \times \cdot \cdot \cdot \times \Gamma X
n - 1

\sigma n(\Gamma 
A
n | x0, a1, . . . , xn - 1)\sansP 

\sigma 
x0
(X0 \in dx0,A1 \in da1, . . . ,Xn - 1 \in dxn - 1);

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXTREME OCCUPATION MEASURES 69

and

\sansP \sigma 
x0
(X0 \in \Gamma X

0 , A1 \in \Gamma A
1 , . . . , Xn \in \Gamma X

n )(3)

=

\int 
\Gamma X
0 \times \Gamma A

1 \times \cdot \cdot \cdot \times \Gamma X
n - 1\times \Gamma A

n

p(\Gamma X
n | xn - 1, an)

\times \sansP \sigma 
x0
(X0 \in dx0,A1 \in da1, . . . ,Xn - 1 \in dxn - 1,An \in dan).

For details, see [14, 27, 31]. Denote by \Sigma the set of all strategies and by \scrP := \{ \sansP \sigma 
x0

:
\sigma \in \Sigma \} the set of all strategic measures (with the initial state x0 \in X). The expectation
taken w.r.t. \sansP \sigma 

x0
is denoted as \sansE \sigma 

x0
.We equip the space of probability measures on \scrB (\Omega ),

denoted as \scrP (\Omega ), with the weak topology generated by bounded continuous functions
on \Omega and fix its trace \tau on the space \scrP of all strategic measures. Then \scrP (\Omega ) is a
Borel space (see [3, Corollary 7.25.1]), and we endow \scrP (\Omega ) with its Borel \sigma -algebra.

The constrained optimal control problem for the MDP model \{ X\Delta ,A, p,\{ rj\} Jj=0\} 
is

Minimize over all strategies \sigma : \sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

r0(Xn,An+1)

\Biggr] 
(4)

subject to \sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

rj(Xn,An+1)

\Biggr] 
\leq dj , j = 1,2, . . . , J,

where, for j \in \{ 0,1, . . . , J\} ,

\sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

rj(Xn,An+1)

\Biggr] 
:= \sansE \sigma 

x0

\Biggl[ \infty \sum 
n=0

r+j (Xn,An+1)

\Biggr] 
 - \sansE \sigma 

x0

\Biggl[ \infty \sum 
n=0

r - j (Xn,An+1)

\Biggr] 

with r+j (\cdot , \cdot ) and r - j (\cdot , \cdot ) being the positive part and the negative part of the function

rj(\cdot , \cdot ) so that rj(\cdot , \cdot ) = r+j (\cdot , \cdot ) - r - j (\cdot , \cdot ). We accept that \infty  - \infty :=\infty concerning the
definition of \sansE \sigma 

x0
[
\sum \infty 

n=0 rj(Xn,An+1)].
If J = 0, then the problem is called unconstrained.

Definition 2 (feasible and optimal strategies). A strategy is called feasible if all
the constraints in (4) are satisfied; it is called feasible with a finite value if, addition-
ally, \sansE \sigma 

x0
[
\sum \infty 

n=0 r0(Xn,An+1)]\in \BbbR := ( - \infty ,\infty ); it is called optimal if it solves problem
(4).

Definition 3 (semicontinuous MDP). An MDP \{ X\Delta ,A, p,\{ rj\} Jj=0\} is called
semicontinuous if the following hold:

(a) The action space A is compact.
(b) For each bounded continuous function f(\cdot ) on X,

\int 
X
f(y)p(dy| x,a) is contin-

uous in (x,a)\in X\times A.
(c) For each j = 0,1, . . . , J, the function rj(\cdot , \cdot ) is lower semicontinuous on X\times A.

3. Preliminaries. In this section, we collect some preliminary results, which
will be needed in proving the main results of this paper. Several of them are known
or follow from well-known results. They will be called propositions. We thus skip the
proofs of most of them but always refer to relevant literature.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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70 ALEXEY PIUNOVSKIY AND YI ZHANG

Proposition 1.
(a) The set \scrP of all strategic measures, for a fixed initial state x0 \in X, is a

measurable and convex subset of \scrP (\Omega ). (Recall the notations introduced below
(3).)

(b) Suppose conditions (a) and (b) in Definition 3 are satisfied. Then the space
\scrP , endowed with the weak topology, is compact.

Proof. For the first statement, see Theorem 8 of [31] and Chapter 5, section 5 of
[14]. For the second statement, see, e.g., [39].

Unless stated otherwise, we always endow the space of strategic measures with
the weak topology.

The next result is known as the Derman--Strauch lemma. It asserts that the
marginal distributions of each strategy can be replicated by a Markov strategy.

Proposition 2. For each strategy \sigma , there is a Markov strategy \sigma M = \{ \sigma M
n \} \infty n=1

such that

\sansP \sigma 
x0
(Xn - 1 \in dx,An \in da) = \sansP \sigma M

x0
(Xn - 1 \in dx,An \in da)

for each n= 1,2, . . . . Here \sigma M
n is the stochastic kernel from X to A such that

\sansP \sigma 
x0
(Xn - 1 \in dx,An \in da) = \sansP \sigma 

x0
(Xn - 1 \in dx)\sigma M

n (da| x).

One can take an arbitrarily fixed version of the stochastic kernel \sigma M
n .

Proof. See Lemma 2 of [31].

Now it is clear that one can restrict oneself to Markov strategies when investigat-
ing problem (4).

Next, we introduce occupation measures of strategies.

Definition 4 (occupation measures). The occupation measure \sansM \sigma 
x0

of a strategy
\sigma in the MDP \{ X\Delta ,A, p\} with the initial state x0 \in X is defined by

\sansM \sigma 
x0
(\Gamma X \times \Gamma A) := \sansE \sigma 

x0

\Biggl[ \infty \sum 
n=1

\BbbI \{ Xn - 1 \in \Gamma X , An \in \Gamma A\} 

\Biggr] 

=

\infty \sum 
n=1

\sansE \sigma 
x0

[\BbbI \{ Xn - 1 \in \Gamma X , An \in \Gamma A\} ]

for each \Gamma X \in \scrB (X) and \Gamma A \in \scrB (A). The set of all occupation measures is denoted
as \scrD ; \scrD f := \{ \sansM \sigma 

x0
: \sansM \sigma 

x0
(X\times A)<\infty \} is the set of all finite occupation measures on

\scrB (X\times A).

Now, for all j = 0,1, . . . , J ,

\sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

rj(Xn,An+1)

\Biggr] 
=

\int 
X\times A

rj(x,a)\sansM 
\sigma 
x0
(dx\times da).

Accordingly, one can reformulate problem (4) as follows:

Minimize over \scrD : R0(\sansM ) :=

\int 
X\times A

r0(x,a)\sansM (dx\times da)(5)

subject to Rj(\sansM ) :=

\int 
X\times A

rj(x,a)\sansM (dx\times da)\leq dj j = 1,2, . . . , J.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXTREME OCCUPATION MEASURES 71

Proposition 3. The set of all occupation measures \scrD with the initial state x0 is
a convex set in the cone of [0,\infty ]-valued measures on \scrB (X\times A). The set \scrD f of finite
occupation measures is a convex subset of the linear space of finite signed measures
on \scrB (X\times A). It is a (convex) face of \scrD .

Proof. It follows from Proposition 1 that the convex combination of two measures
in \scrD is still in \scrD . This justifies the first assertion. The second assertion follows from
the first assertion and the observation that if \sansM 1,\sansM 2 are in \scrD f , then so is their convex
combination. For the last assertion, note that if, for some \alpha \in (0,1) and \sansM 1,\sansM 2 \in \scrD ,
\sansM = \alpha \sansM 1 + (1 - \alpha )\sansM 2 is in \scrD f \subseteq \scrD , then it is necessary that \sansM 1(X\times A) < \infty and
\sansM 2(X\times A)<\infty , meaning that \sansM 1,\sansM 2 \in \scrD f . Hence, \scrD f is a face in \scrD .

The next two results provide some relations satisfied by occupation measures of
a strategy (respectively, a stationary strategy).

Proposition 4. The occupation measure \sansM \sigma 
x0

of a strategy \sigma satisfies the follow-
ing equation:

\mu (\Gamma \times A) = \delta x0
(\Gamma ) +

\int 
X\times A

p(\Gamma | y, a)\mu (dy\times da) \forall \Gamma \in \scrB (X).(6)

Proof. See Lemma 9.4.3 of [28].

Proposition 5. Suppose \sigma s is a stationary strategy. Then

\sansM \sigma s

x0
(\Gamma X \times \Gamma A) =

\int 
\Gamma X

\sigma s(\Gamma A| x)\sansM \sigma s

x0
(dx\times A), \Gamma X \in \scrB (X), \Gamma A \in \scrB (A)(7)

and \sansM \sigma s

x0
(dx\times A) is the (setwise) minimal measure on \scrB (X) satisfying the equation

\mu (\Gamma ) = \delta x0(\Gamma ) +

\int 
X

\int 
A

p(\Gamma | y, a)\sigma s(da| y)\mu (dy), \Gamma \in \scrB (X).(8)

Proof. See [34, pp. 563--564].

As was mentioned in section 1, for discounted MDPs as well as absorbing MDPs
(see e.g., [18, 31]), the space of occupation measures was often endowed with the weak
topology generated by bounded continuous functions. To deal with infinite occupation
measures, it is more convenient to endow \scrD with the final topology generated by the
projection mapping from the space of strategic measures to occupation measures. See
the next definition.

Definition 5. \rho is the final topology on \scrD associated with the mapping O : \scrP \rightarrow \scrD 
defined by

\sansM (dx\times da) =

\infty \sum 
n=1

\sansP (Xn - 1 \in dx,An \in da).

That is the finest topology for which the mapping O is continuous. A subset \Gamma \subseteq \scrD is
open (w.r.t. \rho ) if and only if O - 1(\Gamma ) is open in \scrP . Recall that \scrP was endowed with
the weak topology.

Lemma 1. Consider the MDP model \{ X\Delta ,A, p\} .
(a) Under conditions (a) and (b) of Definition 3, the topological space (\scrD , \rho ) is

compact.
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72 ALEXEY PIUNOVSKIY AND YI ZHANG

(b) For each nonnegative lower semicontinuous function r(\cdot , \cdot ) : X\times A\rightarrow [0,\infty ],
the mapping R(\cdot ) : \scrD \rightarrow [0,\infty ] defined by

R(\sansM ) :=

\int 
X\times A

r(x,a)\sansM (dx\times da)

is lower semicontinuous.

The proofs of all the lemmas and theorems can be found in the appendix.

Corollary 1. If the MDP \{ X\Delta ,A, p,\{ rj\} Jj=0\} is semicontinuous and rj(\cdot , \cdot )\geq 0,
j = 0,1, . . . , J , then the constrained problem (4) has an optimal solution, provided that
there exists a feasible solution.

Proof. Since the equivalent problems (4) and (5) have feasible solutions, the space
(\scrD , \rho ) is compact, and the functions Rj(\cdot ) are lower semicontinuous, we see that the
set

\{ \sansM \in \scrD : Rj(\sansM )\leq dj , j = 1,2, . . . , J\} 

is nonempty and compact. Thus, the lower semicontinuous function R0(\cdot ) attains its
minimum thereon.

Alternatively, the above corollary also follows from Proposition 1 (see also [39]),
but its proof was given here in the hope of improving readability.

4. Extreme finite occupation measures. In this section, we present our first
main result concerning the characterization of extreme finite occupation measures.
We emphasize that this result does not require any extra conditions on the MDP
model; in particular, the MDP does not need to be semicontinuous.

Definition 6 (induced strategy). For \sansM \in \scrD f , the stationary strategy \sigma s, coming
from the decomposition

\sansM (dx\times da) = \sigma s(da| x)\sansM (dx\times A)

on \scrB (X\times A), is called induced (by \sansM ). Here one can take an arbitrarily fixed version
of the stochastic kernel \sigma s, as the following lemma is valid.

The next result asserts that any finite occupation measure is generated by a
stationary strategy.

Lemma 2. Suppose \sansM \in \scrD f and \sigma s is the stationary strategy induced by \sansM . (One
can take an arbitrary version of the stochastic kernel \sigma s.) Then \sansM =\sansM \sigma s

x0
.

Lemma 2 is known for countable-state MDPs [1, Theorem 8.1]. See also [20],
which also provided examples showing that Lemma 2 does not hold for \sansM \in \scrD in
general.

The next result plays an important role in Step 1 in the proof of Theorem 1.

Lemma 3. Let a stationary strategy \sigma s be such that \sansM \sigma s

x0
\in \scrD f . (E.g., \sigma s is the

strategy, induced by \sansM \in \scrD f .) Then the following assertions hold:
(a)

\sansM \sigma s

x (X\times A) = \sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

\BbbI \{ Xn - 1 \in X\} 

\Biggr] 
<\infty 

for \sansM \sigma s

x0
(dx\times A)-almost all x\in X.
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EXTREME OCCUPATION MEASURES 73

(b) For a bounded \BbbR -valued function f(\cdot ) on X with f(\Delta ) = 0, the function

v(x) := \sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

f(Xn - 1)

\Biggr] 
:= \sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

f+(Xn - 1)

\Biggr] 

 - \sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

f - (Xn - 1)

\Biggr] 
, x\in X,

is measurable and with finite values for \sansM \sigma s

x0
(dx\times A)-almost all x\in X. Here

the convention of \infty  - \infty :=\infty is in use.
(c) The function v(\cdot ) in (b) satisfies equation

v(x) = f(x) +

\int 
A

\int 
X

v(y)p(dy| x,a)\sigma s(da| x) \sansM \sigma s

x0
(dx\times A)-a.s.(9)

If a measurable bounded function w(\cdot ) : X\rightarrow \BbbR satisfies (9), then w(x) = v(x)
for \sansM \sigma s

x0
(dx\times A)-almost all x\in X.

We note that the function v(\cdot ) in parts (b) and (c) of the previous lemma may be
not finite everywhere, even though the function f(\cdot ) was bounded.

Theorem 1. An occupation measure \sansM \in \scrD f is extreme in \scrD f if and only if
\sansM =\sansM \varphi 

x0
for some deterministic stationary strategy \varphi .

5. Form of the optimal control strategy. In this section, we present our
second main result, concerning the existence of an optimal (J +1)-mixed strategy to
the constrained MDP problem. For this, we will impose further conditions, which, in
particular, guarantee that strategies whose occupation measures are infinite are not
optimal or feasible; see Theorem 2.

Definition 7 ((J + 1)-mixed strategy). According to Propositions 1 and 3, if
\sigma 1, \sigma 2,. . . , \sigma L is a finite collection of strategies, then, for a set \alpha 1, \alpha 2, . . . , \alpha L of nonneg-
ative numbers with

\sum L
l=1\alpha l = 1,

\sum L
l=1\alpha l\sansP 

\sigma l

x0
is a strategic measure and

\sum L
l=1\alpha l\sansM 

\sigma l

x0

is an occupation measure for some strategy \sigma . We call it a mixture of strategies
\sigma 1, \sigma 2, . . . , \sigma L or, for brevity, a (J + 1)-mixed strategy.

Theorem 2. Suppose the MDP \{ X\Delta ,A, p,\{ rj\} Jj=0\} with initial state x0 \in X is
semicontinuous, rj(\cdot , \cdot )\geq 0, j = 0,1, . . . , J , and there exists a feasible strategy \sigma with a
finite value. Furthermore, assume that, for each strategy \sigma such that \sansM \sigma 

x0
/\in \scrD f , there

is some \~j \in \{ 0,1, . . . , J\} , possibly depending on \sigma , satisfying
\int 
X\times A

r\~j(x,a)\sansM 
\sigma 
x0
(dx\times 

da) =\infty .
Then there exists an optimal strategy in problem (4) in the form of a mixture of

J + 1 deterministic stationary strategies.

The above theorem asserts the existence of an optimal strategy in the form of
a mixture of J + 1 deterministic stationary strategies. It does not claim that every
optimal strategy can be represented as a mixture of finitely many deterministic sta-
tionary strategies. For completeness, we adapt [29, Example 3.3.3] to demonstrate
this.

Example 1. Consider the MDP with X = \{ 0,1,2\} , A = \{ 0,1\} , p(\{ 1\} | 1,0) = 1,
p(\{ 2\} | 1,1)= 1, p(\{ 2\} | 2,0) = 1, p(\{ 2\} | 2,1) = p(\{ \Delta \} | 2,1) = 1

2 , and p(\{ 1\} | 0, a) =
p(\{ 2\} | 0, a) = 1

2 for a \in A. The state \Delta is a costless cemetery. The state and ac-
tion spaces are endowed with their discrete topologies.

Let x0 = 0. Let r0(x,a) \equiv 0, and let r1(x,a) = 1 for x = 1,2 and r1(0, a) \equiv 0.
Let J = 1 and d1 = 3. So any feasible strategy will be optimal, and any nonabsorbing
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74 ALEXEY PIUNOVSKIY AND YI ZHANG

strategy \sigma will be infeasible with \sansE \sigma 
x0

[
\sum \infty 

n=0 r1(Xn,An+1)] =\infty . All the conditions in
Theorem 2 are satisfied.

The class \Phi of absorbing deterministic stationary strategies is specified by \varphi (1) =
\varphi (2) = 1: the state 0 is essentially uncontrolled, and \varphi (0) is immaterial. We put \^a= 0.
Clearly, \scrD f is a proper subset of \scrD , and any strategy that selects 0 at state 1 with
probability 1 will be nonabsorbing.

Consider a stationary strategy defined by \sigma s(\{ 0\} | 1) = \sigma s(\{ 1\} | 1) = 1
2 . Then

\sansE \varphi 
0

\Biggl[ \infty \sum 
n=0

r1(Xn,An+1)

\Biggr] 
=:W1(0,\varphi ) =

1

2
(1 + 2) +

1

2
2=

5

2
\forall \varphi \in \Phi ,

\sansE \sigma s

0

\Biggl[ \infty \sum 
n=0

r1(Xn,An+1)

\Biggr] 
=:W1(0, \sigma 

s) =
1

2
(2 + 2) +

1

2
2= 3.

Therefore, \sigma s and all strategies \varphi \in \Phi are feasible and thus optimal.
On the other hand, W1(0, \sigma 

s) > W1(0,\varphi ) for all \varphi \in \Phi , so that the occupation
measure of \sigma s cannot be represented as the convex combination of the occupation
measures of strategies from \Phi . Of course, the occupation measure of \sigma s cannot be
represented as a mixture of occupation measures of nonabsorbing deterministic sta-
tionary strategies together with the ones from \Phi .

It is well known that if the MDP is semicontinuous and the cost functions r(\cdot , \cdot )
are nonnegative, then there exists an optimal solution to the unconstrained problem
(4) (i.e., with J = 0), which is deterministic stationary; see Corollary 9.17.2 of [3] or
Theorems 15.2 and 16.2 of [40]. Therefore, we will assume that J \geq 1.

If there are feasible strategies in problem (4), but for all of them R0(\sansM 
\sigma 
x0
) =+\infty ,

then all feasible strategies are equally optimal. In this case, the only problem is to
find a feasible strategy. To do so, we choose an arbitrary positive index, e.g., j = 1,
and investigate the problem

Minimize over all strategies \sigma : \sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

r1(Xn,An+1)

\Biggr] 

subject to \sansE \sigma 
x0

\Biggl[ \infty \sum 
n=0

rj(Xn,An+1)

\Biggr] 
\leq dj , j = 2,3, . . . , J.

Clearly, after re-enumerating the indices j, we obtain the standard problem (4) with
the reduced number of constraints (or just the unconstrained problem in case J was
equal to 1). In such situations there is no need to require that the cost function
r0(\cdot , \cdot ) exhibits any further properties (semicontinuity, etc.) except for measurability.
After solving the modified problem, we obtain the desired feasible strategy. Clearly,
the modified problem has a feasible strategy with a finite value (because the original
problem had a feasible strategy). If all the other requirements of Theorem 2 are
satisfied for the modified problem, then Theorem 2 remains valid for it. As the result,
in such a case, there exists an optimal strategy in the original problem (4) in the form
of a mixture of J deterministic stationary strategies.

Let us consider the special case of optimal stopping like in [10]: the action space is
A\Delta :=A\cup \{ \Delta \} , where the isolated action \Delta means stopping the process: for all x\in X,
p(\{ \Delta \} | x,\Delta ) = 1 and p(X| x,a) = 1 for all a \in A. If this MDP \{ X\Delta ,A\Delta , p,\{ rj\} Jj=0\} 
is semicontinuous, rj(\cdot , \cdot ) \geq 0, j = 0,1, . . . , J , there exists a feasible strategy with a
finite value, and, for some \~j \in \{ 0,1, . . . , J\} , r\~j(a,x)\geq \delta > 0 for all x \in X, a \in A, then
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EXTREME OCCUPATION MEASURES 75

all the conditions of Theorem 2 are satisfied. \sansM \sigma 
x0

/\in \scrD f means that the process is
never stopped, and hence

\int 
X\times A

r\~j(x,a)\sansM 
\sigma 
x0
(dx\times da) = \infty . According to the above

paragraph, one can omit the requirement that the feasible strategy has a finite value.

6. Conclusion. The main results of the current work are Theorems 1 and 2,
where we prove that every extreme finite occupation measure is generated by a de-
terministic stationary strategy and, under mild conditions, show that the solution to
the constrained problem is given by a finite mixture of such strategies. All the similar
statements in [1, 4, 5, 18, 16, 22, 31], where the discounted or absorbing models were
studied, follow from Theorems 1 and 2.

Appendix A.

Proof of Lemma 1. Some of the enlisted statements were presented in [9, Lemma
4.1].

(a) The mapping O is continuous since \scrD is endowed with the final topology
\rho . Thus, \scrD = O(\scrP ) is compact as the continuous image of the compact \scrP ; see [13,
Chapter I, section 5, Lemma 7].

(b) According to Lemma 7.14(a) of [3], r(\cdot , \cdot ) = limi\rightarrow \infty ri(\cdot , \cdot ), where ri(\cdot , \cdot ) are
pointwise increasing bounded continuous functions on X\times A. For each i = 1,2, . . .,
the mapping

\sansP \sigma 
x0

\rightarrow 
\int 
X\times A

ri(x,a)\sansP 
\sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )

is continuous for each t= 0,1, . . . because \tau is the weak topology in \scrP . Therefore, the
mapping

\sansP \sigma 
x0

\rightarrow 
n\sum 

t=0

\int 
X\times A

r(x,a)\sansP \sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )

= lim
i\rightarrow \infty 

n\sum 
t=0

\int 
X\times A

ri(x,a)\sansP 
\sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )

is nonnegative and lower semicontinuous again due to Lemma 7.14(a) of [3]. The
monotone convergence theorem was in use here. Since r(\cdot , \cdot ) \geq 0, Lemma B.1.1 and
Proposition B.1.17 of [34] imply that the mapping

\sansP \sigma 
x0

\rightarrow 
\infty \sum 
t=0

\int 
X\times A

r(x,a)\sansP \sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )

= sup
n=1,2,...

n\sum 
t=0

\int 
X\times A

r(x,a)\sansP \sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )

=

\int 
X\times A

r(x,a)\sansM \sigma 
x0
(dx\times da) =R(\sansM \sigma 

x0
) =R(O(\sansP \sigma 

x0
))

is lower semicontinuous. Now, for an arbitrarily fixed c\in \BbbR ,

O - 1

\biggl( \biggl\{ 
\sansM \in \scrD : R(\sansM ) =

\int 
X\times A

r(x,a)\sansM (dx\times da)> c

\biggr\} \biggr) 
=

\Biggl\{ 
\sansP \in \scrP :

\infty \sum 
t=0

\int 
X\times A

r(x,a)\sansP \sigma 
x0
((X\Delta \times A)t \times dx\times da\times (X\Delta \times A)\infty )> c

\Biggr\} 
.

The set on the right-hand side is open in the topology \tau . Hence, the set \{ \sansM \in \scrD :
R(M)> c\} is open in the topology \rho .
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Proof of Lemma 2. Both measures \sansM (dx\times A) and \sansM \sigma s

x0
(dx\times A) are finite and

satisfy equation

\mu (\Gamma X) = \delta x0
(\Gamma X) +

\int 
X

\int 
A

p(\Gamma X | y, a)\sigma s(da| y)\mu (dy) \forall \Gamma X \in \scrB (X);(10)

see Propositions 4 and 5.
Let us show that the measure \sansM (dx\times A) is absolutely continuous w.r.t. \sansM \sigma s

x0
(dx\times 

A) on \scrB (X).
Suppose for contradiction that \sansM (\Gamma \times A) > 0 and \sansM \sigma s

x0
(\Gamma \times A) = 0 for some

\Gamma \in \scrB (X). Denote \Gamma 0 := \Gamma , and, for n= 0,1, . . ., put

\~\Gamma n+1 :=

\biggl\{ 
y \in X :

\int 
A

p(\Gamma n| y, a)\sigma s(da| y)> 0

\biggr\} 
,

\Gamma n+1 := \Gamma n \cup \~\Gamma n+1.

Intuitively, \Gamma n+1 is the set of states, starting from which the state process under \sigma s

visits \Gamma with positive probability within n+1 steps. We will prove by induction that,
for all n= 0,1, . . .,

\sansM (\Gamma n \times A)> 0,\int 
X\setminus \Gamma n+1

\int 
A

p(\Gamma n| y, a)\sigma s(da| y)\sansM (dy\times A) = 0,

\sansM \sigma s

x0
(\Gamma n \times A) = 0.

When n= 0, these assertions obviously hold because
\int 
A
p(\Gamma 0| y, a)\sigma s(da| y) = 0 for

all y \in X \setminus \~\Gamma 1. Suppose they hold for some n\geq 0, and consider the case of n+ 1.
Since \Gamma n+1 \supseteq \Gamma n, \sansM (\Gamma n+1 \times A)> 0. Suppose \sansM \sigma s

x0
(\~\Gamma n+1 \times A)> 0. Then, by (10),

\sansM \sigma s

x0
(\Gamma n \times A)\geq 

\int 
\~\Gamma n+1

\int 
A

p(\Gamma n| y, a)\sigma s(da| y)\sansM \sigma s

x0
(dy\times A)> 0,

which contradicts the inductive supposition. Thus, \sansM \sigma s

x0
(\~\Gamma n+1 \times A) = \sansM \sigma s

x0

(\Gamma n+1 \times A) = 0. Finally,\int 
X\setminus \Gamma n+2

\int 
A

p(\Gamma n+1| y, a)\sigma s(da| y)\sansM (dy\times A) = 0

because
\int 
A
p(\Gamma n+1| y, a)\sigma s(da| y) = 0 for all y \in X \setminus \~\Gamma n+2 \supseteq X \setminus \Gamma n+2.

Therefore, for the increasing sequence \{ \Gamma n\} \infty n=0, after we denote \^\Gamma :=
\bigcup \infty 

n=0 \Gamma n,
we have that \sansM (\^\Gamma \times A)> 0 and, by the monotone convergence theorem,\int 

(X\setminus \^\Gamma )\times A

p(\^\Gamma | y, a)\sansM (dy\times da) =

\int 
X\setminus \^\Gamma 

\int 
A

p(\^\Gamma | y, a)\sigma s(da| y)\sansM (dy\times A)

= lim
n\rightarrow \infty 

\int 
X\setminus \^\Gamma 

\int 
A

p(\Gamma n| y, a)\sigma s(da| y)\sansM (dy\times A)

\leq lim
n\rightarrow \infty 

\int 
X\setminus \Gamma n+1

\int 
A

p(\Gamma n| y, a)\sigma s(da| y)\sansM (dy\times A) = 0.(11)

Note also that x0 /\in \^\Gamma because \sansM \sigma s

x0
(\^\Gamma \times A) = limn\rightarrow \infty \sansM \sigma s

x0
(\Gamma n \times A) = 0.
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EXTREME OCCUPATION MEASURES 77

Recall that \sansM \in \scrD f . According to Proposition 2, \sansM = \sansM \sigma M

x0
for some Markov

strategy \sigma M . Since \sansM (\^\Gamma \times A) > 0 and x0 /\in \^\Gamma , there exists the minimal n > 0 such

that \sansP \sigma M

x0
(Xn \in \^\Gamma )> 0, for which we have the following equalities:

0< \sansP \sigma M

x0
(Xn \in \^\Gamma ) = \sansP \sigma M

x0
(\sansP \sigma M

x0
(Xn \in \^\Gamma | Xn - 1))

=

\int 
X

\int 
A

p(\^\Gamma | y, a)\sigma M
n (da| y)\sansP \sigma M

x0
(Xn - 1 \in dy)

=

\int 
X\setminus \^\Gamma 

\int 
A

p(\^\Gamma | y, a)\sigma M
n (da| y)\sansP \sigma M

x0
(Xn - 1 \in dy)

=

\int 
(X\setminus \^\Gamma )\times A

p(\^\Gamma | y, a)\sansP \sigma M

x0
(Xn - 1 \in dy,An \in da),

where the third equality holds by the definition of the integer n. Hence,\int 
(X\setminus \^\Gamma )\times A

p(\^\Gamma | y, a)\sansM \sigma M

x0
(dy\times da) =

\int 
(X\setminus \^\Gamma )\times A

p(\^\Gamma | y, a)\sansM (dy\times da)> 0,

which contradicts (11). We have proved that \sansM (dx\times A)\ll \sansM \sigma s

x0
(dx\times A).

Let us define the following substochastic kernels on \scrB (X) given x\in X:

\sansP 0(\Gamma | x) := \delta x(\Gamma ),

\sansP n+1(\Gamma | x) :=
\int 
X

\int 
A

p(\Gamma | y, a)\sigma s(da| y)\sansP n(dy| x), n= 0,1, . . . ,

\Gamma \in \scrB (X).

Then \sansP i(\Gamma | x0) = \sansP \sigma s

x0
(Xi \in \Gamma ), i = 0,1,2, . . . . Now, for any finite measure \mu on \scrB (X)

satisfying (10), we have the following iterations of this equation:

\mu (\Gamma ) = \delta x0(\Gamma ) +

\int 
X

\int 
A

p(\Gamma | x0)\sigma 
s(da| x0)

+

\int 
X

\int 
A

p(\Gamma | y, a)\sigma s(da| y)
\biggl( \int 

X

\int 
A

p(dy| x,a)\sigma s(da| x)\mu (dx)
\biggr) 

= \sansP 0(\Gamma | x0) + \sansP 1(\Gamma | x0) +

\int 
X

\sansP 2(\Gamma | x)\mu (dx)

= \sansP 0(\Gamma | x0) + \sansP 1(\Gamma | x0) + \sansP 2(\Gamma | x0) +

\int 
X

\sansP 3(\Gamma | x)\mu (dx)

= \cdot \cdot \cdot = \sansE \sigma s

x0

\Biggl[ 
n\sum 

i=1

\BbbI \{ xi - 1 \in \Gamma \} 

\Biggr] 
+

\int 
X

\sansP n(\Gamma | x)\mu (dx),(12)

n= 1,2, . . . .

Here the Fubini theorem was in use, and the last equality holds because

\sansP i(\Gamma | x0) = \sansP \sigma s

x0
(Xi \in \Gamma ), i= 0,1,2, . . . .

Since p(X| y, a) \leq 1, for each x \in X the sequence \{ \sansP i(X| x)\} \infty i=0 is monotonically
nonincreasing, so that there exist the limit \sansP \infty (X| x) := limi\rightarrow \infty \sansP i(X| x), and the
function \sansP \infty (X| \cdot ) : X\rightarrow [0,1] is obviously measurable. By the dominated convergence
theorem,

lim
n\rightarrow \infty 

\int 
X

\sansP n(X| x)\mu (dx) =
\int 
X

\sansP \infty (X| x)\mu (dx).
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78 ALEXEY PIUNOVSKIY AND YI ZHANG

Therefore, if we substitute \sansM \sigma s

x0
(dx\times A) for \mu (dx) in (12), we obtain

\sansM \sigma s

x0
(X\times A) = lim

n\rightarrow \infty 
\sansE \sigma s

x0

\Biggl[ 
n\sum 

i=1

\BbbI \{ Xi - 1 \in X\} 

\Biggr] 
+

\int 
X

\sansP \infty (X| x)\sansM \sigma s

x0
(dx\times A),

leading to the equation
\int 
X
\sansP \infty (X| x)\sansM \sigma s

x0
(dx \times A) = 0, because \sansM \sigma s

x0
(X \times A)

= \sansE \sigma s

x0
[
\sum \infty 

i=1 \BbbI \{ Xi - 1 \in X\} ] < \infty : both measures \sansM \sigma s

x0
(dx \times A) and \sansM (dx \times A) sat-

isfy (8), and \sansM \sigma s

x0
(dx\times A)\leq \sansM (dx\times A) by Proposition 5. Recall that \sansM \in \scrD f . Since

\sansP \infty (X| x) \geq 0, we conclude that \sansP \infty (X| x) = 0 \sansM \sigma s

x0
(dx \times A)-a.s. and \sansP \infty (X| x) = 0

\sansM (dx\times A)-a.s. because \sansM (dx\times A)\ll \sansM \sigma s

x0
(dx\times A). Hence, for each \Gamma \in \scrB (X),

0\leq limsup
n\rightarrow \infty 

\int 
X

\sansP n(\Gamma | x)\sansM (dx\times A)\leq lim
n\rightarrow \infty 

\int 
X

\sansP n(X| x)\sansM (dx\times A)

=

\int 
X

\sansP \infty (X| x)\sansM (dx\times A) = 0,

and thus limn\rightarrow \infty 
\int 
X
\sansP n(\Gamma | x)\sansM (dx\times A) = 0. After we substitute \sansM (dx\times A) for \mu (dx)

in (12), we obtain

\sansM (\Gamma \times A) = lim
n\rightarrow \infty 

\sansE \sigma s

x0

\Biggl[ 
n\sum 

i=1

\BbbI \{ Xi - 1 \in \Gamma \} 

\Biggr] 
+ lim

n\rightarrow \infty 

\int 
X

\sansP n(\Gamma | x)\sansM (dx\times A) =\sansM \sigma s

x0
(\Gamma \times A).

Finally,

\sansM (\Gamma X \times \Gamma A) =

\int 
X

\sigma s(\Gamma A| x)\sansM (dx\times A)

=

\int 
X

\sigma s(\Gamma A| x)\sansM \sigma s

x0
(dx\times A) =\sansM \sigma s

x0
(\Gamma X \times \Gamma A)

\forall \Gamma X \in \scrB (X), \Gamma A \in \scrB (A).

Proof of Lemma 3. Note that if a statement S(Xm) is valid \sansP \sigma s

x0
-a.s. for all

m= 0,1,2, . . ., then the statement S(x) is valid for \sansM \sigma s

x0
(dx\times A)-almost all x\in X and

vice versa.
(a) If the formulated statement does not hold, then there is a set \Gamma \in \scrB (X) such

that, for some m\geq 0, \sansP \sigma s

x0
(Xm \in \Gamma )> 0 and

\sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

\BbbI \{ Xn - 1 \in X\} 

\Biggr] 
=\infty \forall x\in \Gamma .

Now

\sansM \sigma s

x0
(X\times A)\geq \sansE \sigma s

x0

\Biggl[ \infty \sum 
n=m+1

\BbbI \{ Xn - 1 \in X\} 

\Biggr] 

= \sansE \sigma s

x0

\Biggl[ 
\sansE \sigma s

x0

\Biggl[ \infty \sum 
n=m+1

\BbbI \{ Xn - 1 \in X\} 

\bigm| \bigm| \bigm| \bigm| \bigm| Xm

\Biggr] \Biggr] 

\geq 
\int 
\Gamma 

\sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

\BbbI \{ Xn - 1 \in X\} 

\Biggr] 
\sansP \sigma s

x0
(Xm \in dx) =+\infty .
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EXTREME OCCUPATION MEASURES 79

Here

\sansE \sigma s

x0

\Biggl[ \infty \sum 
n=m+1

\BbbI \{ Xn - 1 \in X\} 

\bigm| \bigm| \bigm| \bigm| \bigm| Xm

\Biggr] 
= \sansE \sigma s

Xm

\Biggl[ \infty \sum 
n=1

\BbbI \{ Xn - 1 \in X\} 

\Biggr] 

because the controlled process \{ Xn\} \infty n=0, under the strategy \sigma s, is Markov and time-
homogeneous.

The obtained contradiction with the assumption \sansM \sigma s

x0
\in \scrD f proves the statement.

(b) Let \{ \scrF n\} \infty n=0 be the natural filtration \scrF n := \sigma \{ X0,X1, . . . ,Xn\} of the Markov
time-homogeneous process \{ Xn\} \infty n=0 under the control strategy \sigma s and with the initial
state x0 \in X. For the positive and negative parts of f(\cdot ), we have the following
relations for each fixed m\geq 0:

0\leq \sansE \sigma s

x0

\Biggl[ \infty \sum 
n=m+1

f\pm (Xn - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF m

\Biggr] 

= \sansE \sigma s

Xm

\Biggl[ \infty \sum 
n=1

f\pm (Xn - 1)

\Biggr] 
<\infty \sansP \sigma s

x0
-a.s.

The very last inequality holds by (a) and the boundedness of the function f(\cdot ). There-
fore, the function v(\cdot ) is with finite values for \sansM \sigma s

x0
(dx\times A)-almost all x\in X.

The measurability of v(\cdot ) follows from [15, Theorem 3.1]. Statement (b) is proved.
(c) Let \{ \scrF n\} \infty n=0 be the natural filtration \scrF n := \sigma \{ X0,X1, . . . ,Xn\} of the Markov

time-homogeneous process \{ Xn\} \infty n=0 under the control strategy \sigma s and with the initial
state x\in X. According to (b),

v(x) = f(x) + \sansE \sigma s

x

\Biggl[ 
\sansE \sigma s

x

\Biggl[ \infty \sum 
n=2

f(Xn - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF 1

\Biggr] \Biggr] 
= f(x) + \sansE \sigma s

x [v(X1)]

= f(x) +

\int 
A

\int 
X

v(y)p(dy| x,a)\sigma s(da| x) \sansM \sigma s

x0
(dx\times A)-a.s.

Here all the terms are finite \sansM \sigma s

x0
(dx\times A)-a.s. by (b). Equation (9) is proved.

Let us fix an arbitrary i \in \{ 0,1, . . .\} and the filtration \{ \scrF n\} \infty n=0 corresponding to
the initial state x0 \in X. For the function w(\cdot ), we have the following obvious equation:

\sansE \sigma s

x0
[w(Xi+1)| \scrF i] =

\int 
A

\int 
X

w(y)p(dy| Xi, a)\sigma 
s(da| Xi) \sansP \sigma s

x0
-a.s.(13)

We are going to prove by induction the following equality:

w(Xi) = \sansE \sigma s

x0

\left[  k\sum 
j=0

f(Xi+j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF i

\right]  + \sansE \sigma s

x0
[w(Xi+k+1)| \scrF i] \sansP 

\sigma s

x0
-a.s.(14)

for k= 0,1, . . ..
When k = 0, equality (14) follows from (9) for w(\cdot ) and (13). Suppose it holds

for some k\geq 0. Then
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80 ALEXEY PIUNOVSKIY AND YI ZHANG

w(Xi) = \sansE \sigma s

x0

\left[  k\sum 
j=0

f(Xi+j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF i

\right]  + \sansE \sigma s

x0
[f(Xi+k+1)| \scrF i]

+\sansE \sigma s

x0

\biggl[ \int 
A

\int 
X

w(y)p(dy| Xi+k+1, a)\sigma 
s(da| Xi+k+1)

\bigm| \bigm| \bigm| \bigm| \scrF i

\biggr] 

= \sansE \sigma s

x0

\left[  k+1\sum 
j=0

f(Xi+j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF i

\right]  + \sansE \sigma s

x0
[\sansE \sigma s

x0
[w(Xi+k+2)| \scrF i+k+1]| \scrF i]

= \sansE \sigma s

x0

\left[  k+1\sum 
j=0

f(Xi+j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF i

\right]  + \sansE \sigma s

x0
[w(Xi+k+2)| \scrF i] \sansP \sigma s

x0
-a.s.

Here the first equality is by (9), and the second equality is by (13). Equality (14) is
proved.

When k\rightarrow \infty , since the process \{ Xn\} \infty n=0 is Markov and time-homogeneous,

\sansE \sigma s

x0

\left[  k\sum 
j=0

f(Xi+j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \scrF i

\right]  = \sansE \sigma s

Xi

\Biggl[ 
k+1\sum 
n=1

f(Xn - 1)

\Biggr] 
\rightarrow v(Xi) \sansP \sigma s

x0
-a.s.

by the definition of the function v(\cdot ). According to (a),

\sansE \sigma s

x0
[\BbbI \{ Xi+k+1 \in X\} | \scrF i] = \sansE \sigma s

Xi
[\BbbI \{ Xk+1 \in X\} ]\rightarrow 0 as k\rightarrow \infty \sansP \sigma s

x0
-a.s.

Therefore, since the function w(\cdot ) is bounded, w(Xi) = v(Xi) \sansP 
\sigma s

x0
-a.s., as required.

Proof of Theorem 1. We assume that \scrD f \not = \emptyset and, according to Lemma 2, consider
only the occupation measures \sansM =\sansM \sigma s

x0
\in \scrD f coming from stationary strategies \sigma s.

(a) The ``if"" part. We will prove a little more general statement: if \sansM \varphi 
x0

\in \scrD f is
the occupation measure generated by a deterministic stationary strategy \varphi , then \sansM \varphi 

x0

is extreme in \scrD (and certainly in \scrD f , too).
Suppose \sansM \varphi 

x0
= \alpha \sansM 1 + (1 - \alpha )\sansM 2 with \alpha \in (0,1) and \sansM 1,2 \in \scrD . Then \sansM 1,2 \in \scrD f

because\sansM \varphi 
x0

\in \scrD f and, according to Lemma 2, \sansM 1,2 =\sansM 
\sigma s
1,2

x0 for the induced stationary
strategies \sigma s

1,2. Therefore,

\sansM =\sansM \varphi 
x0

= \alpha \sansM 
\sigma s
1

x0 + (1 - \alpha )\sansM 
\sigma s
2

x0 .(15)

The goal is to show that \sansM 
\sigma s
1

x0 =\sansM 
\sigma s
2

x0 =\sansM \varphi 
x0
.

Both marginal measures \sansM 
\sigma s
1

x0 (dx\times A) and \sansM 
\sigma s
2

x0 (dx\times A) are absolutely continuous
w.r.t. \sansM \varphi 

x0
(dx\times A); the Radon--Nikodym derivatives are denoted as h1(\cdot ) and h2(\cdot )

correspondingly. From (15) we have

\alpha h1(x) + (1 - \alpha )h2(x) = 1 for \sansM \varphi 
x0
(dx\times A)-almost all x\in X.(16)

Now, using (7), we have equalities

\sansM \varphi 
x0
(dx\times da) =\sansM \varphi 

x0
(dx\times A)\delta \varphi (x)(da)

= \alpha \sansM \varphi 
x0
(dx\times A)h1(x)\sigma 

s
1(da| x)

+(1 - \alpha )\sansM \varphi 
x0
(dx\times A)h2(x)\sigma 

s
2(da| x)

=\sansM \varphi 
x0
(dx\times A)[\alpha h1(x)\sigma 

s
1(da| x) + (1 - \alpha )h2(x)\sigma 

s
2(da| x)].

The expression in the square brackets is the Dirac measure \delta \varphi (x)(da) for \sansM \varphi 
x0
(dx \times 

A)-almost all x \in X. Note that any Dirac measure on \scrB (A) is extreme in \scrP (A).
Therefore, using (16), we conclude the following:
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EXTREME OCCUPATION MEASURES 81

\bullet on the set I0 := \{ x\in X : \alpha h1(x)\in (0,1)\} , \sigma s
1(da| x) = \sigma s

2(da| x) = \delta \varphi (x)(da) for
\sansM \varphi 

x0
(dx\times A)-almost all x\in I0;

\bullet on the set I1 := \{ x\in X : \alpha h1(x) = 1\} , \sigma s
1(da| x) = \delta \varphi (x)(da) for \sansM 

\varphi 
x0
(dx\times A)-

almost all x \in I1, and the stochastic kernel \sigma s
2(da| x) may be arbitrary, but

on the set I1, since (1 - \alpha )> 0, h2(x) = 0 for \sansM \varphi 
x0
(dx\times A)-almost all x \in I1,

i.e., \sansM 
\sigma s
2

x0 (I1\times A) = 0, and the values of \sigma s
2(da| x) are of no importance for the

measure \sansM 
\sigma s
2

x0 (dx\times da) on \scrB (I1 \times A);
\bullet symmetrically, on the set I2 := \{ x \in X : (1  - \alpha )h2(x) = 1\} , \sigma s

2(da| x) =

\delta \varphi (x)(da) for \sansM 
\varphi 
x0
(dx\times A)-almost all x\in \{ I2 and \sansM 

\sigma s
1

x0 (I2 \times A) = 0.

Recall that the measures \sansM 
\sigma s
1

x0 (dx \times A) and \sansM 
\sigma s
2

x0 (dx \times A) are absolutely continuous

w.r.t. \sansM \varphi 
x0
(dx\times A). Thus, \sigma s

1(da| x) = \delta \varphi (x)(da) for \sansM 
\sigma s
1

x0 (dx\times A)-almost all x\in X and

\sigma s
2(da| x) = \delta \varphi (x)(da) for \sansM 

\sigma s
2

x0 (dx\times A)-almost all x \in X. Hence, \varphi is the stationary

strategy induced by \sansM 
\sigma s
1,2

x0 and

\sansM 
\sigma s
1

x0 =\sansM 
\sigma s
2

x0 =\sansM \varphi 
x0

by Lemma 2.
(b) The ``only if"" part. According to Lemma 2, an extreme point \sansM in \scrD f satisfies

the equalities \sansM (dx\times da) = \sansM \sigma s

x0
(dx\times da) = \sigma s(da| x)\sansM \sigma s

x0
(dx\times A) on \scrB (X\times A) for

the induced stationary strategy \sigma s.
Step 1. Suppose that

\sigma s(da| x) = \alpha \sigma s
1(da| x) + (1 - \alpha )\sigma s

2(da| x),

where \alpha \in (0,1) and \sigma s
1 and \sigma s

2 are two essentially different stochastic kernels on A
given X. To be precise, we assume that, for some \^\Gamma A \in \scrB (A) and \^\Gamma X \in \scrB (X),

\sansM \sigma s

x0
(\^\Gamma X \times A)> 0 and \sigma s

2(\^\Gamma 
A| x)>\sigma s

1(\^\Gamma 
A| x) for all x\in \^\Gamma X .

The stochastic kernels \sigma s
1,2 define the corresponding stationary strategies, again de-

noted as \sigma s
1,2. We will show that, in this case, the measure \sansM \sigma s

x0
is not extreme in

\scrD f .
If \sansM 

\sigma s
1

x0 (dx\times A) =\sansM 
\sigma s
2

x0 (dx\times A) =\sansM \sigma s

x0
(dx\times A), then, by Proposition 5,

\sansM \sigma s

x0
(dx\times da) =\sansM \sigma s

x0
(dx\times A)\sigma s(da| x)

= \alpha \sansM 
\sigma s
1

x0 (dx\times A)\sigma s
1(da| x) + (1 - \alpha )\sansM 

\sigma s
2

x0 (dx\times A)\sigma 2(da| x)
= \alpha \sansM 

\sigma s
1

x0 (dx\times da) + (1 - \alpha )\sansM 
\sigma s
2

x0 (dx\times da).

Therefore, the measure \sansM \sigma s

x0
is not extreme in \scrD f , as \sansM 

\sigma s
1

x0 \not =\sansM 
\sigma s
2

x0 and \sansM 
\sigma s
1

x0 ,\sansM 
\sigma s
2

x0 \in \scrD f .
(Recall that \scrD f is a face of \scrD .)

Suppose now that \sansM 
\sigma s
1

x0 (dx\times A) \not =\sansM \sigma s

x0
(dx\times A) or \sansM 

\sigma s
2

x0 (dx\times A) \not =\sansM \sigma s

x0
(dx\times A).

There exists the first moment \tau > 0 such that

either \sansP 
\sigma s
1

x0 (X\tau \in dx) \not = \sansP \sigma s

x0
(X\tau \in dx) or \sansP 

\sigma s
2

x0 (X\tau \in dx) \not = \sansP \sigma s

x0
(X\tau \in dx).

Without loss of generality, we assume that the first inequality holds. What actually
happens is that both inequalities hold simultaneously at the moment \tau ; see (19).

Since

\sansP 
\sigma s
1

x0 (X\tau  - 1 \in dx) = \sansP 
\sigma s
2

x0 (X\tau  - 1 \in dx) = \sansP \sigma s

x0
(X\tau  - 1 \in dx),
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82 ALEXEY PIUNOVSKIY AND YI ZHANG

we have equality

\sansP \sigma s

x0
(X\tau \in dx) = \alpha \sansP 

\sigma s
1

x0 (X\tau \in dx) + (1 - \alpha )\sansP 
\sigma s
2

x0 (X\tau \in dx)(17)

because

\sigma s(da| x) = \alpha \sigma s
1(da| x) + (1 - \alpha )\sigma s

2(da| x).

Note that the controlled process \{ Xn\} \infty n=0 is Markov and time-homogeneous under all
strategies \sigma s and \sigma s

1,2, with the transition probabilities\int 
A

p(dy| x,a)\sigma s(da| x) and

\int 
A

p(dy| x,a)\sigma s
1,2(da| x)

correspondingly.
Let us introduce the Markov (nonstationary) strategies \sigma M1 and \sigma M2 by the

formulae

\sigma M1,2
n (da| x) = \BbbI \{ n \not = \tau \} \sigma s(da| x) + \BbbI \{ n= \tau \} \sigma s

1,2(da| x).

The combination of strategic measures \alpha \sansP \sigma M1

x0
+ (1  - \alpha )\sansP \sigma M2

x0
satisfies the key

properties of the strategic measure \sansP \sigma s

x0
; see (1), (2), (3), or formula (1.7) in [31], or

[27, section 2.2.3]. Thus,

\sansP \sigma s

x0
= \alpha \sansP \sigma M1

x0
+ (1 - \alpha )\sansP \sigma M2

x0
=\Rightarrow \sansM \sigma s

x0
= \alpha \sansM \sigma M1

x0
+ (1 - \alpha )\sansM \sigma M2

x0
(18)

and, like previously, \sansM \sigma M1

x0
,\sansM \sigma M2

x0
\in \scrD f because \sansM \sigma s

x0
\in \scrD f . We aim to show that

\sansM \sigma M1

x0
(dx\times A) \not =\sansM \sigma M2

x0
(dx\times A) on \scrB (X), leading to the desired assertion that \sansM \sigma s

x0

is not extreme in \scrD f .
Since the strategies \sigma s, \sigma s

1,2, and \sigma M1,2 are Markov and \sigma s = \alpha \sigma s
1 +(1 - \alpha )\sigma s

2, we
have the following relations:

\sansP \sigma s

x0
(X\tau \in dx) = \alpha \sansP \sigma M1

x0
(X\tau \in dx) + (1 - \alpha )\sansP \sigma M2

x0
(X\tau \in dx)

= \alpha \sansP 
\sigma s
1

x0 (X\tau \in dx) + (1 - \alpha )\sansP 
\sigma s
2

x0 (X\tau \in dx),

\sansP \sigma M1

x0
(X\tau \in dx) = \sansP 

\sigma s
1

x0 (X\tau \in dx) \not = \sansP \sigma s

x0
(X\tau \in dx),

\sansP \sigma M2

x0
(X\tau \in dx) = \sansP 

\sigma s
2

x0 (X\tau \in dx) \not = \sansP \sigma M1

x0
(X\tau \in dx), \sansP \sigma s

x0
(X\tau \in dx).(19)

The first three lines here are according to the definitions of \tau and of the strategies
\sigma M1,2 (see also (17)), and inequalities (19) follow from them.

Let \Gamma \in \scrB (X) be such that \sansP \sigma M1

x0
(X\tau \in \Gamma ) \not = \sansP \sigma M2

x0
(X\tau \in \Gamma ). We fix the following

bounded functions on X\Delta , equal to zero on \Delta :

h(x) := \BbbI \{ x\in \Gamma \} ,

f(x) := h(x) - 
\int 
A

\int 
X

h(y)p(dy| x,a)\sigma s(da| x).

According to Lemma 3(b)--(c), the function

v(x) := \sansE \sigma s

x

\Biggl[ \infty \sum 
n=1

f(Xn - 1)

\Biggr] 
, x\in X,
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EXTREME OCCUPATION MEASURES 83

is measurable and equals h(x) for \sansM \sigma s

x0
(dx\times A)-almost all x\in X because h(\cdot ) satisfies

(9).
Let \{ \scrF \} \infty t=0 be the natural filtration of the process \{ Xn\} \infty n=0, i.e., \scrF t := \sigma \{ X0,X1, . . . ,

Xt\} . According to the definition of the strategies \sigma M1,2 , \sigma 
M1,2
n = \sigma s for n> \tau , so

\sansE \sigma M1,2

x0

\Biggl[ \infty \sum 
n=\tau +1

f(Xn - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF \tau 

\Biggr] 

= \sansE \sigma s

x0

\Biggl[ \infty \sum 
n=\tau +1

f(Xn - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF \tau 

\Biggr] 

= \sansE \sigma s

X\tau 

\Biggl[ \infty \sum 
n=1

f(Xn - 1)

\Biggr] 
= h(X\tau ) \sansP \sigma s

x0
-a.s., and thus \sansP \sigma M1,2

x0
-a.s.

The second equality holds because the controlled process \{ Xn\} \infty n=0 under the station-

ary strategy \sigma s is Markov and time-homogeneous. Note also that \sansP \sigma M1,2

x0
\ll \sansP \sigma s

x0
by

(18). Now, since \sigma 
M1,2
n = \sigma s for n< \tau ,

\int 
X

f(x)\sansM \sigma M1,2

x0
(dx\times A) = \sansE \sigma s

x0

\Biggl[ 
\tau \sum 

n=1

f(Xn - 1)

\Biggr] 

+\sansE \sigma M1,2

x0

\Biggl[ 
\sansE \sigma M1,2

x0

\Biggl[ \infty \sum 
n=\tau +1

f(Xn - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF \tau 

\Biggr] \Biggr] 

= \sansE \sigma s

x0

\Biggl[ 
\tau \sum 

n=1

f(Xn - 1)

\Biggr] 
+ \sansE \sigma M1,2

x0
[h(X\tau )]

= \sansE \sigma s

x0

\Biggl[ 
\tau \sum 

n=1

f(Xn - 1)

\Biggr] 
+ \sansP \sigma M1,2

x0
(X\tau \in \Gamma ).

As the result, by the definition of the subset \Gamma ,\int 
X

f(x)\sansM \sigma M1

x0
(dx\times A) \not =

\int 
X

f(x)\sansM \sigma M2

x0
(dx\times A)

=\Rightarrow \sansM \sigma M1

x0
(dx\times A) \not =\sansM \sigma M2

x0
(dx\times A) on \scrB (X).

Hence, the measure \sansM \sigma s

x0
is not extreme in \scrD f .

The further steps in fact repeat the arguments in the proof of Theorem 10 of [31],
but we provide the details for completeness.

Step 2. We will show that if \sansM \sigma s

x0
is an extreme point in \scrD f , then, for each

\Gamma A \in \scrB (A), \Gamma X \in \scrB (X), \alpha \in (0,1), in case \sansM \sigma s

x0
(\Gamma X \times A) > 0, there is x \in \Gamma X such

that either \sigma s(\Gamma A| x)<\alpha or \sigma s(\Gamma A| x)> 1 - \alpha .
This statement is trivial for \alpha > 1/2: if \sigma s(\Gamma A| x)\geq \alpha > 1/2, then 1 - \sigma s(\Gamma A| x)<

1/2<\alpha . Thus, below we assume that \alpha \in (0,1/2].
The proof is by contradiction. Namely, suppose there exist \^\Gamma A \in \scrB (A), \^\Gamma X \in 

\scrB (X), and \alpha \in (0,1/2] such that \sansM \sigma s

x0
(\^\Gamma X \times A) > 0 and \sigma s(\^\Gamma A| x) \in [\alpha ,1 - \alpha ] for all

x\in \^\Gamma X . Consider the following stochastic kernels:
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84 ALEXEY PIUNOVSKIY AND YI ZHANG

\sigma s
1(\Gamma 

A| x) =

\Biggl\{ 
\sigma s(\Gamma A| x) if x /\in \^\Gamma X ,
\sigma s(\Gamma A\cap (\^\Gamma A)c| x)

\sigma s((\^\Gamma A)c| x) if x\in \^\Gamma X ,

\sigma s
2(\Gamma 

A| x) =

\left\{     
\sigma s(\Gamma A| x) if x /\in \^\Gamma X ,
\sigma s(\Gamma A\cap \^\Gamma A| x)

1 - \alpha + \sigma s(\Gamma A \cap (\^\Gamma A)c| x) \sigma s((\^\Gamma A)c| x) - \alpha 

(1 - \alpha )\sigma s((\^\Gamma A)c| x)
if x\in \^\Gamma X ,

\Gamma A \in \scrB (A),

which are well defined because \sigma s((\^\Gamma A)c| x)\geq \alpha > 0.
Clearly, \alpha \sigma s

1(\Gamma 
A| x) + (1 - \alpha )\sigma s

2(\Gamma 
A| x) = \sigma s(\Gamma A| x) for all \Gamma A \in \scrB (A) and x \in X;

\sansM \sigma s

x0
(\^\Gamma X \times A)> 0, and, for all x\in \^\Gamma X ,

\sigma s
2(\^\Gamma 

A| x) - \sigma s
1(\^\Gamma 

A| x) = \sigma s(\^\Gamma A| x)
1 - \alpha 

 - 0\geq \alpha 

1 - \alpha 
> 0.

Therefore, the measure\sansM \sigma s

x0
is not extreme in \scrD f according to the statement in Step 1.

Step 3. We will show that if \sansM \sigma s

x0
is an extreme point in \scrD f , then, for each

\Gamma A \in \scrB (A),

\sigma s(\Gamma A| x)\in \{ 0,1\} for \sansM \sigma s

x0
(dx\times A)-almost all x\in X.

Let \Gamma A \in \scrB (A) be arbitrarily fixed, and introduce the sets

\Gamma X
\Gamma A(i) :=

\Biggl\{ 
x\in X : \sigma s(\Gamma A| x)\in 

\Biggl[ \biggl( 
1

2

\biggr) i

,1 - 
\biggl( 
1

2

\biggr) i
\Biggr] \Biggr\} 

\in \scrB (X), i= 1,2, . . . .

For each i = 1,2, . . ., \sansM \sigma s

x0
(\Gamma X

\Gamma A(i)\times A) = 0 because, otherwise, for \Gamma A,\Gamma X := \Gamma X
\Gamma A(i),

and \alpha := ( 12 )
i, we would have \sansM \sigma s

x0
(\Gamma X \times A) > 0 and, for all x \in \Gamma X , \sigma s(\Gamma A| x) \in 

[\alpha ,1 - \alpha ], which contradicts the statement proved at Step 2.
Note that \Gamma X

\Gamma A(i)\subset \Gamma X
\Gamma A(i+ 1) for all i= 1,2, . . .. Now, for

\Gamma X
\Gamma A :=

\infty \bigcup 
i=1

\Gamma X
\Gamma A(i) = \{ x\in X : \sigma s(\Gamma A| x)\in (0,1)\} ,

we have \sansM \sigma s

x0
(\Gamma X

\Gamma A \times A) = limi\rightarrow \infty \sansM \sigma s

x0
(\Gamma X

\Gamma A(i)\times A) = 0, and the desired statement is
proved.

Step 4. Finally, we proceed to construct the measurable mapping \varphi : X\rightarrow A such
that

\sigma s(da| x) = \delta \varphi (x)(da) for \sansM 
\sigma s

x0
(dx\times A)-almost all x\in X.

As a separable metrizable space, A has a totally bounded metrization \kappa [3, Corol-
lary 7.6.1]:

\forall \varepsilon > 0 \exists \{ a1, a2, . . . , an\} \subset A : A=

n\bigcup 
i=1

O(ai, \varepsilon ),

where O(ai, \varepsilon ) := \{ a\in A : \kappa (a,ai)< \varepsilon \} .
Let \varepsilon k := 1

2k
(k = 1,2, . . .), and let \{ ak1 , ak2 , . . . , aknk

\} be the corresponding \varepsilon k-net
in A. Denote

Sk
i := \{ x\in X : \sigma s(O(aki , \varepsilon k)| x) /\in \{ 0,1\} \} 
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EXTREME OCCUPATION MEASURES 85

and S :=
\bigcup 

k,i S
k
i . These sets are obviously measurable, and, for all k = 1,2, . . . ,

i= 1,2, . . . , nk, \sansM 
\sigma s

x0
(Sk

i \times A) = 0 according to the statement proved in Step 3; \sansM \sigma s

x0
(S\times 

A) = 0, too.
We are going to construct the desired mapping \varphi on X\setminus S and then put \varphi (x)\equiv \^a

for all x\in S, for an arbitrarily fixed \^a\in A.
Let x \in X \setminus S be fixed. Since A=

\bigcup n1

i=1O(a1i , \varepsilon 1) and, for each i \in \{ 1,2, . . . , n1\} ,
\sigma s(O(a1i , \varepsilon 1)| x) \in \{ 0,1\} , there is the minimal index i1 \in \{ 1,2, . . . , n1\} such that
\sigma s(O(a1i1 , \varepsilon 1)| x) = 1. We denote \=O1 := O(a1i1 , \varepsilon 1). Suppose that we have constructed
a set \=Ok \in \scrB (A) for k= 1,2, . . . such that \sigma s( \=Ok| x) = 1. Then we put

\=Ok+1 := \=Ok \cap \^Ok+1,

where \^Ok+1 = O(ak+1
ik+1

, \varepsilon k+1) is the first one among the neighborhoods\{ O(ak+1
i ,

\varepsilon k+1)\} 
nk+1

i=1 on which \sigma s(\cdot | x) takes the value 1; thus, \sigma s( \^Ok+1| x) = 1. Note that
\sigma s( \=Ok+1| x) = 1 because

1 = \sigma s( \=Ok \cup \^Ok+1| x) = \sigma s( \=Ok| x) + \sigma s( \^Ok+1| x) - \sigma s( \=Ok \cap \^Ok+1| x)
= 2 - \sigma s( \=Ok+1| x).

For the sequence \{ \=Ok\} \infty k=1, we have the following assertions:
\bullet \sigma s( \=Ok| x) = 1 for all k= 1,2, . . . and \=O1 \supseteq \=O2 \supseteq \cdot \cdot \cdot . Thus, \sigma s

\bigl( \bigcap \infty 
k=1

\=Ok| x
\bigr) 
= 1,

and hence
\bigcap \infty 

k=1
\=Ok \not = \emptyset .

\bullet 
\bigcap \infty 

k=1
\=Ok = \{ b\} is a singleton because if b1, b2 \in 

\bigcap \infty 
k=1

\=Ok, then, for each k\geq 1,
b1, b2 \in O(akik , \varepsilon k) for some ik \in \{ 1,2, . . . , nk\} , leading to the inequalities

\kappa (b1, b2)\leq \kappa (b1, a
k
ik
) + \kappa (akik , b2)\leq 2\varepsilon k.

As a result, \kappa (b1, b2)\leq limk\rightarrow \infty 2\varepsilon k = 0.
We put \varphi (x) := b for that preliminarily fixed x \in X \setminus S and for b \in A such

that
\bigcap \infty 

k=1
\=Ok = \{ b\} . As was shown above, \sigma s(\{ \varphi (x)\} | x) = \sigma s(

\bigcap \infty 
k=1

\=Ok| x) = 1; so
\sigma s(da| x) = \delta \varphi (x)(da) for all x \in X \setminus S, that is, for \sansM \sigma s

x0
(dx \times A)-almost all x \in X

because \sansM \sigma s

x0
(S \times A) = 0. The mapping \varphi : X \rightarrow A is measurable because, for all

\Gamma A \in \scrB (A),

\{ x\in A : \varphi (x)\in \Gamma A\} =
\biggl\{ 

\{ x : \sigma s(\Gamma A| x) = 1\} \setminus S if \^a /\in \Gamma A,
\{ x : \sigma s(\Gamma A| x) = 1\} \cup S if \^a\in \Gamma A.

(Recall that the stochastic kernel \sigma s is measurable and S \in \scrB (X).)
As a result,

\sansM (dx\times da) =\sansM \sigma s

x0
(dx\times da) = \sigma s(da| x)\sansM \sigma s

x0
(dx\times A) = \delta \varphi (x)(da)\sansM 

\sigma s

x0
(dx\times A)

on \scrB (X\times A), and\sansM =\sansM \varphi 
x0

according to Lemma 2 because the deterministic stationary
strategy \varphi is induced by \sansM \in \scrD f .

Before proving Theorem 2, we present several statements on mathematical pro-
grams.

Suppose \scrX is a convex compact space and \^\scrC is the space of ( - \infty ,+\infty ]-valued
bounded from below lower semicontinuous affine functions on \scrX . Let R0(\cdot ),R1(\cdot ), . . . ,
RJ(\cdot )\in \^\scrC , and consider the following constrained problem:

Minimize over x\in \scrX : R0(x) subject to Rj(x)\leq dj , j = 1,2, . . . , J,(20)
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86 ALEXEY PIUNOVSKIY AND YI ZHANG

where dj \in \BbbR are fixed constants and J \geq 1. Here by a convex space we mean a convex
subset of a cone. This definition does not involve a linear space in which to embed
the given space. The terms of affine functions and extreme points are understood
w.r.t. convex spaces or, say, convex sets in a cone. See the definitions in [37], where
further relevant literature can be found. For all our applications here, it is sufficient
to remember that the space of occupation measures is a convex subset of the cone
of [0,\infty ]-valued measures. When some occupation measures can take infinite values,
it is difficult to embed the space of occupation measures into a convex subset of any
linear space, given that we use the usual notions of addition and scalar multiplication
for measures.

Proposition 6. Consider problem (20) as was described in the above paragraph.
Suppose problem (20) is nondegenerate, i.e., there is at least one point \^x\in \scrX satisfying
all the inequalities in (20). Assume also that \^\scrC separates points in \scrX . Then there exists
a solution to problem (20) in the form

\sum J+1
k=1 \alpha kxk, where \alpha k \in [0,1],

\sum J+1
k=1 \alpha k = 1,

and xk is extreme in \scrX for each k= 1,2, . . . , J + 1.

Proof. See [37, Theorem 2.1].

If \BbbE is a nonempty convex subset of \BbbR n and u\in \BbbE , then G(u) denotes the minimal
face of \BbbE containing the point u. A point u \in \BbbE is called Pareto optimal if, for each
v \in \BbbE , the componentwise inequality v \leq u implies that v = u. The collection of all
Pareto optimal points is denoted by Par(\BbbE ). The following result taken from [19]
reveals the structure of G(u).

Proposition 7. Suppose \BbbE is a fixed nonempty convex subset of \BbbR n, and u \in 
Par(\BbbE ). Then the following assertions are valid:

(a) G(u)\subseteq Par(\BbbE ).
(b) For some 1\leq k\leq n, there exist hyperplanes

\BbbH i = \{ x\in \BbbR n : \langle x, bi\rangle = \beta i\} , i= 1,2, . . . , k,

with the following properties:
(i) bi \geq 0 for i = 1,2, . . . , k  - 1 and bk > 0. Here all the inequalities are

componentwise.
(ii) \BbbH 1 is supporting to \BbbE 0 := \BbbE at u; for i = 1,2, . . . , k  - 1, \BbbE i := \BbbE i - 1 \cap \BbbH i

and \BbbH i+1 is supporting to \BbbE i at u.
(iii) G(u) =\BbbE k :=\BbbE k - 1 \cap \BbbH k.

Proof. See Lemmas 3.1 and 3.2 of [19].

Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2. The idea is to make use of Proposition 6 and Theorem 1.
In the space \scrD of occupation measures, we fix the topology \rho as in Definition 5.

According to Corollary 1, there is a solution \sansM \ast \in \scrD to problem (5), equivalent to
(4), which has the form of problem (20):

\bullet The space \scrX =\scrD is convex compact due to Proposition 3 and Lemma 1(a).
\bullet the mappings Rj(\cdot ), j = 0,1, . . . , J , are nonnegative, affine, and lower semi-

continuous by Lemma 1(b).
According to Step 1 in the proof of [37, Theorem 2.1], one can accept that the

point

\vec{}R\ast := (R0(\sansM 
\ast ),R1(\sansM 

\ast ), . . . ,RJ(\sansM 
\ast ))\in \BbbR J+1
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EXTREME OCCUPATION MEASURES 87

belongs to Par(\BbbO \cap \BbbR J+1), where

\BbbO := \{ \vec{}R(\sansM ) = (R0(\sansM ),R1(\sansM ), . . . ,RJ(\sansM )), \sansM \in \scrD \} 

is the (convex) objective space.
We denote \BbbE 0 =\BbbE :=\BbbO \cap \BbbR J+1 and emphasize that

\vec{}R(\sansM )\in \BbbE 0 \Leftarrow \Rightarrow \sansM \in \BbbF 0 := \{ \sansM \in \scrD : \vec{}R(\sansM )\in \BbbR J+1\} 
= \{ \sansM \in \scrD f : \vec{}R(\sansM )\in \BbbR J+1\} .

The equality holds because, due to the imposed conditions, the component R\~j(\sansM )

cannot be finite if \sansM (X\times A) = +\infty . The set \BbbF 0, the full preimage of \BbbE 0 w.r.t. the
mapping \vec{}R(\cdot ) : \scrD \rightarrow (\BbbR \cup \{ \infty \} )J+1, is a face of \scrD f : recall that the mapping \vec{}R(\cdot ) is
affine.

Consider the sets \BbbE i, i= 0,1, . . . , k\leq J +1, and the hyperplanes \BbbH i = \{ x\in \BbbR J+1 :
\langle x, bi\rangle = \beta i\} , i = 1,2, . . . , k, as in Proposition 7 applied to n = J + 1, \BbbE , and u = \vec{}R\ast .
Let \BbbF i be the full preimage of \BbbE i w.r.t. the mapping \vec{}R(\cdot ). Note that \sansM \ast \in \BbbF i for all
i= 0,1, . . . , k because \vec{}R\ast = \vec{}R(\sansM \ast )\in \BbbE i for all i= 0,1, . . . , k.

First, let us prove that, for each i = 0,1, . . . , k, \BbbF i, is a (nonempty) face of \scrD f .
Roughly speaking, \BbbF i+1 is a face of \BbbF i because \BbbE i+1 is the exposed face of \BbbE i. The
statement to be proved is valid for i= 0. Suppose it holds for some i= 0,1, . . . , k - 1.
Then

\BbbF i+1 = \BbbF i \cap \{ \sansM \in \scrD f : \vec{}R(\sansM )\in \BbbR J+1, \langle \vec{}R(\sansM ), bi+1\rangle = \beta i+1\} 
= \{ \sansM \in \BbbF i : \langle \vec{}R(\sansM ), bi+1\rangle = \beta i+1\} 

because \BbbE i+1 =\BbbE i\cap \BbbH i+1. For each \sansM \in \BbbF i, \vec{}R(\sansM )\in \BbbE i, so \langle \vec{}R(\sansM ), bi+1\rangle \geq \beta i+1 because
the hyperplane \BbbH i+1 supports \BbbE i at \vec{}R\ast . Therefore, if \sansM = \alpha \sansM 1 + (1 - \alpha )\sansM 2 \in \BbbF i+1

for \alpha \in (0,1) and \sansM 1,\sansM 2 \in F i, then

\langle \vec{}R(\sansM 1,2), b
i+1\rangle = \beta i+1, and hence \sansM 1,\sansM 2 \in \BbbF i+1.

Thus, \BbbF i+1 is a face of \BbbF i and, consequently, a face of \scrD f because \BbbF i is a face of \scrD f

by the induction supposition.
We have proved that \BbbF k is a nonempty face of \scrD f and \sansM \ast \in \BbbF k. In fact, \BbbF k is the

full preimage of G(\vec{}R\ast ) = \BbbE k, the minimal face of \BbbE = \BbbO \cap \BbbR J+1 containing \vec{}R\ast ; see
Proposition 7.

Second, let us show that the face \BbbF k is closed and hence compact. Since the
hyperplanes \BbbH i+1 = \{ x \in \BbbR J+1 : \langle x, bi+1\rangle = \beta i+1\} are supporting \BbbE i at u = \vec{}R\ast 

(i= 0,1, . . . , k - 1), one can also write

\BbbF i+1 = \{ \sansM \in \BbbF i : \langle \vec{}R(\sansM ), bi+1\rangle \leq \beta i+1\} = \BbbF i \cap \{ \sansM \in \scrD : \langle \vec{}R(\sansM ), bi+1\rangle \leq \beta i+1\} ,

so that

\BbbF k = \BbbF 0 \cap 

\Biggl( 
k - 1\bigcap 
i=0

\{ \sansM \in \scrD : \langle \vec{}R(\sansM ), bi+1\rangle \leq \beta i+1\} 

\Biggr) 

= \=\BbbF 0 \cap 

\Biggl( 
k - 2\bigcap 
i=0

\{ \sansM \in \scrD : \langle \vec{}R(\sansM ), bi+1\rangle \leq \beta i+1\} 

\Biggr) 
,(21)

where

\=\BbbF 0
:= \BbbF 0 \cap \{ \sansM \in \scrD : \langle \vec{}R(\sansM ), bk\rangle \leq \beta k\} = \{ \sansM \in \scrD : \langle \vec{}R(\sansM ), bk\rangle \leq \beta k\} .
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The second equality holds because \vec{}R(\sansM ) \geq 0 and bk > 0: if \langle \vec{}R(\sansM ), bk\rangle \leq \beta k, then
\vec{}R(\sansM )\in \BbbR J+1, so that \sansM \in \BbbF 0. Note that \=\BbbF 0

is not necessarily a face of \scrD . The space
(\scrD , \rho ) is compact, and all the mappings \langle \vec{}R(\cdot ), bi+1\rangle : \scrD \rightarrow [0,\infty ], i = 0,1, . . . , k  - 1,

are lower semicontinuous by Lemma 1. Therefore, the set \=\BbbF 0
is closed, and the face

\BbbF k of \scrD f is closed by (21) and hence compact as the closed subset of the compact \scrD .
The space \^\scrC of ( - \infty ,+\infty ]-valued bounded from below lower semicontinuous affine

functions on \scrD f separates points in \scrD f . Indeed, if \sansM 1 \not = \sansM 2 are two measures from
\scrD f , then

C(\sansM 1) :=

\int 
X\times A

c(x,a)\sansM 1(dx\times da) \not =
\int 
X\times A

c(x,a)\sansM 2(dx\times da) =:C(\sansM 2)

for some nonnegative bounded continuous function c(\cdot , \cdot ) : X\times A\rightarrow \BbbR . (See Lemma
2.3 of [41], Theorem 5.9 of [30], and Proposition 7.18 of [3].) The mapping C(\cdot ) is
nonnegative, lower semicontinuous, and affine by Lemma 1(b), so that the desired
assertion follows.

Since the compact face \BbbF k \subseteq \scrD f contains \sansM \ast , one can consider problem (5) on
\BbbF k, not on \scrD . Problem

R0(\sansM ) :=

\int 
X\times A

r0(x,a)\sansM (dx\times da)\rightarrow min
\sansM \in \BbbF k

(22)

s.t.Rj(\sansM ) :=

\int 
X\times A

rj(x,a)\sansM (dx\times da)\leq dj , j = 1,2, . . . , J,

satisfies all the conditions of Proposition 6:
\bullet The space \BbbF k is convex compact.
\bullet The mappings Rj(\cdot ) : \BbbF k \rightarrow [0,\infty ], j = 0,1, . . . , J , are nonnegative, lower

semicontinuous by Lemma 1(b), and affine.
\bullet Problem (22) is nondegenerate, as the measure \sansM \ast \in \BbbF k satisfies all the

constraints.
\bullet The space \^\scrC separates points in \BbbF k \subseteq \scrD f .

According to Proposition 6, there exists a solution to problem (22) (and hence
to problem (5)) in the form

\sum J+1
l=1 \alpha l\sansM l, where \alpha l \in [0,1],

\sum J+1
l=1 \alpha l = 1, and \sansM l is

extreme in \BbbF k for each l= 1,2, . . . , J +1. Since \BbbF k is a face of \scrD f , \sansM l is extreme also
in \scrD f for each l = 1,2, . . . , J + 1 and equals \sansM \varphi l

x0
for some deterministic stationary

strategy \varphi l in accordance with Theorem 1. Therefore, the mixture \^\sansM :=
\sum J+1

l=1 \alpha l\sansM 
\varphi l
x0

solves problem (5), and the corresponding strategic measure \^\sansP :=
\sum J+1

l=1 \alpha l\sansP 
\varphi l
x0

solves
problem (4).
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