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Thermal mapping uses IR thermometry to measure road pavement temperature at a high resolution to identify and tomap sections
of the road network prone to ice occurrence. However, measurements are time-consuming and ultimately only provide a snapshot
of road conditions at the time of the survey. As such, there is a need for surveys to be restricted to a series of specific climatic
conditions during winter. Typically, five to six surveys are used, but it is questionable whether the full range of atmospheric
conditions is adequately covered. This work investigates the role of statistics in adding value to thermal mapping data. Principal
components analysis is used to interpolate between individual thermal mapping surveys to build a thermal map (or even a road
surface temperature forecast), for awider range of climatic conditions than that permitted by traditional surveys.The results indicate
that when this approach is used, fewer thermal mapping surveys are actually required. Furthermore, comparisons with numerical
models indicate that this approach could yield a suitable verificationmethod for the spatial component of road weather forecasts—a
key issue currently in winter road maintenance.

1. Introduction

On marginal nights in winter (i.e., where the temperature is
close to freezing), a difficult decision is often faced by highway
engineers of whether or not to treat the road network to pre-
vent ice formation. Traditionally, this decision is facilitated
by consulting a road weather information system, consisting
of a network of site-specific road weather outstations and
associated daily forecasts. Such technology was developed
in the 1970s and became a common feature of winter road
maintenance in developed countries by the mid-1980s.

Automatic road weather outstations provide measure-
ments of key meteorological and road surface parameters
including air temperature, dew point, precipitation, and wind
speed and direction. Additional sensors are also embedded in
the road surface to provide decision makers with up to date
information on the current road surface temperature (RST)
and surface state of the pavement. Numerical models are then

used to provide road weather forecasts for the outstations
sites (with the outstation providing a means for model
initialisation and verification). A range of forecast models
now exist and a significant body of literature has accrued and
Hammond et al. gave a thorough review [1]. However, this
approach is ultimately site-specific andwith variations of over
10∘C not uncommon around a road network [2], a reliable
means of forecast interpolation is also required. This has
traditionally been achieved via thermal mapping, but of all
the components contained within road weather information
systems (RWIS), it is this interpolation that has frequently
been identified as the least satisfactory [3].

The thermal mapping methodology is based around IR
thermometry, which permits a high resolution survey of road
pavement temperatures. Surveys are conducted in winter
under a range of atmospheric conditions, ideally just before
dawn, to build up a “thermal fingerprint” of RST variations
around the route. These fingerprints are then translated into
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thermal maps and then used for daily forecasting alongside
numerical forecast models [2, 4–13]. Other uses for thermal
mapping include the optimisation of routes for anti-icing
[14] or identification of locations for the installation of
road weather outstations. However, thermal measurement
campaigns are very time-consuming. It is impossible to
survey a whole road network at the same time, and the task
has to be partitioned into stretches that could be done in the
open timewindow at dawn to avoid temperature artefacts due
to a rising sun.

The extent of RST variation along a route (and thus
the amplitude of the thermal fingerprint) is controlled by
atmospheric stability. The greatest variations are observed
during stable conditions associated with anticyclonic weather
patterns as indicated by Thornes [4]. With decreasing atmo-
spheric stability, the amplitude of the thermal fingerprint
subsequently reduces. Shao et al. [7] have shown that under
certain weather conditions the spatial variation of RST
along a route appears in a consistent pattern. It is this
consistency which enables thermal mapping surveys to be
conducted under a few selected weather conditions (i.e.,
extreme, intermediate, and damped) and quantified through
the analysis of the average wind speed and cloud cover during
the 12-hour period preceding the survey [1]. This has led
to an operational standard of five to six surveys (two for
each category) typically commissioned to provide coverage
of the conditions encountered in a winter season. However
this is inadequate with respect to the full variety of winter
conditions actually experienced and results in daily forecasts
being “pigeon-holed” into one of the categories when used
operationally [10].

The last decade has seen a gradual change in practice,
moving away from thermal mapping and its associated
limitations to a new spatialmodelling based approach. Route-
based forecasts take into account both meteorological and
geographical data to provide a high resolution forecast of
road surface temperature and condition around the road
network [3]. Whilst this provides a potentially significant
improvement in the quality of forecasts, it has also brought
about a new set of challenges. Whereas traditional site-
specific forecasts could be easily validated against sensor data
from outstations located at the forecast sites, this is clearly
impossible for a route-based forecast [1]. Consequently,
thermal mapping is still required to provide data to verify
the spatial component of a route-based forecasting system.
However, this approach is too expensive and time-consuming
to provide detailed data at a high temporal resolution and
means that route-based forecasts can only presently be
verified using “snapshots” from occasional thermal mapping
surveys.

The aim of this study is to use principal components
analysis (PCA) to statistically analyse thermal mapping data
to obtain ameans of interpolation between surveys to provide
a more comprehensive picture of RST variation for a broader
range of atmospheric conditions than that traditionally cov-
ered by thermal mapping surveys. Such an approach could
have the potential to improve the verification of route based
forecasts and to have a cost effective thermal mapping and

could even lead to a simplistic model of ice susceptibility for
use on road networks.

2. Experimental and Methodology

2.1. Study Areas. Both the University of Birmingham and
Nancy Laboratory have been using vehicles for thermal
mapping from the beginning of the existence of the technique
[1, 15]. As such, both organisations have accumulated a
substantial quantity of thermal data for analysis. For this
investigation, two historic research routes covering both
urban and rural areas were selected for detailed analysis. The
first route, located in France (Figure 1(a)), is almost 30 km
long and covers a range of land uses and lane configurations.
A vast thermal dataset is available for this route contain-
ing approximately 50 thermal fingerprints obtained under
extreme and intermediate weather conditions (Figure 1(c)).
The second route (Figure 1(b)) is based in Birmingham, UK,
and also contains a range of different land uses, road-types,
and lane configurations. This dataset contains approximately
20 thermal fingerprints, collected under extreme, intermedi-
ate, and damped conditions (Figure 1(d)). Both roads belong
to the same climate classification zone [16, 17].

2.2. Equipment. On both routes, RST was calculated by using
an infrared radiometer fitted to the underside of a survey
vehicle which measures the energy flux density 𝐸flux emitted
by the surface. It is calculated through simple manipulation
of the Stefan Boltzmann equation [18]:

𝐸flux = 𝜀 ⋅ 𝜎 ⋅ 𝑇
4

, (1)

where 𝑇 is the RST, 𝜎 is the Stefan Boltzmann constant, and
𝜀 is the emissivity of the road surface. The road surface is
considered to be a grey body and as such emissivity is held
constant at 0.95 [19, 20]. In the case of the French study
route, air temperature and relative humidity data are also
obtained via sensors located on the roof of the vehicle, with
an electrical turbine generating a laminar flow.All vehicles are
equipped with GPS to facilitate the plotting of measurements
in a geographical information system (GIS). Figure 2 displays
thermal mapping vehicles used in France and in the United
Kingdom.

2.3. Principal Components Analysis and RST Forecast. Prin-
cipal component analysis (PCA) is a statistical method
that enables reduction of dimension by projecting the data
onto a lower-dimensional space, when dealing with large
datasets [21, 22] by nonlinear iterative partial least squares
algorithm (NIPALS) or by singular value decomposition.
The statistical tool used is the variance-covariance matrix.
Linear transformations of a group of correlated variables are
obtained in such a way that certain optimal conditions are
obtained. The most important of these conditions is that
the transformed variables are uncorrelated and resulting in
orthogonal eigenvectors. In the PCA approach, the physics
that generates the variations is ultimately substituted for a
statistical approximation containing a linear combination
of current physical factors. The number of initial variables
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Figure 1: Thermal mapping routes in France (a) and United Kingdom (b) and associated thermal fingerprints for French (c) and United
Kingdom (d) routes.

(a) France (b) United Kingdom

Figure 2: Thermal mapping vehicles in France (a) and United Kingdom (b).

involved in the description of the physical phenomena
resulting in thermal fingerprints is reduced to a lower number
called principal components. The data is then projected into
another space of the so-called principal components built on
the linear combination real physical factors. Calculations are

conducted to identify the space gathering the highest vari-
ance, generating axis along which data tend to gather. In the
case of thermal mapping, each run is considered to be a sam-
ple. Each RST series of measurement on the same route (over
fifty samples for France and near twenty for UK) corresponds
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Table 1: PCA statistical indicators for the French and UK routes.

Case study 53 thermal fingerprints (12∘C to 35∘C) 8 thermal fingerprints
below 5∘C

4 thermal
fingerprints below

5∘C

French route

Weather conditions Intermediate and extreme Intermediate and extreme Intermediate and
extreme

Number of principal
components (PC) used 10 6 2

Percentage of explained
variance (with 1st PC) 98 99 99

Outliers detected
(number of data points) 1000 91 68

Case study 19 thermal fingerprints (−3.4 to 6.4∘C) 8 thermal fingerprints
below 6.4∘C

4 thermal
fingerprints below

6.4∘C

UK route

Weather conditions Intermediate, extreme, and damped 5 intermediate, 1 damped, 2
extreme

2 intermediate, 1
damped, 1 extreme

Number of principal
components (PC) used 7 6 2

Percentage of explained
variance (with 1st PC) 96 96 99

Outliers detected
(number of data points) 410 74 71

to one data point in a multidimensional space. The variables
are attached to the location where the measurements were
made. Variables include meteorological, geographical, and
road ones, as indicated by Hammond et al. [23], but this is
not exhaustive. In the case of a route tens of kilometres long,
with measurements done at a given spatial frequency of a few
meters, each thermal fingerprint sample contains thousands
of points, each being a variable. Among all possible phys-
ical variables per location, an illustration of 24 commonly
considered affecting RST could be air temperature, relative
humidity/dew-point, precipitation, cloud cover, wind speed,
solar radiation, ground radiation, weather situation (extreme,
intermediate, damped) for meteorological variables, latitude,
altitude, topography, screening, topographic exposure, sky
view factor, land use, infrastructure specificity (bridges, . . .)
for geographical variable and thermal conductivity thermal
diffusivity, emissivity, convective coefficient, albedo, traffic,
construction depth, and water soil content for infrastructure
variables. As an example, the water content of soil is clearly
not applicable in the case of a bridge, whereas the convective
coefficient is critical. All will vary from location to location,
sometimes significantly.

Each principal component (PC) axis is then built as a
linear combination of these variables (with the ones given
in Table 1 among them) multiplied by several thousands of
locations. By using the data from several thermal surveys,
a data matrix, designed as RSTPCA, was generated. The
matrix has as many lines as thermal fingerprints available
and asmany columns as distance points wheremeasurements
were performed. Each thermal fingerprint will correspond
to one point in the PC space, as illustrated in Figure 3.
Clusters of points could be detected in this multidimensional

Variable 1

Variable 1

Variable 2

Variable 2

Variable 3

Variable 3

Average

Object

X1

X2

X
3

Object 1

Object 2

Object 3

Object 4

Figure 3: Illustration of principal component analysis (PCA).

space. The further along each component, the greater the
difference between samples. An approximation of each sam-
ple is obtained with the projection onto the first principal
components. Similar data points appear close each other,
while “extreme” ones appear at an increased distance from
the PC space origin. The initial variables have been centred,
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Figure 4: Illustration of principal component coordinates (a) and residues (b).

so that the barycentre of data points corresponds to the PC
axis origin. Since the variables are similar (RST with similar
variance), the data have not been standardized. The quality
of the representation is determined by the residuals (i.e., the
distance between each data point to the selected number of
axis).

An orthogonal set of eigenvectors, called loadings, is
being generated that spans the variance space of the data.
Each successive eigenvector is chosen to minimize the
residual variance (Figures 4(a) and 4(b)). This operation is
performeduntil the optimal number of principal components
selected for the description is reached. Once completed, the
samples are represented by a new system of coordinates, or
“scores,” and are represented by a matrix 𝑇. These scores are
computed by a linear combination of the initial variables, with
given weights. These weights are represented by a loadings
matrix usually named 𝑃.

With respect to thermal mapping, PCA can be used to
determine how many components are needed to describe
the variability of data constituting the thermal fingerprints
of the two routes obtained in various weather conditions.
Once these components are identified, they can then be used
to build additional fingerprints for other weather conditions
provided that they are not significantly different from the
ones used for the original PCA calculations. Therefore, the
PCAmodel could be written as follows, with the leftover part
of the variations is represented as an error matrix 𝐸:

RSTPCA = 𝑇 ⋅
𝑡

𝑃 + 𝐸. (2)

Hence, the larger the number of thermal fingerprints,
the larger the number of principal components available to
describe RST variations for PCA. The number of relevant
principal components is determined by the explained vari-
ance and by the loadings that enable deduction of the physics
hidden in the statistical description.The greater the principal
components number, the greater its assimilation to noise. By
using the scores and loadings matrix, it becomes possible

to build a RST profile from PCA, eventually neglecting the
errormatrix. Based on this approach, the first objective of this
paper is to identify the global benefit of PCA and the correct
number of thermal mapping runs required to produce an
accurate daily temperature pattern along a given route based
on PCA. The next objective is to extend the process to build
forecast thermal fingerprints, thus providing a simple spatial
forecasting model, based on a cost effective and realistic
number of mapping runs.

To do so, a RSTPCA profile needs to be assimilated to a
one-columnmatrix, where each element of the column is the
RST at a point of the itinerary (RSTPCA,1, RSTPCA,2, . . ., and
RSTPCA,𝐿), 𝐿 being the final point of this given route. For two
RSTPCA profiles, RSTPCA 1 and RSTPCA 2, and an interpolated
fingerprint, RSTPCA interpolated, will be obtained by using (3),
traditionally used to denote continuation of form:

RSTPCA interpolated

= (

𝑘 ⋅ RSTPCA 1,1 + (1 − 𝑘) ⋅ RSTPCA 2,1
𝑘 ⋅ RSTPCA 1,2 + (1 − 𝑘) ⋅ RSTPCA 2,2

...
𝑘 ⋅ RSTPCA 1,𝐿 + (1 − 𝑘) ⋅ RSTPCA 2,𝐿

),

(3)

where 𝑘 is a coefficient whose value ranges between 0
and 1. In winter maintenance, it is logistically impossible
to obtain daily thermal fingerprints to verify RST. Instead,
there is a dependence on using site-specific RWIS outstations
to monitor atmospheric and road parameters such as air
temperature, relative humidity, andRST. As such, it is difficult
to build a full RST profile over a route on the basis of one
single data point obtained from an outstation. Numerical
weather models have long been able to provide a forecast
for this specific spot or more recently over the whole route
using route based forecasting techniques [10]. In the same
way, using the RST at a single outstation, RSTPCA can be
used to extend the forecast away from the outstation site.
Here, coefficient 𝑘 is used to match the local data point with
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Table 2: PCA statistical indicators for the UK route.

Number of
principal

components
(PC) used

Percentage of
explained
variance

(with 1st PC)

Outliers
detected

(number of data
points)

4 thermal
fingerprints
(−9∘C to
+7∘C)

2 98 170

the corresponding point in RSTPCA interpolated, upon which the
whole RST profile could be built.

3. Results and Discussion

3.1. Computing the Optimum Number of Measurements Sets.
The route survey in France contains data collected at a
3m resolution. For consistency, the 10632 measurement
points on this route were reduced and resampled with a
moving average to approximate the spatial resolution of the
route in the UK which was surveyed at a 20m resolution.
Using the Unscrambler X 10.1 software package, PCA was
then performed on the full set of the 53 measured French
fingerprints and the 19measured UK fingerprints.The results
are given in Table 2 and Figure 5. Almost all the variability
(99%) in the data is explained by the first and secondprincipal
components with very few outliers (especially given the size
of the dataset), with data gathering around the axis of the
first principal component (Figures 5(a), 5(c), and 5(e)). The
next analysis focused on a subset of eight and then four
fingerprints where the mean RST was below 5∘C, consistent
with a winter maintenance configuration. Again, the same
conclusion was reached on both the high value of explained
variance and the low number of outliers (Table 1 and
Figure 5). Figure 5 also shows the absence of clusters of points
which could indicate the specific effect of given variables in
such global approach.These results indicate that as few as four
thermal fingerprints are sufficient to resolve RST around the
route, covering a set of weather conditions representative of
winter (extreme, intermediate, and damped).The further use
of PCA to thermal fingerprints will then have to be performed
on data obtained in weather conditions similar to the ones
used for this PCA.

In theory, PCAwould permit the use of 3 fingerprints (i.e.,
𝑛-2 principal components for a set of 𝑛 thermal fingerprints),
while originally five to six surveys are specified to have a
forecast as adequate as possible when numerical models are
used. Indeed, even then with just three fingerprints, 99% of
the explained variance is with the first component. However,
a fourth thermal fingerprint is recommended to provide
a more reliable result, and still constitutes an operational
saving on current practice. Ideally, this additional fingerprint
would allow further emphasis of one weather condition (e.g.,
damped condition) in the final result. The loadings in the
case of PCA of thermal fingerprints for further principal
components will mostly be noise, however contained in
these loadings will be thermal singularities (e.g., bridges and

decks), which might prove useful for a more detailed analysis
on a specific spot but is not the topic of this paper. This
is illustrated in the case of the four first loadings of PCA
calculations performed on all thermal fingerprints of both the
French (Figure 6(a)) and theUK (Figure 6(b)) routes. In such
global approach, no specific influence of one of the chosen
variables affecting RST could be identified.

Once the initial PCA calculations are performed, thermal
fingerprints from PCA are built using (2). A comparison
between thermal data and PCA results in the case of four
selected French thermal fingerprints and with RSTwas below
5∘C, which yielded a good fit between the observed RST
measurements and PCA results curves (Figures 7(a) and
7(b)). The error distribution indicates that 93% of the error is
within a ±0.5∘C interval and 99% is within ±1∘C, confirming
the ability of PCA to generate an accurate representation
of thermal fingerprints. The same PCA calculations were
performed with four UK thermal fingerprints (Figures 7(c)
and 7(d)), giving an error distribution of 91% within a ±0.5∘C
interval and 98% a ±1∘C interval. A similar PCA calculation
was run for two thermal fingerprints of the UK route,
corresponding to a damped and an intermediate weather
situation. The error distribution indicated that 62% of the
error is within a ±0.5∘C interval and 91% is within ±1∘C for
only two thermal fingerprints. In the case of five thermal
fingerprints on theUK route and five corresponding ENTICE
outputs (Figure 7(e)), nearly 47% of the error is within ±1∘C
and roughly 80% is within ±2∘C (Figure 7(f)).

3.2. Spatial Forecasting Model. The previous section has
demonstrated the ability of PCA to obtain a representation
of RST at given temperatures. Next, the ability to build new
interpolated fingerprints RSTPCA interpolated from the results of
the PCA (RSTPCA) is investigated. Such an approach would
enable an improved verification strategy for route based
forecasting or indeed a basic linear spatial forecasting model
in its own right. Figure 8 shows the different RST (field
measurements and interpolated from PCA results using (3))
in France and the UK. Using separate testing fingerprints not
used in the PCA calculations, it appeared that 84% of the
RST difference between statistically interpolated and actual
measurements is within a ±1∘C interval. However, in the
case of the French route, in a similar PCA configuration but
with extreme and intermediate weather situations, the error
distribution indicates that only 48% of the data is within a
±1∘C interval. Such differences can be explained by the nature
of the two study routes. The UK route has more thermal
variations than the French route, a consequence of distinct
land use types. This gives rise to a very distinctive thermal
fingerprint with very warm urban areas and cold rural areas
readily identifiable across the dataset.

3.3. Comparison with a Numerical Model Approach. Route
based forecasting was developed by Chapman et al. [3, 9]
and is essentially an improved roadweather predictionmodel
(ENTICE) based around the Thornes model [4], with an
added high resolution and site-specific spatial component to
predict local variations in RST over both time and space.The
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Figure 5: Results of PCA calculations ((a) and (c)) scores for the first and second principal components; ((b) and (d)) variance as a function
of principal components for all thermal fingerprints for French and UK routes and for only 4 thermal fingerprints ((e) and (f)) for the UK
route.
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Table 3: Route based validation statistics for the entire UK route.

Bias 𝛽 Standard deviation 𝜎
𝛽

RMSE Pm Prm Nb. forecast points
ENTICE −1.06 0.86 1.48 46.94 79.56 2261
PCA 0.003 0.61 0.61 84.02 71.04 2289
Bias 𝛽 = (1/𝑛)∑𝑛

𝑖=1

(RST
𝑚,𝑖
− RSTmeasured,𝑖), with RST

𝑚,𝑖
and RSTmeasured,𝑖, respectively, modeled and measured road surface temperature at the 𝑖th point of

the itinerary, Pm is the percentage of modeled RST within ±1∘C of actual values, and Prm is the percentage of residual modeled RST within ±1∘C of residual
actual values.
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Figure 6: Four first principal components of PCA calculations for
all thermal fingerprints of French (a) and UK (b) routes.

spatial component of ENTICE is driven by a geographical
parameter database (GPD) consisting of several geographical
parameters affecting RST. There is an extended literature
on ENTICE, indicating its ability to explain over 70% of
the variation in RST [3, 9]. Verification techniques are
also extensively discussed by Hammond et al. [1]. The next
analysis compares RST forecasts based on PCA (based on
only four thermal fingerprints) calculations with ENTICE

outputs for the same route as the one described above in this
paper.

Four thermal fingerprints were then selected covering
an average temperature range over the UK route between
−1.9∘C and 6.4∘C. These fingerprints correspond to three
intermediate and one extreme weather condition. A PCA
calculation was run, and RST forecast profiles were built with
these results and interpolations. Four RST forecasts from
ENTICE were obtained for the same dates used for the PCA
corresponding to the ones when thermal fingerprints were
obtained. To ease the comparison between forecasts from
ENTICE and from PCA (calculations and interpolations), a
RST average was then calculated over each forecast file. Con-
sidering that the profiles are similar enough, interpolations
from PCA were established so as to obtain an average RST as
close as possible to the thermal fingerprints not used for PCA
calculations and the same RST averages compared to those
from ENTICE outputs.

Figures 9(a) and 9(b) summarize the comparison between
over 2000 ENTICE outputs and PCA calculations and inter-
polations. A good fit is obtained between the thermal finger-
prints from the numerical model and the PCA with an error
distribution analysis indicating that 73% of the error is within
±1∘C and 96% is within ±2∘C. Table 2 gives the PCA overview
results, with again 98% of variance explained with the first
principal component. RST differences were then calculated
between field measurements and PCA interpolations. The
PCA model accuracy in predicting RST to be within ±1∘C is
such that 84% of the differences are in this interval.

Furthermore, the forecast validation statistics indicates
that PCA gives similar results compared to ENTICE. As
detailed by Hammond et al [1], the performance of ENTICE
and its accuracy (Table 3) greatly depend on the correct
choice of physical parameters and of a physical description
of the route. For example, a detailed description of road
structure for each forecast point is required (e.g., number
of layers, layers thicknesses, and thermal characteristics of
each layer). However, such details need to be parameterized
in route based forecasting as it is presently impossible
to measure these parameters at a suitable resolution [24].
Ultimately, each forecast point of a route has a set of changing
parameters that makes a proper forecast hard to reach and is
the primary reason for noise in forecast verification statistics.
Thermal mapping does not have this problem and although
it does not explain why the temperature variations are there,
it can be used to supplement and verify model output. The
inclusion of PCA in this approach now greatly improves the
verification capabilities of thermal mapping.
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Figure 7: Comparison between RST from field measurements (solid black line) and from PCA and ENTICE calculations (solid gray line) on
French (a) and UK ((c) and (e)) routes, and corresponding error distributions ((b), (d), and (f)).

4. Conclusion

The objective of this paper was to investigate a statistical
approach for thermalmapping, based on PCA, to build a road
surface temperature forecast for a wide variety of weather
situations and temperature ranges. Overall, PCA provided
a good forecast of road surface temperature, explaining up

to 80% of measurements over a route. The results indicate
that, by using this approach, fewer thermal surveys then
are currently specified and are required to recreate the road
surface temperature forecast pattern along a route.

Further research was then conducted to compare PCA
forecast results with outputs from an advanced numerical
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Figure 8: RST field measurements (solid black lines) and forecast
(solid grey lines) based on interpolation of thermal fingerprints
obtained from PCA on French (a) (January and February 2009
and October and December 2010) and UK (b) routes (two thermal
fingerprints in December 1999, one in February 2000, and one in
March 2000).
model. With the exception of “damped” conditions, the
results indicate that PCA calculations yielded better results
than ENTICE for the error distribution within ±1∘C frame.
The main benefit of the PCA approach is that the effects
of uncertainties surrounding physical parameterisations in
numerical models are overcome without approximation.
Uncertainties are then reduced to the ones of the infrared
radiometer.

Overall, the use of PCA essentially permits a continuum
of thermal fingerprints and allows the user to statistically
generate a fingerprint for any given night. This permits
the possibility of verifying route based forecasts on nightly
basis, without the need for costly additional surveys. Both
approaches yield good results in terms of statistical validation
and yield further confidence in the route-based forecasting
technique. However, there is further potential here. Given the
performance of the PCA approach, could this method alone
provide a cost effective alternative to route based forecasting,
potentially leading to a new generation of forecast thermal
maps?
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Figure 9: Comparison between ENTICE outputs (solid black
lines) and PCA (thin solid grey lines) on UK route (a), and data
consistency of the two approaches (b).
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