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ABSTRACT

A key step in the analysis of microarray data is the
selection of genes that are differentially expressed.
Ideally, such experiments should be properly replic-
ated in order to infer both technical and biological
variability, and the data should be subjected to
rigorous hypothesis tests to identify the differentially
expressed genes. However, in microarray experi-
ments involving the analysis of very large numbers
of biological samples, replication is not always
practical. Therefore, there is a need for a method to
select differentially expressed genes in a rational way
from insufficiently replicated data. In this paper, we
describe a simple method that uses bootstrapping
to generate an error model from a replicated pilot
study that can be used to identify differentially
expressed genes in subsequent large-scale studies
on the same platform, but in which there may be
no replicated arrays. The method builds a stratified
error model that includes array-to-array variability,
feature-to-feature variability and the dependence of
error on signal intensity. We apply this model to the
characterization of the host response in a model of
bacterial infection of human intestinal epithelial
cells. We demonstrate the effectiveness of error
model based microarray experiments and propose
this as a general strategy for a microarray-based
screening of large collections of biological samples.

INTRODUCTION

DNA microarrays are devices that measure the expression
of many thousands of genes in parallel (1). They have revo-
lutionized molecular biology, and in the last five years, their
use has grown very rapidly throughout academia, medicine, and
the pharmaceutical, biotechnology, agrochemical and food
industries (2–4).

One of the common aims of microarray experiments is to
identify genes that are differentially expressed in one set of
tissues or cells relative to another. Typically, these may be
diseased versus normal tissue (5,6), treated versus untreated
cells (7,8) or wild-type versus mutant strains of organisms
(9,10).

When such data are analysed, it is normal to apply methods
to one gene at a time, and then to rank the genes according to
some measure of the extent to which the gene is differentially
expressed. In the earliest microarray experiments, researchers
used the fold ratio to describe the level of differential gene
expression. More recently, it has become increasingly com-
mon to use more rigorous statistical analyses, such as t-tests,
bootstrap tests or ANOVAs (11,12).

The use of the hypothesis-testing framework of classical
statistics is unquestionably the best method to analyse micro-
array data for differentially expressed genes. The reason for
this is that these methods allow the scientist to make a stat-
istical inference from the data: an extrapolation from the indi-
viduals being studied to the population from which the
individuals derive. However in order to make this inference,
we need to run an experiment with sufficiently many biolo-
gical replicates (i.e. individuals from the population of study)
so that the statistical analyses can provide reliable results.
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Many microarray-based projects now include the analysis of
hundreds or thousands of biological samples (9). In this case,
it is often impractical to perform experiments with a sufficient
number of experimental replicates. In such experiments, we
were not able to make a statistical inference from the data, and
thus are only able to make assertions about the gene expres-
sions measured in the sample in the study.

In the absence of proper replication we would, however,
still like to apply some rational criteria to identify differenti-
ally expressed genes so that we can generate biological hypo-
theses from the data. For poorly replicated experiments, it is
still possible to estimate variance from the available informa-
tion. Recently Jain et al. (13) have developed the local pool
error (LPE) test, a methodology that allows better estimates of
the experimental variability from poorly replicated experi-
ments. This method has been applied to a simple model of
T-cell activation and has been shown to be effective in experi-
ments based on three replicates. However, in very large
expression profiling experiments it may be impractical to per-
form any replication at all. A suitable strategy in this case
would be to construct an error model from an initial highly
replicated experiment (e.g. testing a reference mutant strain)
and apply this to the analysis of all other samples in a non-
replicated design. A number of these approaches have been
developed and applied to the analysis of microarray experi-
ments. Both GeneSpring (14) and Rosetta (15) use this
approach in their data analysis software. However, there are
two disadvantages with their approaches. First, they base their
approaches on normal distributions (16). Typically, the errors
in microarray data are not normally distributed (17,18), and in
this paper we show how the use of bootstrap distributions
produces more realistic error models than normal distribu-
tions. Second, they generate P-values for each gene. This is
problematic because the large number of genes on a microar-
ray results in false positive results and, hence, the P-values are
difficult to interpret.

The aim of this paper is to show how to generate an error
model from a replicated pilot study, which can then be applied
to subsequent experiments on the same platform to help select
differentially expressed genes. As with other error model based
methods, this method is applicable only when subsequent
experiments are performed using a similar experimental sys-
tem, and so are likely to have a similar error structure as the
pilot experiment. Our model uses a bootstrap distribution,
which allows for errors that depend on signal intensity, and
includes array-to-array and feature-to-feature variability, as
well as the dependence of error on encoded spot features
(in this example on failed features).

The false discovery rate (FDR) (19) is of great importance in
microarray experiments because of the large number of genes
that are being tested. In traditional experiments, we may only
be measuring one variable; when we see a positive result, such
as differential gene expression, we would normally attribute
this to genuine scientific effect. In a microarray experiment,
we may be analysing many thousands of genes in parallel.
Because of the large number of genes being analysed, there is
an increased likelihood that some genes that are not differen-
tially expressed will appear to be so, as a result of experimental
errors in the measurements. Therefore, we include an FDR cal-
culation and use this as the criterion for selecting differentially
expressed genes.

We demonstrate the method by building an error model for a
human array representing an unbiased selection of 850 genes
involved in key biological processes. This model has been
applied to the characterization of the host response in an
established in vitro model of bacterial infection. We validate
our method with respect to genes expected to be differentially
regulated in response to infection [nuclear factor kB (NF-kB)
pathway] and show that we can detect 65% of expected dif-
ferences at an FDR threshold of 10%. This compares favour-
ably with the most widely used error model based method that
detects only 40% of these genes. We then describe the bio-
logical implications of the experimental results and demon-
strate that important biological conclusions can be derived
from the proposed analysis strategy.

SYSTEMS AND METHODS

The biological system

Escherichia coli typically colonize the gastrointestinal tract
of the human intestine within a few hours of birth. This results
usually in a mutually beneficial relationship that lasts for life.
However, there are some strains of E.coli that have acquired a
number of virulence factors that confer the ability to colonize
new niches and result in a broad spectrum of diseases. This
paper focuses on the analysis of the response of a human
intestine epithelial cell line (Caco-2) to a number of entero-
haemorrhagic E.coli (EHEC) and enteropathogenic E.coli
(EPEC) strains.

Despite the relatively large differences in their gene com-
plement (20), these two bacterial pathotypes share many of the
virulence genes required for colonization. Some of these genes
are clustered in chromosomal pathogenicity island termed the
locus of enterocyte effacement (LEE). LEE encodes a type III
protein secretion system, which serves to inject a set of
bacterial proteins into host target cells (21). These bacterial
expressed proteins induce a number of drastic transformations
in the target cells, including cytoskeletal rearrangements [an
important step in the formation of the typical attaching and
effacing (AE)-lesion] (22,23), affected integrity of tight junc-
tions and reduced transepithelial resistance in vitro (24) and
induction of apoptosis (25). At the molecular level, both EHEC
and EPEC strains are known to be potent inducers of NF-kB
with consequent up-regulation of NF-kB downstream genes.
This property of EHEC- and EPEC-infected cells is useful for
the validation of our methodology since it provides a set of
genes expected to be up-regulated during infection.

Despite the remarkable similarity in both the initial steps
of colonization and the effect on host cell physiology, there
are substantial differences between the EHEC and the EPEC
pathotypes. An important difference is the production of
Shiga-like toxins by the EHEC strain. These proteins are
responsible for the bloody diarrhoea and haemorrhagic colitis
induced by infection of EHEC (26), and act as powerful pro-
tein synthesis inhibitors (27). Less dramatic differences have
also been demonstrated in other factors involved in coloniza-
tion. Among these, the lymphocyte inhibitory factor (LifA) is
a good example. LifA has been first discovered as a EPEC-
secreted lymphotoxin capable of inhibiting the production of
cytokines and proliferation in human peripheral blood mono-
nuclear cells (PBMCs) (28,29). On the other hand, the EHEC
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homologue of LifA (Efa1) has been identified independently
as a protein involved in adhesion (30). It is still unclear if LifA
alone has also a role in EPEC adhesion.

Experimental methods

Microarray design. An array of 850 core genes was construc-
ted using 60mer synthetic oligonucleotides, which were then
tested for hybridization efficacy and specificity. The array
covers genes associated with apoptosis, cell cycle, senescence,
chemokines, cytokines, receptors, adhesion and matrix and
intracellular signalling pathways.

Immunofluorescence assay. Cells were seeded in 12-well
plates and grown to confluence on glass cover slips, previously
treated with nitric acid for 10 min and then washed with water
and ethanol. After the infection, the cells were processed and
stained using Phalloidin conjugated with Alexa 488 (Molecular
Probe, The Netherlands) as described by Knutton et al. (31).

Infection procedure. This study employs the following bac-
terial strains: EPEC O127:H6 E2348/69, EPEC O127:H6
E2348/69 DlifA, EHEC O157:H7 Sakai (stx�/�) and EHEC
O157:H7 Sakai (stx�/�) Dler. Individual bacterial colonies
were grown overnight at 37�C without shaking in Luri–
Bertani broth. The overnight culture was diluted 1:30 in
DMEM (GIBCO, UK) and incubated at 37�C and 5% CO2

to mid-log phase. Bacteria at a multiplicity of infection (MOI)
of 50 were added to semi-confluent layers of Caco-2 cells
(ATCC, USA) grown in DMEM supplemented with 10%
FBS (GIBCO). After infection, unbound bacteria were washed
with PBS and Caco-2 cell RNA was extracted using RNAasy
(Qiagen, UK) according to the manufacturer’s instructions.

Adhesion assay. Caco-2 cells were seeded in six-well plates,
grown to confluence and infected as described above. After
the infection, Caco-2 cells were washed with PBS, added with
fresh media and the infection was continued for further 2.5 h.
Then the host cells and the adherent bacteria were washed with
PBS, fixed with methanol and stained with Giemsa solution.
The percentage of cells infected was assessed from a minimum
of 10 different microscopic fields.

Inactivation of bacteria. Bacteria were grown as described in
the infection procedure, washed twice in PBS, resuspended in
1.5% formalin in PBS, and incubated for 1.5 h at 23�C. Sub-
sequently, bacteria were washed in PBS and heat inactivated
for 5 min at 80�C.

Microarray technology. An aliquot of 30 mg of total RNA was
labelled by direct incorporation of dCTP, conjugated with Cy3
and Cy5. Probe synthesis, purification, and microarray hybrid-
ization and washing have been conducted as described previ-
ously (32). Slides were scanned using an Axon scanner
(Axon, USA) and image analysis has been performed using
the software Genepix v3.0 (Axon). Each individual slide has
been hybridized to directly compare RNA from infected
cells (typically labelled with Cy3) against RNA from unin-
fected cells grown in identical conditions (typically labelled
with Cy5).

Computational methods

Normalization. We have not used features that have been flag-
ged by the image processing software (GenePix). The data

have been normalized by taking log to base 2 and computing
the log ratio of infected to uninfected for each replicate feature
on the array. Systematic dye bias was corrected by a loess fit of
the log ratio against the average signal intensity, and the loess-
fitted curve was subtracted from the log ratios to produce
normalized log ratios (12,33,34). A measurement of log
ratio was computed for each gene on each array by taking
the average of the normalized log ratios of the replicate fea-
tures. A final measurement of log ratio for each gene was
calculated by taking the average of the array replicates.
These have been ordered according to magnitude. As some
measurements are missing (owing to bad features), the number
of replicate features and replicate arrays for each measured
gene expression ratio may vary.
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Figure 1. (A) Distribution of array deviates as a function of signal intensity.
Red dots are the genes with only two successful arrays; blue dots are genes
with three successful arrays. The magnitude of the errors depends on signal
intensity, with larger errors at low-signal intensity, and smaller errors at high-
signal intensity. Thus the distribution of errors is not log–normal, and so the
error model requires an approach that includes dependence of error on signal
intensity. The magnitude of the array deviates does not appear to depend on the
number of successful arrays. (B) Similar plot for the feature deviates. The plot
shows very similar behaviour, with a dependence of error on signal intensity.
The magnitude of the feature deviates is slightly smaller than the array deviates.
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Error model construction. In generating an error model, we
use a bootstrap method that does not make any assumption
about the structure of the variability, but instead uses the
observed errors as the error distribution. Thus bootstrapping

is appropriate for all error distributions, even when the errors
are not normal. In this experiment, the situation is complex
for three reasons. First of all, different genes have different
numbers of successful replicates. Second, the magnitude of the

A B

C D

E F

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

0
5

1
0

1
5

2
0

2
5

3
0

Log (10) Raw P-Value

F
a

ls
e

 D
is

co
ve

ry
R

a
te

 (
%

)

-5 -4 -3 -2 -1

0
5

1
0

1
5

2
0

2
5

3
0

Log  (10) Raw P-Value

F
a

ls
e

 D
is

co
ve

ry
R

a
te

 (
%

)

FDR < 5%
5% < FDR < 10%
10% < FDR < 20%
FDR > 20%

1 Feature
2 Features
3 Features

FDR < 5%
5% < FDR < 10%
10% < FDR < 20%
FDR > 20%

FDR < 5%
5% < FDR < 10%
10% < FDR < 20%
FDR > 20%

4
3

2
1Lo

g 
R

at
io

0
–

1

6 8 10 12

Average Signal

14 16

0
–

1
–

2

Lo
g 

(1
0)

 R
aw

 P
–V

al
ue

–
3

–
4

6 8 10 12

Average Signal Intensity

14 16

4
2

0

L
o

g
 R

a
ti

o

–
2

–
4

6 8 10 12

Average Signal

14 16

Lo
g 

(1
0)

 R
aw

 P
–V

al
ue

0
–

1
–

2
–

3
–

4
–

5

6 8 10 12

Average Signal Intensity

14 16

e53 Nucleic Acids Research, 2005, Vol. 33, No. 6 PAGE 4 OF 13



errors depends on the signal intensity. And third, there are two
levels of error: array-to-array variability and feature-to-feature
variability.

The bootstrap error model represents synthetic genes that
are not differentially expressed, but which have log ratios
different from zero because of array-to-array and feature-
to-feature variabilities. Since we are interested in applying
the error model to genes for which there may be one or
two failed features, we build three error models: one for
genes for which all three features have been successful, one
for genes with two successful features and one for genes with
just one successful feature.

We build the error models using the gene expression values
of the genes in the pilot experiment. For each gene in the pilot
study, we compute the array and feature deviates as follows:
the array deviates are the differences between the average
log ratio of the features for that gene on the array and the
log ratio for that gene averaged across all three arrays; the
feature deviates are the differences between the log ratios of
each feature and the average log ratio of all corresponding
features on the same array.

The error model is constructed by adding feature deviates
to array deviates. Since there are many more feature deviates
than array deviates, we construct a distribution that is a hybrid
between a permutation distribution and a bootstrap distribution
(35). As the errors depend on signal intensity, we construct
a different bootstrap distribution for each intensity level—
corresponding to each gene in the pilot experiment. In
order to do this, we need to construct a set of bootstrap errors
associated with each possible intensity level. For each gene,
there are either two or three array deviates, depending on the
number of successful arrays. For each array deviate, we choose
feature deviates at random from genes with a similar intensity
level, by using a window of width 200 genes (after ordering
the genes by intensity level). For the bootstrap distribution for
arrays with one successful feature, we add one feature deviate
to the array deviate; for the distribution with two successful
features we add the average of two feature deviates to the array
deviate; and for the bootstrap distribution for arrays with three

successful features we add the average of three feature devi-
ates to the array deviate. This generates a single value of
the bootstrap distribution associated with that intensity
level. We repeat this process 500 times for each array deviate,
thus generating either 1000 or 1500 bootstrap ratios for each
signal intensity level. These are used for generating the boot-
strap distributions.

Identification of differentially expressed genes. Given a new
microarray experiment on the same platform, we can use the
error distribution to identify differentially expressed genes.
For each gene, we look at the distribution of bootstrap log
ratios for signal intensities within a window of 200 bootstrap
genes with signal intensities similar to the gene being ana-
lysed, using the bootstrap distribution for the same number of
features as the number of successful features for that gene (1, 2
or 3). Thus we have a distribution of up to 300 000 bootstrap
log ratios, which represent errors at signal intensity similar to
the gene in question. We compare the log ratio of the gene with
the 300 000 bootstrap log ratios, and count the number of
bootstrap log ratios that are more extreme (either positive
or negative) than the gene being analysed. The bootstrap P-
value is then the number of more extreme bootstrap log ratios
divided by the size of the bootstrap distribution. In practice, we
add 1 to the number of bootstrap log ratios to avoid getting P-
values of 0. We select a threshold for differentially expressed
genes using the FDR procedure (19).

The use of the FDR procedure also determines the number
of bootstrap replicates to be used. In order to obtain any pos-
itive results, we need to ensure that the highest-ranked genes
in the list (with the smallest P-values) can be significant. The
smallest P-value obtainable is the reciprocal of the number
of bootstrap replicates. Since the FDR is computed by multi-
plying the P-value by the number of genes on the array, we
require the unadjusted P-value to be smaller than the desired
FDR divided by the number of genes on the array. In this
experiment, there are �1000 genes on the array. Thus to
allow possible FDRs of 1%, we require an analysis that can
give an unadjusted P-value at least as small as 10�5. In order

Figure 2. (A) MVA plot for the array for infection with the EPEC strain after 6 h. Each gene is represented by one spot, which is colour coded according to the FDR
associated with its P-value. The fold ratio at which genes are called differentially expressed depends on its signal intensity—with genes at higher signal intensity being
differentially expressed at lower log ratios than genes at low-signal intensity. This is a reflection of the intensity-dependent error model. On the same axes we have
plotted the standard deviation of the intensity-dependent error model distributions. There are three distributions: one for genes with one successful feature; one for
genes with two successful features and one for genes with all three successful features. The distributions are most different at low-signal intensities, where the feature
deviates are similar in magnitude to the array deviates. This is also the range of intensity where features are likely to fail. At high-signal intensities, where the
magnitude of the feature deviates is much less than the magnitude of the array deviates, the distributions are dominated by the array deviates, and are very similar. In
reality, features are much less likely to fail at high-intensity levels, so there is only a real need for the distribution for three successful replicates. (B) FDR plot for the
EPEC strain array. On the x-axis we plot the P-value of the genes on a log (base 10) scale; on the y-axis we plot the FDR associated with that gene. This is essentially
the expected number of false positives (equal to the number of genes in the analysis multiplied by the P-value), divided by the observed number of genes with P-values
less than or equal to the P-value (i.e. the rank of the gene with this P-value). On this array, there are 804 genes in the analysis. We use the FDR curve to select
differentially expressed genes. There are 27 genes with FDR <5% and 36 genes with FDR <10%. (C) Plot of average signal intensity against P-value for the genes in
the EPEC DlifA mutant array. This is a diagnostic plot to determine the performance of our error model. Each spot represents a gene, and has been colour-coded
according to the FDR associated with its P-value. There is no dependence of P-value on signal intensity, suggesting that our error model is performing well with these
data. Furthermore, the FDR thresholds also do not depend on signal intensity, again supporting the use of our error model with these data. This contrasts with the MVA
plot of log ratio against signal intensity, where there are more extreme log ratios at lower signal intensities than at higher signal intensities. The use of fold-ratio
thresholds, or any other approach that does not include dependence of error on signal intensity, would be inappropriate with these data. (D) MVA plot of log ratio
against signal intensity for the array for the EPEC DlifA mutant after 6 h. The results on this array show a far greater dependence of log ratio on signal intensity, with
many more extreme values at low intensity, and fewer extreme values at high intensity. As with the DlifA, the analysis selects differentially expressed genes at high-
signal intensities with lower fold ratios than the differentially expressed genes at low-signal intensities. (E) FDR plot for the DlifA mutant array. The FDR shows a
similar behaviour. The top 29 genes have FDR <5% and the top 35 genes have FDR<10%. (F) Diagnostic plot of P-value against signal intensity for theDlifA mutant
array. In general, there is no dependence of P-value on signal intensity. Similarly, there is no dependence of the FDR on signal intensity. However, there are two genes
(BCL-2 antagonist of cell death and RAR-e) in the bottom-left-hand corner of the plot with very low-signal intensity and P-values. From this plot, we would suspect
that these genes are outliers and do not represent truly differentially expressed genes. Furthermore, both these genes have only one successful feature, indicating that
these data are likely to be less reliable.
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to ensure this, we have chosen to use bootstrap distributions
of size 300 000.

Implementation of the error model. The methodology
described above has been implemented both in the pro-
gramming language Perl and in the statistical programming
environment R (www.r-project.org). Libraries are available
from the authors upon request.

Cluster analysis. Cluster analysis has been performed using
hierarchical clustering with the unweighted pair-group
method using the arithmetic averages (UPGMAs) on a simil-
arity matrix built with Pearson correlation coefficient. Figure 1
has been produced using the Gepas tool set (36).

RESULTS

Error model

We have generated error models representative of a human
microarray and applied this to study the host cell response to
bacterial infection. The models we have developed are based
on a three independent biological and technical replications
of an infection of a colon tumor cell line Caco-2 with the
EPEC 0127:H6 strain. Genes in the human microarray have
been spotted three times in different areas of the slide to
monitor within slide variability. This array type has been
manufactured utilizing a widely used commercial oligo-
nucleotide set developed and commercialized by Operon
(Qiagen Ltd).

The error model depends on both the array-to-array and
the feature-to-feature deviation (Figure 1). Both deviations
are intensity-dependent, with greater variability at low-
signal intensities than at high-signal intensities. There is
slightly greater array-to-array variability (SD = 0.27) than
feature-to-feature variability (SD = 0.17).

Since the deviations are intensity-dependent, the distribu-
tion of the error model itself is intensity-dependent. We plot
the standard deviation for the error model as a function of
intensity (Figure 2A and D). The model for one successful
replicate has an SD �0.66 for lowest expressed genes (average
intensity of �6); the SD decreases to �0.36 for genes of mode-
rate expression (average intensity of �10), and remains
approximately constant at this lower level for higher expressed
genes. The models for genes with two and three successful
replicates have very similar behaviour but with standard devi-
ations starting at 0.61 and 0.59 for the lowest expressed genes,
and then decreasing to similar values for the high-expressed
genes.

Statistical verification

We verify our results by plotting the P-value as a function
of signal intensity (Figure 2C and F). As the error model
includes a dependence of error on signal intensity, there should
be no bias for differentially expressed genes at any level of
signal intensity. In practice, on some arrays this is the case
(Figure 2C), but on arrays where there is a more pronounced
dependence of error on signal intensity (Figure 2D), some of
the differentially expressed genes appear suspicious on this
plot (Figure 2F) and are likely to be outliers.

Window width

We have investigated the influence of the window width on
the number of genes detected as differentially expressed for
a given FDR threshold. Figure 3 displays the percentage of
genes detected as differentially expressed (ordinate) as a
function of window width (abscissa). Our analysis shows
that the number of genes detected with a window width
<150 is unstable and tend to decrease with the increase in
the window width. The number of genes is then stable up
to a window size of 400 for a range of FDR values.

Characterization of EPEC and EHEC infection

In order to evaluate the potential of error model based expres-
sion analysis, we have characterized the response of human
Caco-2 intestinal epithelial cells to E.coli infection.

As stated previously four different bacterial strains were
analysed using microarray technology. These were EHEC
O157:H7 (stx�/�), EPEC O127:H6, EHEC O157:H7 (stx�/�)
Dler and EPEC O127:H6 DlifA. In addition, the O157:H7
(stx�/�) and EPEC O127:H6 strains were inactivated to test
the ability of dead bacteria to elicit a host response.

In order to verify that a comparable number of human
cells would be infected in our cultures, we have performed
an adhesion assay and estimated the percentage of cells infec-
ted by each strain of E.coli. The assay has shown that in our
experimental conditions a very similar number of Caco-2 cells
are infected with the wild-type strains of EHEC and EPEC
cells. In order to verify the success of the infection, we have
also performed a fluorescent staining of the actin cytoskel-
eton of infected cells (Figure 4). Our analysis, in accordance
with the recent findings by Cleary et al. (37), reveals dra-
matic difference between actin rearrangements of EHEC-
and EPEC-infected cells. EHEC cells rearrange the actin
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Figure 3. Choice of the window width. The figure shows the percentage of
genes detected (ordinate) as significant at given FDR as a function of window
width (abscissa). It can be noted that the percentage of genes detected
stabilizes around D = 150 independently of the FDR threshold.
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Figure 4. Characterization of EPEC and EHEC infection. (A) The percentage of Caco-2 cells infected with EPEC O127:H6 (EPEC), EHEC O157:H7 Sakai (stx�/�)
(EHEC), EPEC O127:H6 DlifA (EPEC dlifA) and EHEC O157:H7 Sakai (stx�/�) Dler (EHEC dler) is shown. The graph clearly shows that the majority of cells
are infected in all strains tested except the EHEC Dler. (B–G) The result of immunofluorescence assay is shown. The images of Caco-2 cell infected with EPEC
O127:H6 and EHEC O157:H7 Sakai (stx�/�) for 2 h are represented respectively in (F) and (G), and (D) and (E). Control Caco-2 cells (non-infected) are shown in (B
and C). In (B, D and F ), only the DAPI fluorescence is shown, whereas in (C, E and G) the merged fluorescence of both phalloidin (staining the cytoskeleton) and
DAPI is shown. Red dashed circles in (D and F) indicate the position of the bacteria. In control cells actin microfilaments are diffused through the entire cell, while in
infected cells they are clustered underneath the bacteria. It is noticeable that the morphology of the remodelling induced by EPEC O127:H6 and EHEC O157:H7
Sakai (stx�/�) was different.
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cytoskeleton with evident polymerization below the bacterial
cells, whereas in EPEC-infected cells the actin cytoskeleton
is rearranged forming rings surrounding the bacterial cells.
These differences in the phenotype of host infected cells
could be just one aspect of more profound molecular differ-
ences in the host response.

The analysis of NF-kB downstream genes shows the
efficacy of error model based expression profiling

The primary objective of our analysis has been to identify genes
differentially expressed between control and infected cells. In
particular, we first wanted to determine if error model based
expression analysis is efficient in identifying genes expected to
be differentially regulated consequent to infection. In order to
do this we have selected, from our array, genes downstream the
NF-kB pathway (38–40) (therefore known to be differentially
regulated during infection) and we have chosen two arbitrary
thresholds of FDR <10% and FDR <20% to generate lists of
up- or down-regulated genes (Figure 5A). At a threshold of
FDR <10%, significant up-regulation of NF-kB downstream
genes has been detected in 65% of the expected cases (13 out
of 20 cases; corresponding to the number of NF-kB assayed
genes in the EHEC- and EPEC-infected cells). At an FDR
<20%, the percentage of significant positive ratios slightly
increases to 70%. In our experimental system, inactivated
bacteria seem to be unable to activate the NF-kB pathway
(Figure 5B). These results suggest that our methodology is
accurate in identifying truly differentially expressed genes.

Global analysis of host response

In order to analyse the global response of cells in response to
infection and to assess if error model analysis could provide
new information on this biological process, we have then
chosen an arbitrary threshold of FDR <10% to generate lists
of genes significantly up- or down-regulated. We have then
selected genes that were differentially regulated in at least one
of the six arrays. This has led to a list of 116 genes. In order to
facilitate the interpretation of our results we have performed
cluster analysis on the 116 genes (Figure 5B). In addition to
the conventional dendrogram and heat map representations,
we have also produced a heat map labelling gene associated
with an FDR value above the chosen threshold.

Interestingly, our analysis reveals that the transcriptional
response of host cells infected by the EHEC strains is
extremely divergent with respect to the response of cells infec-
ted with the EPEC strains. Most of the clusters that are iden-
tified represent strain-specific transcriptional responses as
highlighted by the FDR map in Figure 5B. The three major
clusters are labelled in Figure 5B as Cluster A, Cluster B and
Cluster E. Cluster A represents genes that are up-regulated
specifically with the infection of the EPEC strains, Cluster B
represents genes down-regulated in response to EHEC
infection and Cluster E genes are those that are primarily

up-regulated in response to infection with the EHEC strains.
Smaller groups represent genes that are activated in response
to exposure to inactivated bacteria (Cluster C and Cluster F).
Within the major groupings there are some interesting
patterns. Although the response to infection with the EHEC
Dler mutant strain was qualitatively similar to the response to
the infection with the wild-type strain, it involved a much
larger number of genes. This suggests that Ler or genes down-
stream of Ler may be responsible for silencing components
of the host response. Host cell infection with the EPEC DlifA
on the other hand produced an almost overlapping effect
with respect to infection with the EPEC wild type, highlighting
the limited role of LifA in controlling the response of
epithelial cells.

Genes that are specifically up-regulated in response to
the EPEC infection include factors that are involved in cell
cycle regulation (CDKN1A, RBP1, GADD45 and JUNB),
apoptosis (JUNB, BIRC3 and BMP2) and two membrane
receptors (IFNGR2 and PDGFRA). Interestingly, genes down-
regulated in response to EHEC infections are characterized
by a pro-apoptotic function (NGFRAP1, CYPH and PRKCH)
whereas three anti-apoptotic genes (TOSO, MYO18A and
MCL1) are up-regulated. AGRIN and its receptor MUSK are
also up-regulated by EHEC strains. MUSK activation
by AGRIN results in the onset of a tyrosine-kinase cascade
that leads to cytoskeletal rearrangements in muscle cells at the
neuromuscular junctions (NMJs) (41) and in T lymphocytes
(42). The concomitant activation of AGRIN and its receptor
suggest an involvement of this pathway in AE lesions forma-
tion in cells infected by EHEC. The up-regulation of these
factors seems, however, to be insufficient to induce any actin
rearrangement in the absence of Ler downstream genes.

We have also discovered that four components of the Wnt
signalling pathway are differentially regulated in response to
infection either by EHEC or EPEC strains. These are the
ligands Wnt-15 (down-regulated in cells infected with
EPEC O127:H6 DlifA and EPEC O127:H6 fixed), Wnt-5b1
(down-regulated in cells infected with EPEC O127:H6 fixed)
and Wnt-16 2 [down-regulated in cells infected with EHEC
O157:H7 (stx�/�) and EHEC O157:H7 (stx�/�) Dler] and the
receptor Frizzled-2 [down-regulated in cells infected with
EHEC O157:H7 (stx�/�) Dler]. Since different members of
the Wnt gene family are regulated by the different strains, it is
possible that down-regulation of this morphogenetic pathway
may be part of a general mechanism of host response.
The response of host cells to exposure to inactivated bacteria
seems to be almost exclusively associated with the induction
of pro-apoptotic genes.

Comparison with the Rocke–Lorenzato two-component
error model

Our methodology allows the identification of differentially
expressed genes from unreplicated microarray experiments.

Figure 5. Cluster analysis. (A and B) The results of a two-way hierarchical clustering are shown. Samples are: Caco-2 cells infected for 6 h with EPEC O127:H6
(EPEC), EPEC O127:H6DlifA (EPEC dlifA), EHEC O157:H7 Sakai (stx�/�) (EHEC), EHEC O157:H7 Sakai (stx�/�)Dler (EHEC dler) and EHEC O157:H7 Sakai
(stx�/�) (EHEC fix) and EPEC O127:H6 (EPEC fix) fixed; versus uninfected control Caco-2 cells. (A) The results of clustering using a subset of genes known to be
downstream to NF-kB activation are shown. Highly significant ratios (FDR <10%) are marked in the heat map by yellow boxes. Significant genes (FDR >10% and
<20%) are marked by black boxes. (B) The results of a two-way hierarchical clustering of genes that is differentially expressed (FDR <10%) in at least one of the
arrays are shown. Dendrograms and heat maps are flanked by a colour-coded map representing genes associated with an FDR above (blue) and below (red) the
chosen threshold in each array.
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There are currently other two methods available; of these, the
Rocke–Lorenzato two-component error model (16) is widely
used in the microarray community because of its availability
within the popular software application Genespring. In order to
further validate our approach, we have performed a comparison
between our methodology and the Rocke–Lorenzato model.

The Genespring implementation of the Rocke–Lorenzato
model infers the experimental error by assuming that the level
of variability is a function of the control signal strength within
all the measurements in the array (16). In our analysis,
a Rocke–Lorenzato has been fitted with data from each indi-
vidual array and the FDR calculated as described by Benjamini
and Hochberg (19).

With the exception of two genes, our methodology
consistently estimates lower P-values respect to the Rocke–
Lorenzato model (Figure 6A). This property is propagated to the
FDR and is reflected in the number of genes the two methods
detect as differentially regulated. For example, at a FDR
threshold of 10%, the Rocke–Lorenzato model gives fewer
genes differentially expressed (4 genes differentially expressed
in the EHEC infected cells and 10 genes differentially expres-
sed in the EPEC-infected cells) than our method (26 differen-
tially expressed genes in the EHEC-infected cells and 33
differentially expressed genes in the EPEC-infected cells).

Moreover, the comparison of genes downstream NF-kB
detected as differentially regulated by both methods reveal
that our methodology is more effective in identifying genes
known to be differentially regulated: 13 out of 20 NF-kB
downstream genes are detected as differentially expressed
with our methodology (Figure 5A) whereas only 8 out of
20 are detected as differentially regulated with the Rocke–
Lorenzato model (Figure 6B).

DISCUSSION AND CONCLUSIONS

We have described a simple method that allows the selection
of differentially expressed genes from microarray experiments
with no replicates. This method relies on the prior construction
of an error model from a replicated pilot experiment on the
same platform, which is then applied to subsequent data that
are produced. Although, in an ideal world, microarray experi-
ments would have sufficient biological replicates to allow
rigorous statistical analysis via hypothesis tests, we believe
that this exercise is of great value, particularly in large-scale
experiments where it is not financially viable to allow such
replication. Of course, for this method to be applicable, the
subsequent data must come from the experimental system
similar to the pilot experiment.

The error model we derive uses a bootstrap distribution
that is able to capture intensity-dependent variability,
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Figure 6. Comparison with the Rocke–Lorenzato two-component error model.
(A) Scatterplot comparing the P-values obtained with the Bootstrap error model
(abscissa) with the P-values obtained with the Rocke–Lorenzato error model
(ordinate) is displayed. (B) Scatterplot comparing the FDR obtained with the
Bootstrap error model (abscissa) with the FDR obtained with the Rocke–
Lorenzato error model (ordinate) is displayed. (C) The result of clustering
using a subset of genes known to be downstream to NF-kB activation is shown.
Ratios that are highly significant according to the Rocke–Lorenzato model
(FDR <10%) are marked in the heat map by yellow boxes. The map is directly
compared with Figure 5A, which shows the results of the analysis on NF-kB
downstream genes with the Bootstrap error model.
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array-to-array variability, feature-to-feature variability, failed
replicates and non-normal distributions of errors. Because of
this, and its applicability to unreplicated experiments, we think
that our model is superior to similar published works based on
normal distributions. In particular, we demonstrated that our
method performs substantially better than the widely used
Rocke–Lorenzato model (16) implemented in the popular soft-
ware package Genespring when applied to our data. Our work
is also similar to the Locally Pooled Error model (13); how-
ever, our method has the advantage of being applicable to
subsequent data where there is no replication at all.

We have analysed the effect of the window width in our
error model. We have demonstrated that the number of genes
detected at a given FDR threshold is stable in the range of
150–300 genes. The bootstrap model used in this analysis uses
a fixed-width window of 200 in order to determine bootstrap
distributions that capture the dependence of error on signal
intensity. This value of window width is within the stable
interval and it is sufficiently small to ensure a good inference
of the intensity-dependent distribution.

We have based our gene expression threshold on an FDR
calculation, so that we have been able to select differentially
expressed genes with a quantitative measure of the likely
number of false positives in the final list. An important issue
in relationship with the detection of differentially expressed
genes and the computation of FDRs is that there is substantial
correlation structure in the gene expression profiles. There are
modified forms of the FDR that attempt to take into account
correlations in the data (43); however, the same group has
found that the original FDR formulation is more effective
for analysing microarray data (44). Therefore, we have used
the original FDR formulation. An important area of future
research into microarray data analysis will be to gain a greater
understanding of the effects of the correlation structure on the
selection of differentially expressed genes.

We have validated our method against a panel of genes
known to be differentially regulated in Caco-2 cells and dis-
covered that, at acceptable values of the FDR, up to 70% of the
genes expected to be differentially expressed (after infection
with alive bacteria) are detected as significant by our method.

Our observations that inactivated bacteria are unable to elicit
NF-kB response are also consistent with reports from other
groups (45,46). La Ferla et al. (45) have analysed a collection
of 15 E.coli isolates and have discovered that the large major-
ities were able to activate the NF-kB pathway but none of them
retained this ability after inactivation. Other groups have repor-
ted that inactivated E.coli cells are able to induce the expression
of a number of NF-kB downstream genes in human PBMCs.
Whether additional factors are required for the activation of this
signalling pathway in our infection system is still unclear.

Our analysis has discovered a very divergent transcriptional
response of the host cells in response to infection with EHEC or
EPEC strains. These molecular differences reflect the divergent
actin polymerization patterns that we have observed in EPEC-
and EHEC-infected cells and are certainly much larger than
originally expected. Moreover, the infection with an EHEC
strain, mutated in the Ler regulator, seems to be associated
with a larger transcriptional response with respect to cells infec-
ted with the wild-type strain, suggesting a broader role for Ler
downstream genes in controlling host response than originally
anticipated by Hauf and Chakraborty (47).

Our results can be used to generate new hypothesis on
molecular pathways involved in the infection process. The
observation that the interferon g (IFN g) receptor activation
is a EPEC-specific component of the host response may be
linked to the destruction of the IFN g pathway in cells infected
by EHEC (and not by EPEC) (48).

Our finding that the activation of the PDGF receptor is
a specific event consequent to infection with EPEC, leads
to another interesting hypothesis. PDGF stimulation leads to
the activation of Abl tyrosine kinases that are known to be
involved in the phosphorylation of the translocated protein
Tir. The Tir protein is conserved in both EHEC and EPEC
but the phosphorylation is required only in EPEC (49). The
up-regulation of the PDGF receptor could create a favourable
intracellular environment in cells infected by EPEC.

We have also observed two important pathways involved
in cell remodelling regulated during infection. Agrin and its
receptor is an example of a EHEC-specific pathway whereas
the Wnt pathway may be a more general mechanism to control
cellular remodelling during infection. The modulation of the
Wnt signalling pathway may not have consequences only on
the cell motility. The WNT-16 gene is expressed in peripheral
lymphoid organs and has been shown to be involved in haema-
topoiesis and to stimulate the proliferation of pre-B cells (50).
The down-regulation of this gene by EHEC could therefore
have an impact in the regulation of the host immune response
at the mucosal level.

Error model gene expression analysis is not a substitute
for experimental replication and proper statistical analysis.
Indeed, because of the lack of biological replication, any hypo-
theses derived from these results would require further veri-
fication. However, our methodology is designed to be used
in large-scale high-throughput screenings, where it would not
be economically viable to generate the necessary level of
replication. We have shown that our methodology can provide
information on cell responses that is sufficiently detailed to
allow hypothesis formulation, and thus that our method is
amenable to be applied to the analysis of very large collections
of biological samples. Therefore, this methodology makes it
possible to perform meaningful analyses of microarray data
from large-scale screenings of bacterial mutant collections.
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