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Abstract

Even in the face of the COVID-19 pandemic, Tuberculosis (TB) continues to be a major pub-

lic health problem and the 2nd biggest infectious cause of death worldwide. There is, there-

fore, an urgent need to develop effective TB diagnostic methods, which are cheap, portable,

sensitive and specific. Raman spectroscopy is a potential spectroscopic technique for this

purpose, however, so far, research efforts have focused primarily on the characterisation of

Mycobacterium tuberculosis and other Mycobacteria, neglecting bacteria within the micro-

biome and thus, failing to consider the bigger picture. It is paramount to characterise rele-

vant Mycobacteriales and develop suitable analytical tools to discriminate them from each

other. Herein, through the combined use of Raman spectroscopy and the self-optimising

Kohonen index network and further multivariate tools, we have successfully undertaken the

spectral analysis of Mycobacterium bovis BCG, Corynebacterium glutamicum and Rhodoc-

cocus erythropolis. This has led to development of a useful tool set, which can readily dis-

cern spectral differences between these three closely related bacteria as well as generate a

unique spectral barcode for each species. Further optimisation and refinement of the devel-

oped method will enable its application to other bacteria inhabiting the microbiome and ulti-

mately lead to advanced diagnostic technologies, which can save many lives.

Introduction

Despite the many advances in modern medicine, tuberculosis (TB) continues to affect millions

of people every year [1]. In 2021, the World Health Organization (WHO) estimated that active

TB claimed 1.6 million lives. With the advent of SARS-CoV-2 and the resultant COVID-19

pandemic, it had been previously hypothesised that an increased number of TB patients could
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‘fall through the cracks’ and would fail to acquire adequate treatment or diagnosis, especially

in more rural areas [2, 3]. The recent release of the Global TB Report 2022 has confirmed these

hypotheses, with declining standards of treatment and diagnosis reported in most countries

[1].

The primary causative agent of TB in humans is Mycobacterium tuberculosis. However, TB

can be caused by other organisms within the Mycobacterium genus [4]. This mainly consists of

Mycobacterium bovis and Mycobacterium africanum [5], which together form part of the

Mycobacterium tuberculosis bacterial complex (MTBC). TB infections primarily affect the

respiratory system. In circa 90% of infected people, the bacteria enters the lungs and subse-

quently proceeds into a latent state [6]. Whilst establishing an infection in this state, there is no

propagation to such a degree that the bacteria can infect other individuals, nor do they exfil-

trate the lungs. In effect, they remain in a state of relative equilibrium [7]. However, in ca. 10%

of patients, the bacteria progress onto causing an active disease [6]. The patients start demon-

strating symptoms such as fever, night sweats, weight loss and coughing, often with bloody

sputum. This spreads infection between individuals and can eventually prove fatal [8].

In approximately 15% of people with an active infection the bacteria exfiltrate the lungs,

causing extrapulmonary and systemic infection [9]. Patients who are immunocompromised

are more susceptible to this extrapulmonary disease [9]. Eliminating TB infection requires an

intense regime of antibiotics over the course of many months [10], which are often accompa-

nied by an array of side effects including hepatotoxicity, peripheral neuropathy, gastrointesti-

nal disturbances and arthralgia [11–13]. Of a growing concern is the presence of antimicrobial

resistance (AMR) within TB patients [14]. This is particularly true for patients in the former

USSR and India, which account for the highest burden of Multidrug-Resistant TB in the world

[1, 15].

Overall, the WHO seeks to reduce transmission of TB by ensuring both the rapid diagnosis

of active cases as well as timely treatment of patients [16]. Currently this presents with various

issues due to the rural spread of cases. Diagnosis of TB often consists of molecular and immu-

nological tests, which require specialist equipment and training often exacerbated by issues

related to sensitivity and specificity or alternatively, requiring bacterial culture in centralised

laboratories, which are slow and necessitate high containment facilities, rarely found in low

and middle income countries where TB is endemic [17, 18]. This has generated an increasing

need for diagnostic techniques which are readily portable, fast, accurate, cheap, reliable and

can be utilised at the point-of-need without specialist training [19].

Raman spectroscopy is a promising technique, which has previously been used to identify

pathogens and various Mycobacterium sp. in monocultures [20] as well as in blood samples

[21]. In contrast to other diagnostic methods, Raman does not require an extensive sample

preparation, addition of other reagents, complex laboratory equipment or specially trained

personnel [22]. Raman spectroscopy also renders itself easily miniaturised and portable and

can be deployed outside the laboratory environment without compromising its performance.

It is therefore, emerging as a potential candidate for rapid disease detection, which can be

readily deployed in rural areas and address the unmet need in TB diagnostics [23].

Raman spectroscopy has been successfully employed to discern between different types of

bacteria [22], viruses [24] and several types of cancer [25]. Spectral differences between various

members of the Mycobacterium genus in monoculture have also been demonstrated [20].

However, previous research focussed predominantly on a pre-requisite of culturing the bacte-

ria, consuming valuable time whilst also requiring high-containment facilities [26]. The use of

blood samples as an indirect detection method was also considered [21]. This has introduced

further challenges in terms of requiring well-trained phlebotomists and difficulties with
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discerning TB within the smoking populations (due to the effects it has upon various serum

proteins) along with a lack of consideration for HIV patients [21].

Raman spectral signatures discerning Mycobacterium sp. from other bacteria comprising

the microbiome within its full context or within real-world conditions have not yet been deter-

mined. Specifically, this could present issues relating to other bacteria from the order Myco-

bacteriales such as Rhodococcus sp. and Corynebacterium sp., which often form part of the

microbiome [27], yet possessing similar structural elements to M. tuberculosis and other Myco-
bacterium sp. such as mycolic acid [28] and arabinogalactan [29, 30]. It is, therefore, feasible

that their Raman spectra may be similar in presentation.

Whilst research continues investigating Raman spectroscopy as a potential tool for TB diag-

nostics, it is imperative to establish a ‘baseline’ of the inherent characteristics of bacteria which

compose the microbiome, where the detected changes via Raman spectroscopy could be attrib-

uted to the underpinning variations in bacterial physiology. The only study which has exam-

ined the related spectroscopic variations, is by Stöckel et al. [31] who used internal validation

of samples via Leave-One-Batch-Out-Cross-Validation. While this model proved successful,

no comparison of spectral changes due to other mycobacteriales outside the Mycobacterium
genus were established to indicate spectral regions of change and the authors concluded that

there is a need for advanced multivariate analysis due to the theorised high inter-variability

between samples [31].

Here, we present Raman spectroscopy profiling and classification of Mycobacterium bovis
BCG with a comparison of two other Mycobacteriales, in the hopes of establishing an impor-

tant baseline in the form of a “multi-biochemical barcode”, as a characteristic tool for ongoing

and future spectroscopic studies for diagnostic TB applications. We examine and evaluate

what is the spectral variability between representative organisms present within the micro-

biome, using the three representative Mycobacteriales, M. bovis BCG, Rhodoccocus erythropo-
lis, and Corynebacterium glutamicum and how these affect Raman spectra while gaining

insights on the biochemical interpretation of spectral data.

The acquired spectral data is classified using our new artificial neural network algorithm,

the self-optimising Kohonen index network (SKiNET) as a decision support tool. SKiNET is

based on the separation of data classes in a self-organising map (SOM) with characterisation

using a self-organising map discriminant index (SOMDI) enabling the subsequent classifica-

tion of the tested data. Through inspection of key differences between neuron weights and

class weight vectors, the algorithm enables identification of the key spectral changes. Training

parameters used for the SOM included the grid size of 4, the learning rate of 0.5 and 10 epochs.

From the separation of classes, it is evident that there are characteristic differences due to the

obvious classification of certain neurons. As such, there is a clear basis for differentiation

enabling characteristic weight vectors to be derived in the SOMDI. This data was then further

analysed using PCA-LDA and then barcodes were generated. The identified barcodes from

this study act as a reference, constituting a solid basis towards developing standard protocols

as an essential prerequisite for reliable studies aimed at establishing the feasibility of Raman

spectroscopy as an analytical tool for TB diagnostics.

Molecular barcodes can further be constructed for distinguishing between TB-positive and

TB-negative states associated with spectral changes via an easy subtraction of the variations

from the reference sample spectra. In conjunction with the emergence of state-of-the-art

machine learning techniques, the development of reliable and rapid spectroscopic analytical

tools, this ultimately promises to improve diagnostic technologies, aiding in identifying a pos-

sible Raman based diagnostic technique for TB as well as a better quality and timeliness of dis-

ease diagnostics and tailored treatments.
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Materials and methods

Reagents

Mycobacterium bovis BCG (NCTC 5692) was cultured on Middlebrook 7H11 agar (Thermo-

Fisher) + 0.2% Glycerol + 10% OADC Growth supplement (Sigma Aldrich) before being

moved to Middlebrook 7H9 liquid media + 0.2% Glycerol + 10% OADC Growth supplement.

Corynebacterium glutamicum (ATCC 21850) was cultured on Tryptic Soy Agar (Oxoid) prior

to being moved to Tryptic Soy Broth (Oxoid) Rhodococcus erythropolis (ATCC 4277) was cul-

tured on Brain-Heart Infusion Agar (Becton Dickinson) prior to being moved to Brain-Heart

Infusion broth (Becton Dickinson).

Sample preparation

M. bovis BCG was cultured on agar for 4 weeks at 37˚C on solid media. The colonies were sub-

sequently placed in liquid broth, where they were incubated at 37˚C and 150RPM for 1 week.

C. glutamicum and R. erythropolis were cultured on the media at 37˚C for 48 hours and then

transferred to their respective liquid cultures and incubated for a further 48 hours at 37˚C and

150 rpm. Following the incubation, cells were centrifuged at 3900 rpm for 10 mins and the

supernatant was removed. The cells were then resuspended in 1ml of sterile, distilled water

and spun again. This was repeated three times [20]. Cells were aseptically removed from the

respective pellet using a 10μl inoculating loop and spread on to an autoclaved aluminium

coated glass slide. The cells were then allowed to air dry under laminar flow for two hours [20].

Raman spectroscopy

Spectral acquisitions were performed using an InVia confocal Raman (Renishaw). The spec-

trometer was calibrated prior to each use with silicon (520.7cm-1). A 100x Leica objective and

a 1200l/mm grating were used for all measurements in the range of 750-1750cm-1. Raman

map scans, consisting of 3 accumulations and 10 second exposure time, were acquired over a

10μm x 10μm square grid using a 785nm excitation laser with laser power of 10-14mW. 100

spectra were collected for each bacterium with 3 replicas, generating a total of n = 300 spectra

per bacterial species. Wire 5.1 (Renishaw Plc) software was used for baseline subtraction and

cosmic ray removal.

Principal component analysis

Principal component analysis (PCA) was used to interpret the minute differences in spectra

between the different bacterial strains. PCA is a multivariate data analysis technique which

reduces the dimensionality of the dataset into the most relevant components to maximize the

variance among different samples by projecting the data into a space with N orthogonal basis

vectors, arranged in descending order with respect to variance. Each axis, or principal compo-

nent, represented a fraction of the total data variance.

The dimensionality reduction was achieved by selecting the number of principal compo-

nents that explains at least the required fraction of the dataset variance. In our study, this value

was 99.9% of the total variance. PCA analysis was used to determine how the separated clusters

separated between different strains and also to identify what they had in common. An ellipsoid

was fitted to the cluster, which covers up to one sigma significance according to the respective

data dispersion in the principal component one (PC1) and PC2.

PCA loadings were calculated using the eigenvectors and eigenvalues obtained from matrix

operations to find the PC. The loadings contained information specific to the initial Raman

data and differed depending on the PC space. In a 2D PCA system, the loadings of the different
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PC quadrants were expressed as PC1> 0 and PC2> 0, PC1 0 and PC2, and PC1> 0 and PC2

0, resulting in four different loading fingerprints related to the four quadrants.

Principal component analysis and linear discriminant analysis

Further, PCA was used as a pre-processing tool to reduce the dimensionality of the dataset and

then used as input data to the linear discriminant analysis (LDA). The PCA pre-processing

step yielded an inherent benefit of all of the output data being orthogonal, which circumvented

a weakness of LDA i.e., the collinearity. LDA similar to the PCA, seek to maximise variance

between components however, instead of within the dataset, LDA maximised variance

between groups. This meant that it has projected the data into a space such that the variance

between each bacterium was maximised. The comparison of the pure PCA and PCA-LDA

approaches were compared for their relative effectiveness in classifying spectra and to the self-

organising maps classification approach.

Self-organising maps

The self-organising maps (SOMs) were used for multivariate analysis [32, 33]. SOMs are sin-

gle-layer artificial neural networks that are represented as a two-dimensional (2D) hexagonal

array of neurons. Inspired by the visual cortex in the brain, the SOM is trained to activate

neighbouring neurons based on similar inputs, in this case Raman spectra. Each neuron has a

weight vector with a length equal to the number of variables in a spectrum. The weights are

gradually adjusted to be similar to the input data by exposing the network to training samples

over several iterations, so that each neuron only activates on a specific spectral signature. The

result is a 2D projection of hyperspectral data that can be seen as visible clustering based on

type, group, and state. SOM employs the self-organizing map discriminant index (SOMDI),

which appends a set of label vectors to each neuron and allowed us to study the most promi-

nent features that cause the activation of a specific neuron to a class label. Following that, a

supervised learning step was introduced to optimize the network and the class label associated

with each neuron was used to quickly identify new data presented to the SOM.

Raman peak analysis

The most important peaks were extracted by applying a multi-Lorentzian peak fitting method

[33] followed by a peak comparison among the different samples and selecting the common

peaks between samples to perform statistical analysis. A box plot of the Raman intensity of

these peaks was performed and compared among samples using multiple pairwise compari-

sons, Tukey’s honestly significant difference test (Tukey’s HSD) to investigate the differences.

Each spectrum was baseline subtracted and normalized between 0 and 1 using the asymmetric

least square method.

Code availability

The customized written Python algorithm can be downloaded from Ref. [34].

Results and discussion

Representative average Raman spectra in Fig 1A show the spectral differences between repli-

cates and the bacteria analysed in this study with the variance of the sample highlighted with

distinctive bands arising from the R. Corynebacterium, M. Bovis BCG and R. erythropolis. A

higher sample variance can be seen between R. erythropolis and M. bovis BCG via the greater

heterogeneity in the spectra. Clustering of the different bacteria obtained via the PCA (Fig 1B)
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with the greatest variability and therefore, the greatest cluster domain spread is observed in R.

erythropolis and M. bovis BCG also evident from the Raman spectra (Fig 1A). The initial PCA

analysis of the data also shows a great amount of spectral crossover.

Subsequently, to the PCA quadrant analysis of the bacteria samples, the loadings were ana-

lysed in terms of the specific quadrant location (Fig 2A). A high population of R. erythropolis
and C. glutamicum samples in the 3rd, green quadrant (Q3) was observed with the corre-

sponding loading spectra (Fig 2B) found to be related to the Q3 loading identified by the pres-

ence of multiple peaks, highlighting the relative similarities between both species of bacteria.

M. bovis BCG located in Q1, shows a high signal intensity for the 1050cm-1 and 1300 cm-1

bands resulting in greater separation of the M. bovis BCG relative to the other bacteria. C. glu-
tamicum also exhibited a cluster in Q4 due to the presence of a high-intensity peaks at

1150cm-1 and the 1300cm-1 region and the R. erythropolis shows a separated cluster in Q2,

which is related to the presence of a high-intensity peak at 1050cm-1 combined with other

peaks present in Q3 yet, with the absence of a strong peak at 1300cm-1.

Further, a region where most samples converge was identified between [–3,1] in PC1 and

[–3,1] in PC2 thus, revealing a commonality among different samples although both M. bovis
BCG and R. erythropolis have a larger variation in spectral signal which enables them to popu-

late other regions of the PC space. This has also been identified from the Raman loadings plot

(Fig 2C), where a few spectral lines above and below the sample average were indicative of the

Raman signal variance.

This variance has further been identified via SOM (Fig 3A), where the sample separations

clustering is identified as a colour intensity. The darker green hexagon is indicative of a more

distinct spectral region for M. bovis BCG with the lighter green hexagon close to blue and the

bright red hexagons, represent a degree of crossover between M. bovis BCG, R. erythropolis
and C. glutamicum, respectively, further consolidating the PCA observations. R. erythropolis
(blue) and C. glutamicum (red) appear mostly similar except the different peak intensities in

the 1000cm-1-1200cm-1 region as well as the 850cm-1 and 1550cm-1 peaks and M. bovis BCG

(green) appears to be more distinctive especially, in the 1200cm-1-1400cm-1 region along with

an absence of a peak at 1550cm-1 and a more intense peak at 1700cm-1. The activation peaks

(Fig 3B) correspond to the peak statistical analysis with R. erythropolis (blue) and C. glutami-

cum (red) being predominantly similar whilst M. bovis BCG (green) exhibiting is more distinct

spectral fingerprint particularly, in the 1300cm-1 region.

Fig 1. (A) Average Raman spectra of the various bacteria showing the variance within the same sample (faint lines) and the representative spectral fingerprint

peaks (bold lines). (B) The corresponding PCA analysis of the bacteria.

https://doi.org/10.1371/journal.pone.0293093.g001
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Fig 2. (A). Quadrant analysis of the PCA data, illustrating the clustering in Q3. (B). Clustering plot illustrating which Raman peaks are the most influential in

determining the presence of a component within its respective quadrants Q1, Q2, Q3, Q4. (C). Raman loadings plot demonstrating the most influential parts of

the spectra in the PCA.

https://doi.org/10.1371/journal.pone.0293093.g002

Fig 3. (A). SOM trained to analyse the respective bacteria illustrating the clustering of the spectra. (B). SOMDI showing the peaks which have the greatest influence in

activating the respective neurons in SOM.

https://doi.org/10.1371/journal.pone.0293093.g003
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We have subsequently identified and statistically analysed the most dominant spectral

peaks for the obtained Raman spectra (Fig 4A). Boxplots comparing the peaks shown in Fig

4A show the main differences between the peaks for each bacteria studied.

The 780cm-1 peak is found to be similar for the C. glutamicum and R. erythropolis and signif-

icantly different for M. bovis BCG. This peak corresponds to an uracil containing ring, with the

difference caused by the varying levels of uracil utilisation between the cells. Similar differences

are also observed for 1155, 1450, 1525, and 1610cm-1 peaks. Highly significant peaks identified

among all samples including the 1000, 1575 and 1660cm-1 are characteristic of Mycobacteriales.

On the other hand, the peak at 1210 was found to be not statically significant. Peak differen-

tiation can be achieved, mainly via the 850cm-1 band, which has been found to be statistically

significant for the R. erythropolis (blue) but not for the M. bovis BCG (green) and C. glutami-
cum (red). We can, therefore, accurately identify the various bacterial species within the mix-

ture. Specifically, R. erythropolis (blue) via the prominent intensity of the 850 cm-1 peak,

associated with tyrosine, C. glutamicum (red) from the M. bovis BCG (green) via the 780, 1000,

1155, 1525 and 1610 cm-1 peaks, attributed to the uracil-based breathing ring, phenylalanine,

carotenoids, in-plane vibrations of conjugated -C = C- and cytosine, respectively (Table 1).

Fig 4. (A). Box plots comparing the dominanat Raman spectral peaksof the studied bacterial spieces (NS = not significant, * = p<0.05, ** = p<0.01, *** =

p<0.001, **** = p<0.0001). (B). Confusion matrix following the 60:40 training and test data split during the PCA-LDA. (C). Characteristic derived spectral

barcodes of the C. Glutamicum, M. Bovis BCG and R. Erythropolis after the application of a Savitzky-Golay filter and reduction of the noise from the double

differentiation.

https://doi.org/10.1371/journal.pone.0293093.g004

PLOS ONE Use of Raman spectroscopy and artificial neural networks to discriminate members of the order Mycobacteriales

PLOS ONE | https://doi.org/10.1371/journal.pone.0293093 December 11, 2023 8 / 13

https://doi.org/10.1371/journal.pone.0293093.g004
https://doi.org/10.1371/journal.pone.0293093


With the dataset pre-processed by PCA, the LDA data was subject to cross-validation, with

4 folds used in analysis. The mean accuracy (±1σ) was 99.11±0.63%, showing excellent dis-

crimination between the different species (Fig 4B), where each species is clustered significantly

apart from the rest with the overall detailed analysis partitioning the PCA-processed dataset

into 40% test data and 60% training.

The derived confusion matrix (Fig 4B and Table 2) shows that on average the PCA-LDA

approach is highly effective at discerning between different bacterium species. The off-diago-

nal values represent the incorrect identification occurrence, where on average each of these

values was below 1. This means that in the worst performance case scenario, the PCA-LDA

approach will misidentify two samples from a pool of three bacteria.

The obtained spectra were further classified to derive the characteristic fingerprint spectral

barcode for each bacterium derived from the second derivatives, after application of a suitable

threshold to discriminate between signal and noise (Fig 4C). Initially, a Savitzky-Golay filter

was used to smooth the signal and reduce the noise from double differentiation and subse-

quently, a grid approach was used to select the window size and polynomial order with optimal

values for these were identified as 5 and 2, respectively. Following filtering, the second deriva-

tives were assigned binary values, +1 if their absolute value was greater than or equal to 5% of

the maximum value for each species, and 0 otherwise.

In our case, this threshold, building upon the work in Ref. [36], was increased to 5% since

the 1% value applied in Ref. [36] unnecessarily included noise. If the value was below the

threshold, it was assigned 0. Bars were plotted for each wavenumber and their position on the

Plotly “Greys” colourmap determined the colour of each bar, where the greater the count, the

darker was the bar. These were subsequently, overlaid over the averaged spectra for each spe-

cies, with a standard deviation value being shaded. A common feature for all three species was

Table 1. Summary of the prominent peaks with the greatest statistical significance determined in Fig 4A. Peaks attributions are taken from Movasaghi et al. [35].

Raman Peak (cm–1) Functional Group / Band Assignment Prominent In:

C. Glutamicum R. Erythropolis M. Bovis BCG
780 Uracil-based breathing ring X X

850 Tyrosine X

1000 Phenylalanine X X X

1155 Carotenoids X X

1210 Stretching in tyrosine and Phenylalanine X X X

1450 CH2 bending X X

1525 In-plane vibrations of conjugated -C = C- X X

1575 DNA bases X X X

1610 Cytosine X X

1660 Lipids X X X

https://doi.org/10.1371/journal.pone.0293093.t001

Table 2. Mean confusion matrix generated from the PCA-LDA. The values are rounded to the nearest integer.

Precision Recall F1-score Support

C. glutamicum 0.987 0.993 0.990 121

M. bovis BCG 0.994 0.992 0.993 118

R. erythropolis 0.993 0.988 0.990 121

Accuracy 0.991 360

Macro average 0.991 0.991 0.991 360

Weighted average 0.991 0.991 0.991 360

https://doi.org/10.1371/journal.pone.0293093.t002
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a strong second derivative significant value at ca. 1000 cm-1, also identified by the PCA and

SOM, attributed to the phenylalanine peak (Table 2).

Interestingly, M. bovis BCG lacks many features shared by the other two species based on

the derived barcodes. This was observed previously via PCA where M. bovis BCG had a differ-

ent sign for PC1 and via the PCA-LDA, where its sign for LD1 was opposite to the others. This

indicates that M. bovis BCG has a substantially different spectral fingerprint to the other two

species analysed, regardless of the method utilised. Discerning between C. glutamicum and R.

erythropolis samples via the barcode approach would rely on the lighter shaded barcodes,

which correspond to the characteristic traits of each bacterium and their respective spectra.

Overall, standard spectral classification via the artificial neural network SKiNET enables

high levels of discrimination when analysing multivariate spectral data generated by analysis

of bacteria. In contrast, standard PCA is found to exhibit low levels of accuracy. However, this

accuracy can be further enhanced using a PCA quadrant analysis, which corroborates the data

generated from SOM analysis and SKiNET. Further enhancing the possibility to identify and

characterise bacteria is the ability to discern distinct elements of the Raman spectra generated

as a result of statistical peak analysis, which affords insight into which components of the spec-

tra yield the greatest significance in terms of determining which peaks have the greatest influ-

ence in determining and differentiating the exact organism.

Conclusions

We have successfully identified and discriminated the Raman spectral fingerprint of the M.

bovis BCG and two other bacterial genera from the order Mycobacteriales associated with the

microbiome of both humans and animals. Despite similarities in physiology between members

of the order Mycobacteriales and their ubiquity within the microbiome of both humans and

livestock, previous research has not considered the possibility of spectral crossover when utilis-

ing Raman spectroscopy. Therefore, the discrimination of these three closely related bacteria

provides a valuable insight into the Raman spectra of potentially pathogenic bacteria as well as

those within the microbiome.

We have shown that a crossover event is highly likely to lead to false positives in the diagno-

sis of TB using sputum samples especially, if only PCA is utilised. The introduction of the SKi-

NET algorithm, therefore, affords a higher level of discrimination when compared to PCA

alone. By utilising this machine learning technique, we have discriminated between M. bovis
BCG, C. glutamicum and R. erythropolis with a high degree of accuracy (ca. 99%), which was

further enhanced and corroborated using PCA-LDA and PCA quadrant analysis. These meth-

ods, all represent a major shift towards spectroscopic diagnosis, which follows a growing trend

in industry to move from traditional desktop applications to the Cloud, including office suites,

multimedia editing and computer aided design and yet the advantages of connected scalable

applications are seldom leveraged in the scientific community.

Whilst the presence of broad peaks can mask certain features of the bacteria [37], and possi-

bly interfere with the detection of Mycobacterium sp. when considering the use of biological

samples taken from patients, the methods presented herein enable a higher level of discrimina-

tion between the bacteria. Future research will consider expansion into the analysis of more

Mycobacteriales, which have been readily identified as part of the human microbiome as well

as other bacteria, which are also likely to be present within the microbiome as well as the analy-

sis of more pathogenic bacteria as well as various serovars and the analysis of mixed samples,

which are more reflective of real-world scenarios.

Ultimately, once analysis of these bacteria has taken place individually, a composite culture

containing all the respective bacteria would be required and this would enable investigation

PLOS ONE Use of Raman spectroscopy and artificial neural networks to discriminate members of the order Mycobacteriales

PLOS ONE | https://doi.org/10.1371/journal.pone.0293093 December 11, 2023 10 / 13

https://doi.org/10.1371/journal.pone.0293093


into the feasibility of Raman as a diagnostic technique for bacterial respiratory illnesses such as

TB. Furthermore, the development of individual barcoding for each organism would enable

the development of an algorithm which can discriminate between various bacteria and help

identify the causative agent of a bacterial respiratory condition. Such an output could be devel-

oped into a web-based app that can be accessed globally providing a multi-faceted, qualitative

output rather than a quantitative one.

In summary, our study provides valuable insights into the combined use of Raman, SKi-

NET and other multivariate analyses and statistical tools which can rapidly discriminate and

identify various bacteria following spectral identification and detection. This enables the

important ability to discern the spectra of physiologically similar bacteria especially when com-

pared with more traditional techniques such as PCA along with the ability to generate and

consolidate fingerprint barcodes whilst also identifying spectral elements unique to individual

bacteria, further adding to the list of tools which are likely to be sought after in the ongoing

fight against infectious diseases, especially in a post-Covid world.
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13. Araújo-Mariz C, Lopes EP, Acioli-Santos B, Maruza M, Montarroyos UR, Ximenes RAdA, et al. Hepato-

toxicity during Treatment for Tuberculosis in People Living with HIV/AIDS. PLOS ONE. 2016; 11(6):

e0157725. https://doi.org/10.1371/journal.pone.0157725 PMID: 27332812

14. Dadu A, Hovhannesyan A, Ahmedov S, van der Werf MJ, Dara M. Drug-resistant tuberculosis in east-

ern Europe and central Asia: a time-series analysis of routine surveillance data. The Lancet Infectious

Diseases. 2020; 20(2):250–8. https://doi.org/10.1016/S1473-3099(19)30568-7 PMID: 31784371

15. Knight GM, McQuaid CF, Dodd PJ, Houben RMGJ. Global burden of latent multidrug-resistant tubercu-

losis: trends and estimates based on mathematical modelling. The Lancet Infectious Diseases. 2019;

19(8):903–12. https://doi.org/10.1016/S1473-3099(19)30307-X PMID: 31281059

16. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, et al. Tuberculosis: advances

and challenges in development of new diagnostics and biomarkers. The Lancet Infectious Diseases.

2018; 18(7):e199–e210. https://doi.org/10.1016/S1473-3099(18)30111-7 PMID: 29580818

17. MacGregor-Fairlie M, Wilkinson S, Besra GS, Goldberg Oppenheimer P. Tuberculosis diagnostics:

overcoming ancient challenges with modern solutions. Emerging Topics in Life Sciences. 2020; 4

(4):435–48. https://doi.org/10.1042/ETLS20200335 PMID: 33258943
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