UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Type Theory with Explicit Universe Polymorphism

Bezem, Marc; Coquand, Thierry; Dybjer, Peter; Escardd, Martin

DOI:
10.4230/LIPIcs.TYPES.2022.13

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Bezem, M, Coquand, T, Dybjer, P & Escardd, M 2023, Type Theory with Explicit Universe Polymorphism. in D
Kesner & P-M Pedrot (eds), 28th International Conference on Types for Proofs and Programs, TYPES 2022.,
13, Leibniz International Proceedings in Informatics, LIPIcs, vol. 269, Schloss Dagstuhl, pp. 13:1-13:16, 28th
International Conference on Types for Proofs and Programs, TYPES 2022, Nantes, France, 20/06/22.
https://doi.org/10.4230/LIPIcs. TYPES.2022.13

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.4230/LIPIcs.TYPES.2022.13
https://doi.org/10.4230/LIPIcs.TYPES.2022.13
https://birmingham.elsevierpure.com/en/publications/84a86967-085e-4053-bb1a-143b06c9e004

Type Theory with Explicit Universe Polymorphism

Marc Bezem &
University of Bergen, Norway

Thierry Coquand &
University of Gothenburg, Sweden

Peter Dybjer =
Chalmers University of Technology, Gothenburg, Sweden

Martin Escardé &
University of Birmingham, UK

—— Abstract

The aim of this paper is to refine and extend proposals by Sozeau and Tabareau and by Voevodsky
for universe polymorphism in type theory. In those systems judgments can depend on explicit
constraints between universe levels. We here present a system where we also have products indexed
by universe levels and by constraints. Our theory has judgments for internal universe levels, built up
from level variables by a successor operation and a binary supremum operation, and also judgments
for equality of universe levels.

2012 ACM Subject Classification Theory of computation — Type theory

Keywords and phrases type theory, universes in type theory, universe polymorphism, level-indexed
products, constraint-indexed products

Digital Object Identifier 10.4230/LIPIcs. TYPES.2022.13

Acknowledgements The authors are grateful to the anonymous referees for useful feedback, and
to Matthieu Sozeau for an update on the current state of universe polymorphism in Coq. We
acknowledge the support of the Centre for Advanced Study (CAS) at the Norwegian Academy of
Science and Letters in Oslo, Norway, which funded and hosted the research project Homotopy Type
Theory and Univalent Foundations during the academic year 2018/19.

1 Introduction

The system of simple type theory, as introduced by Church [9], is elegant and forms the basis
of several proof assistants. However, it has some unnatural limitations: it is not possible in
this system to talk about an arbitrary type or about an arbitrary structure. For example, it
is not possible to form the collection of all groups as needed in category theory. In order to
address these limitations, Martin-Lof [22, 21] introduced a system with a type V of all types.
A function A — V in this system can then be seen as a family of types over a given type
A. Tt is natural in such a system to refine the operations exponential and cartesian product
in simple type theory to operations of dependent products and sums. After the discovery
of Girard’s paradox [16], Martin-Lof [23] introduced a distinction between small and large
types, similar to the distinction introduced in category theory between large and small sets,
and the type V became the (large) type of small types. The name “universe” for such a type
was chosen in analogy with the notion of universe introduced by Grothendieck to represent
category theory in set theory.
Later, Martin-Lof [24] introduced a countable sequence of universes

U01U1:U2:---

We refer to the indices 0,1, 2,... as universe levels.

© Marc Bezem, Thierry Coquand, Peter Dybjer, and Martin Escardé;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).

Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 13; pp. 13:1-13:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Marc.Bezem@uib.no
https://orcid.org/0000-0002-7320-1976
mailto:Thierry.Coquand@cse.gu.se
https://orcid.org/0000-0002-5429-5153
mailto:peterd@chalmers.se
https://orcid.org/0000-0003-4043-5204
mailto:m.escardo@bham.ac.uk
https://orcid.org/0000-0002-4091-6334
https://doi.org/10.4230/LIPIcs.TYPES.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Type Theory with Explicit Universe Polymorphism

Before the advent of univalent foundations, most type theorists expected only the first
few universe levels to be relevant in practical formalisations. One thought that it might be
feasible for a user of type theory to explicitly assign universe levels to their types and then
simply add updated versions of earlier definitions when they were needed at different levels.
However, the number of copies of definitions does not only grow with the level, but also with
the number of type arguments in the definition of a type former. (The latter growth can be
exponentiall)

To deal with this, Huet [20] introduced a specific form of universe polymorphism that
allowed the use of U : U on the condition that each occurrence of U can be disambiguated as
U; in a consistent way. This approach has been followed by Harper and Pollack [18] and in
Coq [35]. These approaches to implicit universe polymorphism are, however, problematic
with respect to modularity. As pointed out in [11, 28]: one can prove A — B in one file, and
B — C in another file, while A — C' is not valid.

Leaving universe levels implicit also causes practical problems, since universe level
disambiguation can be a costly operation, slowing down type-checking significantly. Moreover,
so-called universe inconsistencies can be hard to explain to the user.

In order to cope with these issues, Courant [11] introduced explicit universe levels, with
a supremum operation (see also Herbelin [19]). Explicit universe levels are also present in
Agda [32] and Lean [12, 7]. However, whereas Courant has universe level judgments, Agda
has a type of universe levels, and hence supports the formation of level-indexed products.

With the advent of Voevodsky’s univalent foundations, the need for universe polymorphism
has only increased. One often wants to prove theorems uniformly for arbitrary universes.
These theorems may depend on several universes and there may be constraints on the level of
these universes. In response to this Voevodsky [39] and Sozeau and Tabareau [30] proposed
type theories parameterized by (arbitrary but fixed) universe levels and constraints.

The univalence axiom states that for any two types X,Y the canonical map

idtoeqy y : (X =Y) = (X ~Y)

is an equivalence. Formally, the univalence axiom is an axiom scheme which is added to
Martin-Lof type theory. If we work in Martin-Lof type theory with a countable tower of
universes, each type is a member of some universe U,. Such a universe U, is univalent
provided for all X, Y : U,, the canonical map idtoeqy - is an equivalence. Let UA,, be the type
expressing the univalence of U,,, and let ua,, : UA, for n = 0,1, ... be a sequence of constants
postulating the respective instances of the univalence axiom. We note that X =Y : U, 41
and X ~Y : U, and hence UA, : U, +1. We can express the universe polymorphism of these
judgments internally in all of the above-mentioned systems by quantifying over universe
levels, irrespective of having universe level judgments or a type of universe levels.

To be explicit about universes can be important, as shown by Waterhouse [40, 8], who
gives an example of a large presheaf with no associated sheaf. A second example is the fact
that the embedding Group(U,,) — Group(U,,+1) of the type of groups in a universe U,, into
that of the next universe U, 41 is not an equivalence. That is, there are more groups in the
next universe [5].

We remark that universes are even more important in a predicative framework than in an
impredicative one, for uniform proofs and modularity. Consider for example the formalisation
of real numbers as Dedekind cuts, or domain elements as filters of formal neighbourhoods.
Both belong to U; since they are properties of elements in Uy. However, even in a system
using an impredicative universe of propositions, such as the ones in [20, 12], there is a need
for definitions parametric in universe levels.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé

Terminology
Following Cardelli [6], we distinguish between implicit and explicit polymorphism:

Parametric polymorphism is explicit when parametrization is obtained by explicit
type parameters in procedure headings, and corresponding explicit applications of
type arguments when procedures are called ... Parametric polymorphism is called
implicit when the above type parameters and type applications are not admitted, but
types can contain type variables which are unknown, yet to be determined, types.

Motivation

Many substantial Agda developments make essential use of explicit universe polymorph-
ism with successor and finite suprema. Examples include the Agda standard library [34],
the cubical Agda library [36], 1Lab [33], the Agda-HoTT library [37], agda-unimath [27],
TypeTopology [14], HoTT-UF-in-Agda [13] (Midlands Graduate School 2019 lecture notes).

The original motivation for this work was to formalise the type theory of Agda, including
explicit universe polymorphism. In doing that, we found ourselves modifying Agda’s treatment
of universes as follows:

We have universe level judgments, like Courant [11], instead of a type of universe levels,

like Agda.

We add the possibility of expressing explicit universe level constraints. This is not only

more general but also arguably gives a more natural way of expressing types involving

universes.

We do not require a first universe level zero, so that every definition that involves universes

is polymorphic.

We include a Type judgment, which does not refer to universes, as in Martin-Lof [25].

Our resulting type theory is orthogonal to the presence or absence of cumulativity. In
the body of the paper, we treat universes a la Tarski, but we also give an appendix with a
version a la Russell.

We have checked that the lecture notes [13] on HoTT/UF, which include 9620 lines of
Agda without comments, can be rewritten without universe level zero. We believe, based
on what we learned from this experiment, that the above Agda developments could also
be rewritten in this way. Experience with these Agda developments suggest that a type for
levels in Agda could be replaced by level judgments in practice. The fact that levels form a
type in Agda automatically allows for nested universal quantification over levels, which we
instead add explicitly to our type theory.

Summary of main contributions

Like Courant, we present a type theory with universe levels and universe level equations as
judgments. Moreover, we don’t restrict the levels to be natural numbers. Instead we just
assume that they form a sup-semilattice with an inflationary endomorphism. In this way
all levels are built up from level variables by a successor operation and a binary supremum
operation. Unlike most other systems, we do not have a level constant O for the first
universe level. Thus all types involving universes depend on level variables; they are universe
polymorphic.

Furthermore, we make the polymorphism fully explicit in the sense of Cardelli by adding
level-indexed products. In this way we regain some of the expressivity Agda gets from having
a type Level of universe levels. Finally, we present a type theory with constraints as judgments
similar to the ones by Sozeau and Tabareau [30] and Voevodsky [39] but extended with
constraint-indexed products.

13:3

TYPES 2022

13:4

Type Theory with Explicit Universe Polymorphism

Plan

In Section 2 we display rules for a basic version of dependent type theory with II, %, N, and
an identity type former Id.

In Section 3 we explain how to add an externally indexed sequence of universes U,,, T,, (n €
N) a la Tarski, without cumulativity rules. In Appendix A we present a system with
cumulativity, and in Appendix B we present a system a la Russell.

In Section 4 we introduce a notion of universe level, and let judgments depend not only
on a context of ordinary variables, but also on level variables «, ..., 5. This gives rise to a
type theory with level polymorphism, which we call “ML-style” as long as we do not bind
level variables. We then extend this theory with level-indexed products of types [a]A and
corresponding abstractions () A to give full level polymorphism.

In Section 5 we extend the type theory in Section 4 with constraints (lists of equations
between level expressions). Constraints can now appear as assumptions in hypothetical
judgments. Moreover, we add constraint-indexed products of types [¢)]A and corresponding
abstractions (1)) A. This goes beyond the systems of Sozeau and Tabareau [30] and Voevodsky
[39]. In Section 6 we compare our type theory with Voevodsky’s and Sozeau-Tabareau’s and
briefly discuss some other approaches. Finally, in Section 7 we outline future work.

2 Rules for a basic type theory

We begin by listing the rules for a basic type theory with I, 3, N, and Id. A point of departure
is the system described by Abel et al. in [1], since a significant part of the metatheory of this
system has been formalized in Agda. This system has II-types, N and one universe. However,
for better readability we use named variables instead of de Bruijn indices. We also add X
and Id, and, in the next sections, a tower of universes.

The judgment I' - expresses that I is a context. The judgment I' - A expresses that A is
a type in context I'. The judgment I' F a : A expresses that A is a type and a is a term of
type A in context I'. The rules are given in Figure 1.

r-A 'k

e - (I fresh) m

OF T,a:AF (z:41n)

Figure 1 Rules for context formation and assumption.

We may also write A type (I') for T' - A, and may omit the global context T', or the
part of the context that is the same for all hypotheses and for the conclusion of the rule.
Hypotheses that could be obtained from other hypotheses through inversion lemmas are
often left out, for example, the hypothesis A type in the first rule for IT and ¥ in Figure 2.

B type (z: A) b:B (z:A) c:11,;.4B a:A
I1,. 4 B type Ap:ab I, 4B ca: Bla/x)

B type (z: A) a:A b: B(a/x) c: Y4B c: Y4B
Y..4B type (a,b) : X,.4B cl: A ¢.2: B(e.1/x)

Figure 2 Rules for IT and X.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé 13:5

We write = for definitional equality (or conversion). The following rules express that
conversion is an equivalence relation and that judgments are invariant under conversion. The
rules are given in Figures 3 and 4.

a:A A =B a =a:A A=1B
a:B a =a:B
A=B A=C A type a =b:A a=c:A a:A
B = C A=A b =c:A a =a:A
Figure 3 General rules for conversion.
A=A B = B' (z:A) ¢ = ¢ :M.aB a=2d:A
Iz aB = I, B’ ca = ¢ da :B(a/z)
b:B (z:A) a:A fx=gz:B(z:A)
Az:aba = bla/x) : B(a/x) f=g¢g:1.aB
A=A B = B' (z:A) c = c:%.4B c = c:%.aB
YeaB = Y4B cl =c.1: A c2 = ¢.2:B(cl/z)
a:A b:B(a/z) a:A b:B(a/z) cl = d1:A c2 =c.2:B(el/z)
(a,b).1 = a: A (a,b).2 = b: B(a/x) ¢ = ¢ :3;4B

Figure 4 Conversion rules for IT and X.

By now we have introduced several parametrized syntactic constructs for types and terms,
such as I, 4 B, Ag.ab, ca, (a,b).2. Conversion rules for II and ¥ were given in Figure 4. and
those rules imply that = is a congruence.(Some cases of congruence are subtle. Exercise:
show congruence of = for A\,;.4b and (a,b).) In the sequel we will tacitly assume the inference
rules ensuring that = is a congruence for all syntactic constructs that are to follow.

We now introduce the type of natural numbers N with the usual constructors 0,S and
eliminator R, as an example of an inductive data type. Rules with the same hypotheses are
written as one rule with several conclusions. The rules are given in Figure 5.

We also add identity types Id(A4, a,a’) for all A type, a : A and o’ : A, with constructor
refl(A, a) and (based) eliminator J(A,a,C,d,a’,q). The rules are given in Figure 6.

In this basic type theory we can define, for example, isContr(A) := X, 4I1,.41d(A, a, z)
for A type, expressing that A is contractible. If also B type, we can define Equiv(4, B) :=

Y .4 I, gisContr(X,. 41d(B, b, f(x))), which is the type of equivalences from A to B. This
example will also be used later on.

n:N Ptype (x:N) a:P(0/z) g:IL.n(P— P(S(x)/z))
Ntype O0:N S(n):N R(P,a,g,0) =a: P(0/x)

Ptype (z:N) a:P(0/x) g¢:I.n(P — P(S(x)/z)) n:N
R(P,a,g,n) : P(n/x) R(P,a,q,5(n)) = g n R(P,a,g,n) : P(S(n)/x)

Figure 5 Rules and conversion rules for the datatype N.

TYPES 2022

13:6 Type Theory with Explicit Universe Polymorphism

Atype a:A d:A a:A
Id(A,a,a’) type refl(A4, a) : 1d(4, a,a)

a:A Ctype(z:Ap:ld(Aa,zx)) d:Clajx,refl(A,a)/p) d A q:1d(A a,ad)
J(4,a,C d,d,q): C(a’'/z,q/p) J(A4,a,C,d,a,refl(A,a)) = d: C(a/x,refl(A,a)/p)

Figure 6 Rules and conversion rule for identity types.

3 Rules for an external sequence of universes

We present an external sequence of universes of codes of types, together with the decoding
functions. (We do not include rules for cumulativity here, leaving them for Appendix A.)
The rules are given in Figure 7.

A:U,
U, type Tn(A) type ur : U, T,(Ur) =U,,

(n > m)

Figure 7 Rules and conversion rules for all universes U,, and their codes Uy, (n > m).

Here and below m and n, as super- and subscripts of U and T, are external natural
numbers, and n V m is the maximum of n and m. This means, for example, that U, type is
a schema, yielding one rule for each m.

Next we define how II, X, N, and Id are “relativized” to codes of types, and how they are
decoded, in Figures 8 and 9.

A:U, B:T,(A) = Uy,
T AB : Upom Tovm (M AB) = o1, 4y Ton (B)

A:U, B:T,(A) = U,
YrmAB : Upym Tovm (XMAB) = a1, (4) Tm (B)

Figure 8 Rules and conversion rules for IT and X for codes of types.

N7 2 Uy, T,.(N?) =N

AU, ag:Tp(A) ay1:Tr(A)
Id"(A,ao,al) : Un Tn(ld"(A,aO,al)) = |d(Tn(A),a0,a1)

Figure 9 Rules and conversion rules for codes of N and Id.

In the following section we present a type theory with internal universe level expressions.
This theory has finitely many inference rules.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé 13:7

4 A type theory with universe levels and polymorphism

The problem with the type system with an external sequence of universes is that we have to
duplicate definitions that follow the same pattern. For instance, we have the identity function

idn =)‘X:Un)‘x:Tn(X)-r : HX:U,LTn(X) — Tn(X)

This is a schema that may have to be defined (and type-checked) for several n. We address
this issue by introducing universe level expressions: we write «, (3, ... for level variables, and
l,m,... for level expressions which are built from level variables by suprema [V m and the
next level operation [T. Level expressions form a sup-semilattice [V m with a next level
operation [T such that [VIT =T and (IVm)T =1t Vvm™T. (We don’t need a 0 element.)
We write [< m for [V m =m and [< m for I < m. See [4] for more details.

We have a new context extension operation that adds a fresh level variable « to a context,
a rule for assumption, and typing rules for level expressions, in Figure 10.

'k 'k . { level m level { level
(« fresh) m(a inT)

I, « level - IV m level It level

Figure 10 Rules for typing level expressions, extending Figure 1.

We also have level equality judgments I' i [= m and want to enforce that judgments are
invariant under level equality. To this end we add the rule that I' -1 = m when I' - [level
and T' = m level and [= m in the free sup-semilattice above with _* and generators (level
variables) in T'.

In the next section we will also consider hypothetical level equality judgments, i.e., we
may have constraints in ', quotienting the free sup-semilattice above.

We tacitly assume additional rules ensuring that level equality implies definitional equality
of types and terms. It then follows from the rules of our basic type theory that judgments
are invariant under level equality: if | = m and a(l/«a) : A(l/a), then a(m/a) : A(m/a).

We will now add rules for internally indexed universes in Figure 11. Note that [< m is
shorthand for the level equality judgment m = [T V m.

[level A:U; l<m
U; type Ti(A) type umr: Up, Tn(UM) =U;

Figure 11 Rules and conversion rule for universes U; and their codes.

The remaining rules are completely analogous to the rules in Figure 8 and Figure 9 for
externally indexed universes with external numbers replaced by internal levels. (To rules
without assumptions, such as the first two in Fig. 9, we need to add assumptions like n level,
for other rules these assumptions can be obtained from inversion lemmas.)

We expect that normalisation holds for this system. This would imply decidable type-
checking. This would also imply that if a : N in a context with only level variables, then a is
convertible to a numeral.

TYPES 2022

13:8

Type Theory with Explicit Universe Polymorphism

Interpreting the level-indexed system in the system with externally indexed universes

A judgment in the level-indexed system can be interpreted in the externally indexed system
relative to an assignment p of external natural numbers to level variables. We simply replace
each level expression in the judgment by the corresponding natural number obtained by
letting [T p=1p+1 and (I Vm)p=max(lp,mp).

Rules for level-indexed products

In Agda Level is a type, and it is thus possible to form level-indexed products of types as
II-types. In our system this is not possible, since level is not a type. Nevertheless, it is useful
for modularity to be able to form level-indexed products. Thus we extend the system with
the rules in Figure 12.

A type (« level) t:la]JA 1 level u: A («level) ta=ua: A (alevel)
[a]A type tl:A(l/a) (a)u : [a]A t=u:[a]A

u: A (alevel) [level

(a)u) I =u(l/a) : A(l/a)

Figure 12 Rules and conversion rule for level-indexed products.

In this type theory we can reflect, for example, isContr(A) := X, 411, 4ld(A, a,z) for
A type as follows. In the context alevel, A : U,, define

isContr®(A) := X% A(Xgir, 4y (T A(Npir, ()ld¥ (4, a,2)))).

Then T, (isContr®(A4)) = isContr(T,(A)). We can further abstract to obtain the following
typing:

(a)Aa.u,isContr®(A) : [a](Uy — Uy).

In a similar way we can reflect Equiv(A,B) for A, Btype by defining in context
alevel, Blevel, A : Uy, B : Ug a term Eq™?(4, B) : Uyys such that Tays(Eq™? (A4, B)) =
Equiv(T,(A), Tg(B)).

An example that uses level-indexed products beyond the ML-style polymorphism (provided
by Sozeau and Tabareau and by Voevodsky) is the following type which expresses the theorem
that univalence for universes of arbitrary level implies function extensionality for functions
between universes of arbitrary levels.

([a]lsUnivalent Uy) — [5][7]FunExt Ug U,

In other words, global univalence implies global function extensionality.

Since an assumption of global function extensionality can replace many assumptions of
local function extensionality (provided by ML-style polymorphism), this can also give rise to
shorter code, see the example Eq-Eq-cong’ in [13].

5 A type theory with level constraints

To motivate why it may be useful to introduce the notion of judgment relative to a list of
constraints on universe levels, consider the following type in a system without cumulativity.
(We use Russell style notation for readability, see Appendix B for the rules for the Russell
style version of our system.)

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé

HA:U; B:U,, C:U, Id Ul\/m (A X B) (C X A) — Id Um\/l (B X A) (C X A)
This is well-formed provided [V m = n V [. There are several independent solutions:
l=a,m=Bn=aVp
l=a,m=yVan=rvy
I=BVym=phn=r
l=am=pn=7

where «, 3, and y are level variables. It should be clear that there cannot be any most general
solution, since this solution would have to assign variables to [, m,n.
In a system with level constraints, we could instead derive the (inhabited under UA) type

HA:UQ B:Ug C:U, Id Ua\/ﬁ (A X B) (C X A) —Id Ua\/»y (B X A) (C X A)

which is valid under the constraint oV = «a V v, which captures all solutions simultaneously.

Without being able to declare explicitely such constraints, one would instead need to
write four separate definitions.

Surprisingly, if we add a least level 0 to the term levels (like in Agda) then there is a
most general solution, namely [=aV BV 3, m=pBV~y, n=aV-~y, since it can be seen as
an instance of a Associative Commutative Unit Idempotent unification problem [3].

It is however possible to find equation systems which do not have a most general unifier,
even with a least level 0, using the next level operation. For instance, the system [T = mVn
does not have a most general unifier, using a reasoning similar to the one in [15].

Rules for level constraints

A constraint is an equation | = m, where [and m are level expressions. Voevodsky [39]
suggested to introduce universe levels with constraints. This corresponds to mathematical
practice: for instance, at the beginning of the book [17], the author introduces two universes
U and V with the constraint that U is a member of V. In our setting this will correspond to
introducing two levels « and 8 with the constraint a < .

Note that a < 3 holds iff 3 = 8V at. We can thus avoid declaring this constraint if we
instead systematically replace 8 by 8V a*. This is what is currently done in the system
Agda. However, this is a rather indirect way to express what is going on. Furthermore, the
example at the beginning of this section shows that this can lead to an artificial duplication
of definitions.

Recall that we have in Section 4, e.g., the rule that Uj® : Uy, if [< m valid, that is, if
I < m holds in the free semilattice. In the extended system in this section, this typing rule
also applies when [< m is implied by the constraints in the context I'. For instance, we have
ot < B in a context with constraints o < v and v < 8.

To this end we introduce a new context extension operation I', ¢ extending a context I'
by a finite set of constraints 1. The first condition for forming I, is that all level variables
occurring in ¢ are declared in I". The second condition is that the finite set of constaints in
the extended context I', ¢ is loop-free. A finite set of constraints is loop-free if it does not
create a loop, i.e., a level expression [such that I < [modulo this set of constraints, see [4].

! We learnt this from Thiago Felicissimo, with a reference to the work [15].

13:9

TYPES 2022

13:10

Type Theory with Explicit Universe Polymorphism

We also have a new judgment form I' - 1 valid that expresses that the constraints in v
hold in T, that is, are implied by the constraints in I'. If there are no constraints in I', the
judgment I' - {l = m} valid amounts to the same as I' [= m in Section 4. Otherwise it
means that the constraints in) hold in the sup-semilattice with _* presented by T.

As shown in [4], T' F 4 valid as well as loop-checking, is decidable in polynomial time.

Voevodsky [39] did not describe a mechanism to eliminate universe levels and constraints.
In Figure 12 we gave rules for eliminating universe levels and in Figure 13 below we give
rules for eliminating universe level constraints.

Rules for constraint-indexed products

We introduce a “restriction” or “constraining” operation with the rules in Figure 13.

Atype (¢) t: A (4) 3 valid W valid
[¥]A type ()t : [Y]A [W]A=A W)t =t

Figure 13 Rules for constraining.

Here is a simple example of the use of this system. In order to represent set theory in
type theory, we can use a type V satisfying the following equality Id Ug V' (Zx.y, X — V).
This equation is only well-typed modulo the constraint a < .

We can define in our system a constant

c = (aB){a<B)AvuldUg Y (Bxu, X —=Y) : [af]la<pBl(Us— Ust)

This is because Y x.y, X — Y has type Ug in the context

o :level, B:level, a < B, Y :Ug
We can further instantiate this constant ¢ on two levels [and m, and this will be of type
[l <m](Up, = Up+)

and this can only be used further if I < m holds in the current context?.

In the current system of Agda, the constraint o < (3 is represented indirectly by writing
B on the form vV ot and ¢ is defined as

c = <a ’Y>>\Y:Ua+vwld Uoﬁrv'y Y (EX:UQX — Y) : [Ot ’}/](Uaﬁr\/fY — Ua++\/—y+)

which arguably is less readable.

2 It is interesting to replace Id U in the definition of ¢ above by Eq. We leave it to the reader to verify
the following typing, for which no constraint is needed:

d = (a B)Avw, EQY (Exu, X —=Y) : [apl(Ug = Ugyar)

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé

In general, if we build a term ¢ of type A in a context using labels ag,...,a,, and
constraint ¢ and variables x1 : A1,..., 2z, : A, we can introduce a constant

c = <a1 am><w>>\r1 mnt : [al O‘m][w]HmyAl mn:An,A

We can then instantiate this constant ¢ Iy ... l,, u1 ... uy, but only if the levels Iy ... I,
satisfy the constraint .
We remark that Voevodsky’s system [39] has no constraint-indexed products and no

associated application operation, and instantiation of levels is only a meta-level operation.

Sozeau and Tabareau [30] do not have constraint-index products either. However, they do
have a special operation for instantiating universe-polymorphic constants defined in the
global environment.

» Remark 1. Let’s discuss some special cases and variations.

First, it is possible not to use level variables at all, making the semilattice empty, in
which case the type theory defaults to one without universes as presented in Section 2.

Second, one could have exactly one level variable in the context. Then any constraint
would either be a loop or trivial. In the latter case, the finitely presented semilattice
is isomorphic to the natural numbers with successor and max. Still, we get some more
expressivity than the type theory in Section 3 since we can express universe polymorphism
in one variable.

Third, with arbitrarily many level variables but not using constraints we get the type
theory in Section 4.

Fourth, we could add a bottom element, or empty supremum, to the semilattice. Without
level variables and constraints, the finitely presented semilattice is isomorphic to the natural
numbers with successor and max and we would get the type theory in Section 3. We would
also get a first universe. (Alternatively, one could have one designated level variable 0 and
constraints 0 < « for all level variables «.)

Fifth, we note in passing that the one-point semilattice with _ T has a loop.

6 Related work

We have already discussed both Coq’s and Agda’s treatment of universe polymorphism in
the introduction, including the work of Huet, Harper and Pollack, Courant, Herbelin, and
Sozeau and Tabareau, as well as of Voevodsky. In this section we further discuss the latter
two, as well as some recent related work.

Lean

One can roughly describe the type system of Lean [12, 7] as our current type system where
we only can declare constants of the form ¢ = {(ay ... a,)M : [a1 ... ay]A where there
are no new level variables introduced in M and A.

Voevodsky

One of our starting points was the 79 pp. draft [39] by Voevodsky, where type theories are
parametrized by a fixed but arbitrary finite set of constraints over a given finite set Fu of
u-level variables. A u-level expression [39, Def. 2.0.2] is either a numeral, or a variable in Fu,
or an expression of the form M + n with n a numeral and M a u-level expression, or of the
form max (M, Ms) with My, My u-level expression. A constraint is an equation between two
u-level expressions. Given the finite set of constraints, A is the set of assigments of natural
numbers to variables in Fu that satisfy all constraints.

13:11

TYPES 2022

13:12

Type Theory with Explicit Universe Polymorphism

The rules 7 and 10 in [39, Section 3.4] define how to use constraints: two types (and,
similarly, two terms) become definitionally equal if, for all assignments in A, the two types
become essentially syntactically equal after substitution of all variables in Fu by their assigned
natural number. For example, the constraint a < 8 makes Ug and Upax(1,5) definitionally
equal.

For decidability, Voevodsky refers in the proof of [39, Lemma 2.0.4, proof] to Presburger
Arithmetic, in which his constraints can easily be expressed.?This indeed implies that
definitional equality is decidable, even “in practice [...] expected to be very easily decidable
i.e. to have low complexity of the decision procedure” [39, p. 5, 1. -13]. The latter is confirmed
by [4].

The remaining sections of [39] are devoted to extending the type theory with data types,
W-types and identity types, and to its metatheory.

We summarize the main differences between our type theories and Voevodsky’s as follows.
In [39], u-levels are natural numbers, even though u-level expressions can also contain u-level
variables, successor and maximum. Our levels are elements of an abstract sup-semilattice
with a successor operation. In the abstract setting, for example, o V 8 = ot does not imply
B = o, whereas in [39] it does. In [39], constraints are introduced, once and for all, at the
level of the theory. In our proposal they are introduced at the level of contexts. There are
no level-indexed products and no constraint-indexed products in [39]. We also remark that
Voevodsky’s system is Tarski-style and has cumulativity (rules 29 and 30 in [39, Section 3.4]).
Our system is also Tarski-style, but we present a Russell-style version in Appendix B. We
present rules for cumulativity in Appendix A.

Sozeau and Tabareau

In Sozeau and Tabareau’s [30] work on universe polymorphism in the Coq tradition, there
are special rules for introducing universe-monomorphic and universe-polymorphic constants,
as well as a rule for instantiating the latter. However, their system does not include the full
explicit universe polymorphism provided by level- and constraint-indexed products. In our
system, with explicit universe polymorphism, we can have a uniform treatment of definitions,
all of the form

c: A=t

where A is a type and ¢ a term of type A, and these definitions can be local as well.

The constraint languages differ: their constraints are equalities or (strict) inequalities
between level variables, while ours are equalities between level expressions generated by the
supremum and successor operations.

Furthermore, they consider cumulative universe hierarchies a la Russell, while our universes
are & la Tarski and we consider both non-cumulative (like Agda) and cumulative versions.

One further important difference is that their system has been completely implemented
and tested on significant examples, while our system is at this stage only a proposal. The
idea would be that the users have to declare explicitly both universe levels and constraints.
The Agda implementation shows that it works in practice to be explicit about universe levels,
and we expect that to be explicit about constraints will actually simplify the use of the
system, but this has yet to be tested in practice. Recently, Coq has been extended to support
universes and constraint annotations from entirely implicit to explicit. Moreover, our level-
and constraint-indexed products can to some extent be simulated by using Coq’s module
system [29].

3 For this it seems necessary to also require that A is defined by a finite set of constraints.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé

Assaf and Thiré

Assaf [2] considers an alternative version of the calculus of constructions where subtyping is
explicit. This new system avoids problems related to coercions and dependent types by using
the Tarski style of universes and by introducing additional equations to reflect equality. In
particular he adds an explicit cumulativity map T : Uy — U;. He argues that “full reflection”
is necessary to achieve the expressivity of Russell style. He introduces the explicit cumulative
calculus of constructions (CC?) which is closely related to our system of externally indexed
Tarski style universes. This is analysed further in the PhD thesis of F. Thiré [38].

7 Conjectures and future work

Canonicity and normalization have been proved for a type theory with an external tower of
universes [10]. We conjecture that these proofs can be modified to yield proofs of analogous
properties (and their corollaries) for our type theories in Section 4 and 5. In particular,
decidability of type checking should follow using [4].

—— References

1 Andreas Abel, Joakim Ohman, and Andrea Vezzosi. Decidability of conversion for type theory
in type theory. Proceedings of the ACM on Programming Languages, 2(POPL):23:1-23:29,
2018. doi:10.1145/3158111.

2 Ali Assaf. A calculus of constructions with explicit subtyping. In 20th International Conference
on Types for Proofs and Programs, TYPES, pages 27-46, 2014.

3 Franz Baader and Jorg H. Siekmann. Unification theory. In Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 2, Deduction Methodologies, pages 41-126. Oxford
University Press, 1994.

4 Marc Bezem and Thierry Coquand. Loop-checking and the uniform word problem for join-
semilattices with an inflationary endomorphism. Theoretical Computer Science, 913:1-7, 2022.
doi:10.1016/j.tcs.2022.01.017.

5 Marc Bezem, Thierry Coquand, Peter Dybjer, and Martin Escardd. The Burali-Forti argument
in HoTT/UF with applications to the type of groups in a universe. https://www.cs.bham.ac.
uk/~mhe/TypeTopology/Ordinals.BuraliForti.html, 2022.

6 Luca Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 8(2):147—
172, 1987. doi:10.1016/0167-6423(87)90019-0.

7 Mario Carneiro. The type theory of Lean. Master Thesis, Carnegie-Mellon University, 2019.

8 Antoine Chambert-Loir. A presheaf that has no associated sheaf. https://freedommathdance.
blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html, 2013.

9 Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

10 Thierry Coquand. Canonicity and normalization for dependent type theory. Theoretical
Computer Science, 777:184-191, 2019. doi:10.1016/j.tcs.2019.01.015.

11 Judicaél Courant. Explicit universes for the calculus of constructions. In Theorem Proving
in Higher Order Logics, TPHOLs, volume 2410 of Lecture Notes in Computer Science, pages
115-130. Springer, 2002. doi:10.1007/3-540-45685-6_9.

12 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In Conference on Automated Deduction
(CADE-25), volume 9195 of Lecture Notes in Computer Science, pages 378-388, 2015.

13 Martin Hotzel Escardé. Introduction to univalent foundations of mathematics with Agda.
CoRR, 2019. arXiv:1911.00580.

14 Martin Hotzel Escardé et al. TypeTopology. https://www.cs.bham.ac.uk/~mhe/
TypeTopology/index.html. Agda development.

15 Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal. Translating proofs from
an impredicative type system to a predicative one. In Computer Science Logic (CSL), 2023.

13:13

TYPES 2022

https://doi.org/10.1145/3158111
https://doi.org/10.1016/j.tcs.2022.01.017
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.BuraliForti.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.BuraliForti.html
https://doi.org/10.1016/0167-6423(87)90019-0
https://freedommathdance.blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html
https://freedommathdance.blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1007/3-540-45685-6_9
https://arxiv.org/abs/1911.00580
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html

13:14

Type Theory with Explicit Universe Polymorphism

16 Jean-Yves Girard. Thése d’Etat. PhD thesis, Université Paris VII, 1971.

17 Jean Giraud. Cohomologie non abélienne. Springer, 1971. doi:10.1007/978-3-662-62103-5.

18 Robert Harper and Robert Pollack. Type checking with universes. Theoretical Computer
Science, 89:107-136, 1991.

19 Hugo Herbelin. Type inference with algebraic universes in the Calculus of Inductive Construc-
tions. http://pauillac.inria.fr/~herbelin/articles/univalgcci.pdf, 2005.

20 Gérard Huet. Extending the calculus of constructions with Type:Type. unpublished manuscript,
April 1987.

21 Per Martin-Lof. On the strength of intuitionistic reasoning. Preprint, Stockholm University,
1971.

22 Per Martin-Lof. A theory of types. Preprint, Stockholm University, 1971.

23 Per Martin-Lo6f. An intuitionistic theory of types. Preprint, Stockholm University, 1972.

24 Per Martin-Lof. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.
Shepherdson, editors, Logic Colloquium ‘73, pages 73—118. North Holland, 1975.

25 Per Martin-Lof. Constructive mathematics and computer programming. In Logic, Methodology
and Philosophy of Science, VI, 1979, pages 153-175. North-Holland, 1982.

26 Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

27 Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides, Fredrik Bakke, and others.
Univalent mathematics in Agda. https://github.com/UniMath/agda-unimath/.

28 Carlos Simpson. Computer theorem proving in mathematics. Letters in Mathematical Physics,
69(1-3):287-315, July 2004. doi:10.1007/s11005-004-0607-9.

29 Matthieu Sozeau. Explicit universes. https://coq.inria.fr/refman/addendum/universe-
polymorphism.html#explicit-universes.

30 Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq. In Interactive
Theorem Proving (ITP), 2014.

31 Thomas Streicher. Semantics of Type Theory. Birkhaduser, 1991.

32 Agda team. The Agda manual. URL: https://agda.readthedocs.io/en/v2.6.2.1/.

33 The 1Lab Development Team. The 1Lab. https://1lab.dev.

34 The Agda Community. Agda standard library. https://github.com/agda/agda-stdlib.

35 The Coq Community. Coq. https://coq.inria.fr.

36 The Cubical Agda Community. A standard library for Cubical Agda. https://github.com/
agda/cubical.

37 The HoTT-Agda Community. HoTT-Agda. https://github.com/HoTT/HoTT-Agda.

38 Frangois Thiré. Interoperability between proof systems using the logical framework De-
dukti. (Interopérabilité enire systémes de preuve en utilisant le cadre logique Dedukti).
PhD thesis, Ecole normale supérieure Paris-Saclay, Cachan, France, 2020. URL: https:
//tel.archives-ouvertes.fr/tel-03224039.

39 Vladimir Voevodsky. Universe polymorphic type system. http://www.math.ias.edu/
Voevodsky/voevodsky-publications_abstracts.html#UPTS, 2014.

40 William C. Waterhouse. Basically bounded functors and flat sheaves. Pacific Math. J,
57(2):597-610, 1975.

A Formulation with cumulativity

We introduce an operation T7*(A) : U, if A: U; and I < m (i.e., m =1V m).2

We require T,,(T7*(A4)) = T;(A). Note that this yields, e.g., a: T,,(T]*(A4)) if a : T;(A4).
We also require T7*(N!) = N™ (I < m), and T*(UL) = UP* (k <1< m), as wellas T7*(A) = A
(l=m)and T2 (T(A) =T7A) I <m < n), forall A:U;.

1 Recall that the equality of universe levels is the one of sup-semilattice with the _ T operation.

https://doi.org/10.1007/978-3-662-62103-5
http://pauillac.inria.fr/~herbelin/articles/univalgcci.pdf
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1007/s11005-004-0607-9
https://coq.inria.fr/refman/addendum/universe-polymorphism.html#explicit-universes
https://coq.inria.fr/refman/addendum/universe-polymorphism.html#explicit-universes
https://agda.readthedocs.io/en/v2.6.2.1/
https://1lab.dev
https://github.com/agda/agda-stdlib
https://coq.inria.fr
https://github.com/agda/cubical
https://github.com/agda/cubical
https://github.com/HoTT/HoTT-Agda
https://tel.archives-ouvertes.fr/tel-03224039
https://tel.archives-ouvertes.fr/tel-03224039
http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#UPTS
http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#UPTS

M. Bezem, T. Coquand, P. Dybjer, and M. Escardé 13:15

We can then simplify the product and sum rules to

AZUl B:Tl(A)—>Ul AZUl B:Tl(A)—>Ul
HIAB : Ul ElAB : Ul

with conversion rules
T, (AB) = IL,.7,(4)Tu(B z) T, (8'AB) = o1, () Ti(B)
and
T/ (W'AB) = I T (A) A,y T (B) T (B'AB) = ™ T (A) Qgry) T (B @)

Recall the family Idl(A7 a,b) : Uy for A:U;and a: T;(A) and b : T;(B), with judgemental
equality Tl(ldl(A7 a,b)) =1d(T;(A), a,b). We add the judgmental equalities T{”’(Idl(A, a, b)) =
[d™(T7*(A), a,b); note that a and b are well-typed since T,,(T]*(A4)) = T;(A).

Example. Recall the type qu’l(A7 B) : U, for A and B in U;, with judgmental equality
Ti(Eq"' (A, B)) = Equiv(T;(A), T(B)). For m > I, a consequence of univalence for U,, and
U; is that we can build an element of the type

ld(Upn, Eq™™ (T (A), T7"(B)), 1d™(U]", A, B)).

B Notions of model and formulation a la Russell

Generalised algebraic presentation

In a forthcoming paper, we plan to present some generalised algebraic theories of level-indexed
categories with families with extra structure. The models of these theories provide suitable
notions of model of our type theories with level judgments. Moreover, the theories presented
in this paper are initial objects in categories of such models.

» Remark 2. As explained in [31], in order to see the theories in this paper as presenting
initial models, it is enough to use a variation where application ¢ a : B(a/x) for ¢ : 11,4 B
and a : A is annoted by the type family A, B (and similarly for the pairing operation). If the
theories satisy the normal form property, it can then be shown that also the theories without
annotated application are initial.

Russell formulation

Above, we presented type theories with universe level judgments d la Tarski. There are
alternative formulations @ la Russell (using the terminology introduced in [26] of universes).
One expects these formulations to be equivalent to the Tarski-versions, and thus also initial
models. For preliminary results in this direction see [2, 38].

With this formulation, the version without cumulativity becomes

A:U,

A type

A:U, B:Up(z:A) AU, B:Up(z: A)
Hw:AB : Un\/m Za::AB : Un\/m

[level

N : U

TYPES 2022

13:16

Type Theory with Explicit Universe Polymorphism

A:U, ap: A a: A
Id(A4, ag,a1) : Uy,

l<n

UlZUn

For the version with cumulativity, we add the rules

AZU[l<n
A:U,

and the rules for products and sums can be simplified to

A:U, B:U, (z:A) A: U, B:U, (z:A)
yaB: Uy YeaB U,

For m > [the consequence of univalence for U,, and U; mentioned in Appendix A can
now be written simply as

(U, Equiv(A, B),1d(U;, A, B)).

» Remark 3. In the version a la Tarski, with or without cumulativity, terms have unique
types, in the sense that if ¢ : A and ¢ : B then A = B, by induction on ¢. But for this to
be valid, we need to annotate application as discussed in Remark 2. Even with annotated
application, the following property is not elementary: if U,, and U,, are convertible then n is
equal to m. This kind of property is needed for showing the equivalence between the Tarski
and the Russell formulation.

» Remark 4. If, in a system without cumulativity, we extend our system of levels with a least
level 0, then if we restrict N to be of type Ug, and U,, to be of type U, 41 then well formed
terms have unique types.

» Remark 5. It should be the case that the above formulation a la Russell presents the initial
CwF with extra extructure for the standard type formers and a hierarchy of universes, but
the proof doesn’t seem to be trivial, due to Remark 3.

	1 Introduction
	2 Rules for a basic type theory
	3 Rules for an external sequence of universes
	4 A type theory with universe levels and polymorphism
	5 A type theory with level constraints
	6 Related work
	7 Conjectures and future work
	A Formulation with cumulativity
	B Notions of model and formulation à la Russell

