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A B S T R A C T

Utilising three artificial intelligence (AI)/machine learning (ML) tools, this study explores the prediction of
fill level in inclined linear blenders at steady state by mapping a wide range of bulk powder characteristics
to processing parameters. Predicting fill levels enables the calculation of blade passes (strain), known
from existing literature to enhance content uniformity. We present and train three AI/ML models, each
demonstrating unique predictive capabilities for fill level. These models collectively identify the following
rank order of feature importance: RPM, Mixing Blade Region (MB) size, Wall Friction Angle (WFA), and Feed
Rate (FR). Random Forest Regression, a machine learning algorithm that constructs a multitude of decision
trees at training time and outputs the mode of the classes (classification) or mean prediction (regression) of the
individual trees, develops a series of individually useful decision trees. but also allows the extraction of logic
and breakpoints within the data. A novel tool which utilises smart optimisation and symbolic regression to
model complex systems into simple, closed-form equations, is used to build an accurate reduced-order model.
Finally, an Artificial Neural Network (ANN), though less interrogable emerges as the most accurate fill level
predictor, with an 𝑟2 value of 0.97. Following training on single-component mixtures, the models are tested
with a four-component powdered paracetamol formulation, mimicking an existing commercial drug product.
The ANN predicts the fill level of this formulation at three RPMs (250, 350 and 450) with a mean absolute error
of 1.4%. Ultimately, the modelling tools showcase a framework to better understand the interaction between
process and formulation. The result of this allows for a first-time-right approach for formulation development
whilst gaining process understanding from fewer experiments. Resulting in the ability to approach risk during
product development whilst gaining a greater holistic understanding of the processing environment of the
desired formulation.
1. Introduction

A significant volume of research on continuous powder blend-
ing has focused on understanding how processing parameters affect
performance using metrics such as residence time distributions and
dispersion. Vanarase and Muzzio (2011), Vanarase et al. (2013), Hol-
man et al. (2021), Van Snick et al. (2017), Hurley et al. (2022), while
other – typically simulation-based – studied have demonstrated the
differences that particle properties have on processing efficacy (Gao
et al., 2011, 2012b,a; Sarkar and Wassgren, 2009, 2010; Toson et al.,
2018). However, there is little work mapping physical experimental
bulk powder characteristics to processing conditions in the blender.
The only research done to the researchers’ knowledge lay with that
of Bekaert et al. (2022a,b), who investigated blend properties in a
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horizontal blender and the development of an empirical predictive
model in an incline blender.

With the advent of readily-available, open-source Artificial Intelli-
gence and Machine Learning tools, this study looks to leverage these
methodologies to propose a novel framework to approach new pharma-
ceutical development projects. These methods allow the de-convolution
of material properties and processing parameters by mapping process-
ing outcomes to powder characteristics and processing parameters.
This, in turn, allows for the prediction of key process outputs, such as
the fill level within the blender and (thus) the strain experienced by the
formulation, which has been shown to be a good predictor for blending
performance (Vanarase and Muzzio, 2011; Jones-salkey et al., 2023a;
Bekaert et al., 2022a).
vailable online 6 January 2024
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Fig. 1. The above figure graphically describes the Experimental Set-Up, Blade Arrangement, and Impeller configuration used for the experiments.
The utilisation of the three different models in the study ideally
highlights the individual strengths of using each of the specific mod-
elling methods. Random Forest Regression (RFR) can ‘pull the logic’
from the data by providing insights into feature importance and param-
eter relationships. Individual ‘trees’ extracted from the model may also
provide useful guidance to system operators. PyTorch’s Artificial Neural
Networks (ANN), on the other hand, fit highly complex non-linear
functions to the data to enable accurate and reliable predictions of the
data surface, though are somewhat more of a ‘black box’, offering only
limited physical insight regarding the outputs they produce. Finally,
we use 𝑀2𝐸3𝐷, a tool that utilises evolutionary AI and symbolic re-
gression to transform complex systems into simple equations (Nicusan
and Windows-Yule, 2022a,b); the methodology of the tool is discussed
further in Section 4.5 and accessible on GitHub: https://github.com/
uob-positron-imaging-centre/MED.

Ultimately, by using these tools, this study unveils a correlation
between fill level and optimum strain, which holds true for varied
processing and material properties. The discussion focuses on how
this relation develops by relating it to current literature and explor-
ing space–time optimisation and optimum Peclet Numbers in specific
regime-like behaviour. The study then discusses the use of such tools
in an industrial setting by touching on how best to use this map-
ping ability to inform decisions to mitigate risk whilst navigating the
complexities of drug project development.

2. Equipment

2.1. Prototype GEA, CDB-1, Linear Blender

A prototype of the commercially available GEA CDB-1 Linear Blender
(GEA, Dusseldorf, Germany) was used for these experiments. The
blender, made of stainless steel (316L), has an internal radius of 59 mm
and a volume of 8.2L at a 15◦ incline to the horizontal. The equipment
is driven by a motor paired with a proximity sensor (to measure
the rotation of the impeller’s shaft) and feed-back controlled variable
frequency drive — allowing RPM to be set and maintained.

The shaft of the mixer has 28 removable collars each with two pad-
dle blades the orientations of which can be adjusted from 0◦ (parallel
to shaft axis) to 90◦ (orthogonal to shaft). Resulting in the ability, with
the adjustable paddle blades, to simply change the angle and position
of the collars to create a blade configuration. In this study, the ‘number
of mixing blades’ refers to the helical organisation of 90◦ (to the axis)
radial mixing blades from the centre of the mixer out towards the ends
of the blender. In effect, the mixing blades are aligned in a helix along
the shaft with 60◦ rotation between adjacent collars; thus increasing
the number of mixing blades increases the size of the mixing zone.
Ultimately, allowing the categorical variable (of a set configuration)
to be considered continuous (as the number of blades varies the size
2

of the mixing zone). The remaining blades in the configuration are
aligned in transport orientation, at 45◦ to the axis. Fig. 1 displays these
orientations and their positions in the configurations investigated; 8
mixing blades (8H) and 16 mixing blades (16H). These configurations
are the same as the two configurations used in the PEPT study reported
by Jones-salkey et al. (2023b).

Each blade configuration is examined across five blender speeds:
150 rpm, 225 rpm, 300 rpm, 375 rpm and 450 rpm. This choice allows
the investigation across the full range of relevant blending speeds, ex-
hibited by the CDB-1. Palmer et al. (2020) investigated in increments of
150 rpm, demonstrating a significant difference in mixing performance.
In this work, we have reduced the increments to 75 rpm to provide
better resolution and more reliable model fitting. Each configuration
runs every material at 10 kg/h and 20 kg/h feed rate. Additionally,
3 materials (which are very commonly used filler excipients) run at
26.25 kg/h and 50 kg/h.

2.2. GEA, Compact Powder Feeder

The powder is fed to the blender using a Loss-In-Weight (LIW)
GEA Compact Feeder (GEA, Dusseldorf, Germany). The LIW feeder
holds roughly 2L of material and can operate in gravimetric (constant
mass/time) and volumetric (constant screw speed, effectively constant
volume/time) modes. Furthermore, the feeder is accompanied by a
combination of a top-up ball valve, with varying volume inserts, and
a 10L chute facilitating automatic system refills.

Gravimetric feeding operates by controlling screw speed to maintain
a constant mass/time. Thus, a target feed rate can be maintained in
the presence of powder flow disturbances, which may occur due to
transient disturbances within the hopper or during powder transfer
into the conveying screw volume. Therefore, gravimetric operation
should be prioritised and the system’s mechanical components should
be configured to comfortably achieve the desired mass/time setpoint.

The calibration for the feeder is discussed in the following method
Section 4.1. The calibration allows for each experiment to have the
highest gravimetric feeding up-time, meaning the feeding of each pow-
der is as accurate and reliable as possible.

2.3. Mettler Toledo, Catch Scale

The XS64000LX Mettler Toledo Balance (Mettler Toledo, Greifensee,
Switzerland) was used to monitor the mass flow rate at the blender’s
outlet, recording mass (g) over time (s). Real-time response from the
catch scale is used to monitor the mass flow rate from the outlet to
ensure the system is operating at steady-state and to determine the
residence mass at the end of the run. The scale is linked to Mettler
Toledo’s LabX software which records the mass at a frequency of 2 Hz,
saving it to an output file. The position of the balance, relative to the

https://github.com/uob-positron-imaging-centre/MED
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Table 1
Characterisation results for the ten materials and the surrogate formulation.

#) Material Grade Abbreviation Basic Flowability Energy (BFE) [mJ] Bulk Density [kg/L] WFA @ 2 kPa, 0.4Ra 1/FFC @ 2 kPa d10 [μm] d50 [μm] d90 [μm]

(1) MCC Avicel PH-101 PH101 202 0.35 13.4 0.26 26.3 69.4 142
(2) MCC Avicel PH-102 PH102 191 0.35 15.2 0.15 33.1 113 240
(3) MCC Avicel PH-105 PH105 81.9 0.37 49.4 0.47 7 21 49
(4) MCC Vivapur 350 VP350 124 0.86 3.87 0.01 377 432 509
(5) Lactose Pharmatose 110M P110M 119 0.73 10.2 0.14 78.9 153 219
(6) Lactose Pharmatose 200M P200M 128 0.60 44.5 0.31 21.8 57.8 122
(7) Lactose Pharmatose 450M P450M 100 0.47 11.4 0.63 3 21 56
(8) Lactose Lactose FF316 316FF 274 0.61 36.5 0.08 39.8 92.9 173
(9) Mannitol Pearlitol 200SD PT200SD 297 0.54 14.5 0.03 40.3 143 238
(10) DCPA DCPA A-Tab ATAB 253 0.74 16.3 0.02 48.2 168 305
(F) Formulation Surrogate – 242 0.58 11.6 0.12 23 123 257
system, can be seen in Fig. 1. The fill level is then calculated from the
residence mass and the bulk density of that powder, the calculation is
discussed in the following Section 4.3.1.

3. Materials & characterisation

3.1. Material list

Nine commonly used commercial excipients were used in this study,
comprising: Avicel PH-101, Microcrystalline Cellulose, abbreviated
to ‘PH-101’ (DuPont, Cork, Ireland), Avicel PH-102, Microcrystalline
Cellulose, abbreviated to ‘PH-102’ (DuPont, Cork, Ireland), Avicel
PH-105, Microcrystalline Cellulose, abbreviated to ‘PH-105’ (DuPont,
Cork, Ireland), Vivapur 350, Microcrystalline Cellulose, abbreviated
to ‘VP350’ (JRS Pharma, Rosenberg, Germany), Fast Flo 316, Lactose
Monohydrate, abbreviated to ‘FF316’ (Kerry, Tralee, Ireland), Phar-
matose 110M, Lactose Monohydrate, abbreviated to ‘PH110M’ (DFE
Pharma, Veghel, Holland), Pharmatose 200M, Lactose Monohydrate,
abbreviated to ‘PH200M’ (DFE Pharma, Veghel, Holland), Pharmatose
450M, Lactose Monohydrate, abbreviated to ‘PH450M’ (DFE Pharma,
Veghel, Holland), A-Tab, Dicalcium Phosphate Anhydrous, abbreviated
to ‘A-Tab’ (Innophos, New Jersey, USA), and Pearlitol 200SD, Mannitol,
abbreviated to ‘PT200SD’ (Roquette, Lestrem, France). In addition,
the formulation utilises two additional materials: Powdered Paraceta-
mol, abbreviated to ‘pAPAP’ (Mallinckrodt, USA) and Gycolys, Sodium
starch glycolate (SSG), abbreviated to ‘Gycolys’ (Roquette, Lestrem,
France). Furthermore, the drug surrogate formulation (F) in Table 1, is
made up of 4 materials at the following weight percentages: Powdered
Paracetamol (27% w/w), Avicel PH-102 (41% w/w), DCPA A-TAB (27%
w/w), and Glycolys (5% w/w).

The materials list was selected according to use in commercial
ormulations and their relation to one another, with the intention
f filling the characterisation space occupied by typical formulations.
he first step was to select the more common formulation materials
i.e. PH102, 316FF and P200M), which had innately different material
roperties. Secondly, alternative grades of the same material were
elected to evaluate the differences between the grades, allowing us
o evaluate the effect of particle size distribution on both bulk char-
cteristics and ultimate process outcomes. Lastly, after evaluating the
haracterisation space, additional materials were selected that either
illed the characterisation spaces (e.g. PT200SD), provided an extreme
alue (e.g. VP350), or would be considered a good filler excipient for
DC formulations (e.g. ATAB), resulting in the final material list for the
xperiments.

.2. Material characterisation & methods

The powders in Section 3.1 were subjected to a series of powder
haracterisation tests to determine intrinsic properties and flow be-
aviour. These are described below and the results are given in Table 1.
ll characterisation measurements were repeated in triplicate, from
hich the mean value is used.

Basic Flowability Energy (BFE) was measured using the Freeman
T4 Powder Rheometer (FT4, Freeman Technology, Tewkesbury, UK).
3

BFE is, effectively, a measure describing the energy required for a
stainless steel blade to initiate and sustain the bulk flow of a powder.
Powders in the FT4 rheometer are exposed to a comparatively similar
form of excitation to those in the CDB-1, suggesting that this measure-
ment method may provide useful predictors of the powders’ behaviours
in the blender. For more information on the measurement technique
see Freeman (2007) and for evaluation of the dynamics within the
environment see Hare et al. (2015). In the present work, each powder
went under four conditioning cycles and four test cycles.

Bulk density was measured using a 50 ml glass measuring cylinder
and scale, where the powder was loosely deposited into the cylinder
amounting to the maximum (50 ml) line. The powder mass is recorded
and the bulk density is calculated (weight/volume). The samples were
prepped by shaking the 250 ml holding vessel, ensuring the powder
was not consolidated prior to pouring the powder into the measuring
cylinder. Pouring the powder from the holding vessel, the cylinder
is then filled to the measuring cylinder’s 50 ml volume mark, the
mass is recorded and used to calculate the bulk density. After each
measurement, the powder was returned to the holding vessel before
shaking the powder and taking another measurement. Furthermore,
there was no manual intervention, agitation or extraction of powder
while filling the cylinder — if the volume was not correctly poured the
first time, the measurement was removed and repeated. Lastly, the bulk
densities were all measured at the same time, negating the influence of
humidity when comparing the results to one another.

Flow Function Coefficient (FFC, (using a consolidation pressure
of 2 kPa) and Wall Friction Angle (WFA (0.4 Ra @ 2 kPa)) are
two measurements describing powder cohesion and powder adhesion,
respectively, characterised using the Schulze Ring Shear Tester (Dr.
Dietmar Schulze, Wittenburg, Germany). For additional information
on FFC and WFA see both Schwedes and Schulze (1990) and Schulze
and Schulze (2021). Additionally, the FFC values were transformed
into their reciprocal to linearise the measurement sensitivity. This is
because it is difficult to discern differences between high values of FFC
compared to low values of FFC.

Particle Size Distribution (PSD) was obtained from dynamic im-
age analysis using the QICPIC Rodos (Sympatec GmbH, Clausthal-
Zellerfeld, Germany), resulting in d10, d50 and d90 measurements. The
Rodos powder disperser was set to 0.6 bar pressure and the M5 lens was
used for all measurements.

It shows that the materials demonstrate a wide range of material
properties (seen in Table 1), spanning those that would be appropri-
ate for a typical pharmaceutical formulation (Megarry et al., 2019),
offering a variation of suitably significant magnitude to successfully
monitor their impact. The BFE can be varied from 81.9 to 297.2 mJ;
Bulk Density from 0.346 to 0.86 kg/L; WFA from 3.87 to 49.4◦; 1/FFC
from 0.01 to 0.47; d10 from 3 to 367 μm; d50 from 21 to 432 μm; d90
from 49 to 509 μm.

VP350 has the highest bulk density, FFC and particle size dis-
tribution, and lowest WFA, whereas, Avicel PH-105 has the lowest
BFE, lowest bulk density, and smallest particle size distribution, with
the highest WFA. This is a rather striking result since both of these
materials are different grades of the same material (MCC).

The characterisation techniques used in this study were selected

based on their fulfilment of one or more of the following criteria:
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Fig. 2. Three example feed factor profiles, showcasing the profiles for the three different grades of the same material, Avicel (MCC). Error bars indicate the range of values from
the duplicate/triplicate calibration runs (indicated by 𝑛 = in the graph’s title). The red dashed lines indicate the feed factor at which the top-up occurred. The following windows
were used for the three powders: FF1 to FF4 (0.8L top-up) for Avicel 101, FF2 to FF6 (0.8L top-up) for Avicel 102, and FF4 to FF6 (0.4L top-up) for Avicel 105.
First, they closely resemble the processing environment — for example,
the basic flowability energy, BFE, which directly involves the motion
of a rotating impeller through a non-compacted particulate medium.
Second, they are extensively used in literature to describe a particular
behaviour — for example the FFC, which is widely considered to be
an accurate measurement technique for quantifying powder cohesion.
Third, they are simple and/or widely accessible measurements that
succinctly detail bulk powder behaviour, such as bulk density. Fur-
thermore, the fewer measurement techniques used for an accurate
prediction, the lower the number of material characterisation exper-
iments required to make a prediction; as such, we have deliberately
chosen parameters which encode a considerable amount of informa-
tion about the system into a single parameter. The result is a set of
measurements which can be performed with relative speed and ease,
and require minimal use of proprietary equipment.

It is finally worth briefly noting that while for the comparatively
free-flowing powders and formulations explored here, a simple poured
bulk density measurement is found to be sufficient when exploring
more cohesive powders, it may be wise to instead use the FT4’s condi-
tioned bulk density measurement, so as to ensure a more reproducible
and representative measurement. For our materials, the two were found
to be equivalent for all materials tested.

4. Methods

4.1. Feeder calibration

Before the feeder is used to take a measurement, it must be cali-
brated to ensure the system configuration can accurately dose the de-
sired gravimetric (mass/time) feed rate. Therefore, duplicate/triplicate
calibration runs are used to determine the feed factor profile and the
hopper top-up strategy.

Feed factor is defined as the mass delivered (from the feeder spout)
per screw revolution (g/rev). Due to the differences in the physical
properties of the materials used, the loading of the conveying screw
and behaviour within the hopper will vary with each material, so each
one must be calibrated prior to each investigation.

The feed factor profile is gained through GEA’s calibration method,
which effectively measures the feed factors whilst emptying the hopper
from full with volumetric feeding. The hopper is separated into 10% fill
level intervals (𝐹𝑛), the mass fill of the hopper is then divided into 10
slices in the vertical direction, and the average feed factor within each
of those intervals is stored against that hopper fill level. The resultant
profile (see Fig. 2) provides insight into the stability of powder dosing,
at constant screw speed, with the expectation that free-flowing powders
will have minimal change in feed factor across the full range of fill
levels. Had a material being discharged suffered from disturbances to
feeding, changes to either the gear ratio or screw type/pitch would
have been tested to ensure a more consistent feed. Fortunately, the
calibration was assessed for all materials and found that the same
gearbox ratio of 63:1 and a pair of conveying screws with a concave
pitch of 10 mm width were appropriate for all tests.
4

Lastly, the feed factors are also used to define the stable operating
region for the hopper fill level for triggering a hopper top-up event.
This was done by plotting mean feed factors from 𝐹9 (full hopper) to 𝐹0
(empty hopper) (100% into 10% intervals, respectively) and identifying
the most stable region during discharge. From this, the time and volume
of the top-up event were defined, for each material; this event was to
be initiated during the stable period of the volumetric emptying and
the volume of top-up was selected to be the total volume dispensed
over the identified stable region. This was then validated and optimised
to ensure the automatic refills occurred with the largest proportion of
gravimetric feeding to volumetric feeding. For three different grades of
the same powder, the refill window is indicated by red dashed lines in
Fig. 2.

This methodology ensures that the system operates with the utmost
accuracy and reliability. The stable operating region, describes the
operating window that is most resistant to feeding variance under
volumetric operation, signifying that the feeding is the least sensi-
tive to the fill level within the hopper. This is because the powder
above compresses the powder below, as explained in Engisch and
Muzzio (2015). This means that during a top-up event, when the
feeder switches from gravimetric to volumetric, the feeder will show a
consistent and accurate feed in grams per revolution, which is indicated
by the aforementioned feed factor profile.

4.2. Residence mass (RM) measurements

Residence mass (RM) is defined as the mass of powder within the
blender’s mixing volume during steady-state operation. Several studies
discuss the importance of residence mass for improving the macro
mixing potential of pharmaceutical blenders (Portillo et al., 2007, 2010;
Van Snick et al., 2017). Notably, it is a measurement that can be
directly, and physically gathered, without the use of sensors, detectors,
or imaging devices. Furthermore, RM’s utility is really described by its
sensitivity to other processing parameters and material properties. For
instance, increasing RPM decreases the RM (discussed in Section 5.1)
and allows for the calculation of Mean Residence Time (using Eq. (1)).
The result is a great variable for evaluating mixing due to the coupled
attachment of material, RPM and MRT — two of the three variables are
required to evaluate strain discussed in Section 4.3.2, using Eq. (3).

Mean Residence Time (s) =
Residence Mass (g)

Feed Rate (g/s) (1)

The experiment begins with setting the blender to the desired RPM
for the experiment. Once the blender is at speed, the LabX software
for the catch scale is then set to record the mass (over time) from
the outlet of the blender. Simultaneously, the GEA Compact Feeder
communicates with TwinCAT 2 software (Beckhoff, Henley-on-Thames,
United Kingdom) through tags appropriate for operation e.g. weight
in the hopper, gravimetric mode, and screw speed. After initiating the
recording of data, for both dispensing and receiving through the catch
scale, the feeder is then set to dispense gravimetrically at the desired
setpoint for the experiment.
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Fig. 3. Example of a ‘450 RPM Empty’, where the offset (remaining mass in the
blender) would then be added to the asymptote collected from the curve fitting to
gain the final residence mass at steady state.

The powder is dispensed into the blender via the feeder. Steady state
is then monitored and confirmed when the dispensing mass flow rate
matches the mass flow rate received on the catch scale. While building
mass to steady state, RPM is maintained by the feedback loop from the
proximity sensor and variable frequency drive. Once steady state has
been achieved all processing equipment is stopped simultaneously- and
the residence mass within the blender is measured.

To measure the mass, in the most time-effective manner, the system
is powered up to the fastest speed (450 RPM) with no powder flow
into the system, and the resident mass is captured in the catch scale
— demonstrated using Fig. 3. The result is mass removal which is a
function of the RPM used.

It is known that 450 rpm, with no feeding, would not fully empty the
blender so it was necessary to determine the residual mass. So it was
assumed, and then checked, that this residual mass was independent
of the speed history. Thus the residual mass was collected at the
end of a run of five graduated rpm speeds (150 to 450 RPM) and
treated as an ‘offset’, where it was manually added to the ‘450 RPM
empty’ residence masses. This was done for each of the feed rates and
the blade configurations, despite the minimal difference being seen
between changes in feed rate.

After a ‘‘450 RPM Empty’’ was done, the next RPM, with the same
blade configuration and feed rate could then be done. Given the mass
amounts are time-dependent, in particular the 450 RPM Empty, the
removal of mass over time to the catch scale was recorded and the run
stopped when the mass amount remained stable — see Fig. 3. To ensure
each of these emptying processes was consistent an inverse log curve
was fitted to the ‘450 RPM empty’ residence masses, ensuring we could
gather the mass at 𝑡 = ∞. Ultimately, this meant that the residence
mass values saw minor changes (in the order of a few grams), but the
application of the same ‘time-independent’ methodology meant that the
masses collected were consistently gathered.

The response, RM, serves as the backbone of this experiment, how-
ever, the response is best described as fill level (%), which can calcu-
lated from RM using Eq. (2).

Using fill level, instead of residence mass, results in simpler contex-
tualisation when evaluating the powder relative to the blender’s total
volume. Providing a better sense of clarity when comparing different
powders against one another, or considering powder behaviour in
different blender systems/geometries.

In the discussion (Section 6.2) fill level is used, in place of RM, when
evaluating the optimum process parameters to find the ideal regime
behaviour across different materials.
5

4.3. Calculations

4.3.1. Fill level
Fill level [%], is defined as the percentage volume the powder

occupies within the mixing volume.

Fill Level (%) = (Residence Mass∕Bulk Density)
Mixer Volume (2)

4.3.2. Strain
Strain (𝜔) can be considered as a measure of ‘work done’ to the pow-

der. In the case of a continuous blender, it can be defined as the mean
number of blade passes the powder flux would experience (Vanarase
and Muzzio, 2011).

Strain (𝜔) =
𝐹𝐿 × 𝜌 × 𝑣𝑏𝑙𝑒𝑛𝑑𝑒𝑟

𝑚̇
× RPM (3)

The influence of the mixing blades is implicitly expressed in this
equation due to how the mixing blades alter the fill volume and thus
the mean residence time of the powder at a steady state. where RPM is
the rotation rate of the agitator in rotations per minute; ṁ is the feed
rate in kg∕h; FL is the fill level (as a fraction) of the powder at steady
state; vblender is the volume of the blender in m3; and 𝜌 is the bulk density
of the powder in kg∕m3.

4.4. Predictive modelling

4.4.1. Random forest regression
Despite the numerous insightful findings drawn from various studies

using methods such as Partial Least Squares (PLS), Bekaert et al.
(2022c), Dhondt et al. (2022), Vanarase et al. (2013), Bekaert et al.
(2022a) the method presents a few key constraints. For instance, PLS
is inherently linear and tends to obscure the intricate interplay of
variables behind its principal components. In contrast, Random Forest
Regression (RFR) offers the ability to capture non-linear relationships,
providing a descriptive, ‘logic-like’ portrayal of the variables’ interac-
tion. When the primary focus is comprehending the system from both
a material and processing perspective, it is crucial to understand these
interactions and their resulting sensitivities.

RFR is a machine learning algorithm which combines the predic-
tions of multiple decision trees to produce a more accurate and robust
model. In this context, 𝑥 represents an individual input data point (or
a set of feature values) for which we want to predict an output, while
𝑦 is the actual output or response value corresponding to that input.
Hence, for each instance of 𝑥, we are trying to predict its corresponding
𝑦 value. This can simply be depicted as multiple trees each making a
prediction for a single 𝑥, and then aggregating those predictions to get
𝑦̂(𝑥).

In this formulation, 𝑦̂(𝑥) denotes the predicted value for the depen-
dent variable based on the input 𝑥, aggregating the insights from all 𝑛
decision trees. Mathematically, given 𝑛 decision trees, the prediction of
RFR for an instance 𝑥 is given by:

𝑦̂(𝑥) = 1
𝑛

𝑛
∑

𝑖=1
𝑇𝑖(𝑥) (4)

In the context of the equation, 𝑇𝑖(𝑥) represents the prediction of the 𝑖𝑡ℎ

tree. Each tree is sculpted using bootstrapped data subsets, a technique
where random samples are drawn with replacements from the original
dataset, allowing some observations to be repeated in each sample. At
every decision point, whether it is a split or a branching, a random
selection of features (variables) is integrated to ensure that the trees are
decor related and there is reduced inter-tree correlation. This inherent
randomness can be observed in both the data samples and feature
subsets. These techniques enhance the model’s generalisation potential,
making it more robust and accurate.

To train the model, the entire dataset was randomly split into a
train:test split of 80:20 (203:51, datapoints respectively) and training
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Fig. 4. Random Forest Regression (RFR) model parameter tuning. Results were ordered from worst (left) to best (right) 𝑟2 value, with the secondary axis plotting the assessment
of the residual’s normal distribution using the Shapiro–Wilk Test (SWT)– higher SWT scores indicate a normal distribution. The 𝑥-axis shows the combination of the following 5
hyperparameters (in respective order): number of estimators, maximum depth, minimum number of samples to split, minimum number of samples for a leaf and maximum features.
data passed into the tuning stage of modelling. The RFR model was
tuned by training approximately 240 models with different combina-
tions of ‘sensible’ hyperparameter values: the number of estimators,
max depth range, minimum samples to split, minimum samples for
leaf, and maximum features range (for additional information on RFR
see Sci-Kit’s documentation: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html).

To clarify the function of the aforementioned (RFR) hyperparame-
ters, the following explanation(s) is provided:

• Number of Estimators: Specifies the total number of decision
trees within the forest. Increasing the number of trees can im-
prove the model’s performance, but there is a threshold beyond
which accuracy gains are marginal, trading-off for an increased
computational cost.

• Max Depth Range: Designates the maximum depth or levels
each tree can achieve. Deeper trees can discern more intricate
data relationships but risk overfitting. An optimal depth strikes
a balance between bias and variance.

• Minimum Samples to Split: Specifies the minimum number of
samples required for a decision tree split. Increasing this value
can prevent the model from incorporating small patterns that may
be noise, which serves as a regularisation technique.

• Minimum Samples for Leaf: Specifies the minimum number
of samples required to be at a leaf node (end of tree branch).
Increasing this value, like the prior hyperparameter, can prevent
overfitting and enhance generalisation across training examples.

• Maximum Features Range: During optimal split determination,
the number of features to consider is specified. Random feature
selection for each split promotes tree decorrelation and model
generalisation.

Sensibility – which is applicable to the rest of the study – is defined
as the thought experiments that align the complexity of the model
to the size and complexity of the dataset one is looking to model.
This means that if one has a large and complex dataset, one could
approach it with a complex multi-layered model, with values that will
de-convolute the complexity found within the data. Alternatively, with
a simpler dataset, utilising the same modelling framework or hyperpa-
rameters, one would be at risk of overfitting the data — rendering the
model impractical. Therefore, thought is put into the hyperparameter
selection to ensure the risk of overfitting is minimal, with the tuning
operating at a ‘sensible’ range. The results from the initial ‘sensible’
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hyperparameters provide feedback to this initial tuning phase and
through iteration, the model can be refined to generate a suitable and
robust model.

The resultant fitted models were then rank-ordered for 𝑟2 (and
adjusted) and plotted alongside the residual’s frequency distribution,
which is then quantified by the Shapiro–Wilk test (SWT); The Shapiro–
Wilk test (SWT) is a statistical analytical test which checks whether
a sample comes from a normally distributed population. The null
hypothesis (1) assumes that the data is normally distributed, while
the alternative hypothesis (0) assumes otherwise. A normal distribu-
tion would indicate a lesser propensity for the model to under- or
over-predict values, while a narrow distribution indicates lesser error
between the measured and predicted values; both a normal and narrow
distribution are thus desirable.

The final selected model (Fig. 5), which held the following hyper-
parameter values: number of estimators (50), max depth range (4),
minimum samples to split (4), minimum samples for leaf (4), and max-
imum features range (None), possessed a high r-squared value of 0.85
(showing a good fit) whilst demonstrating a good normal distribution of
the residuals (quantified by the SWT, which was 0.97) — see Fig. 4. Any
additional hyperparameters were held at SciKit Learn’s default values.

The RFR model’s performance is shown in Fig. 5, by the Parity Plot
and Feature Importance graph. The Parity plot is the use of the model
to predict the ‘test’ data, which is not used to train the model and shows
a good 𝑟2 fit of 0.848. However, there is considerable spread in places,
leading to higher RMSE values — namely the cluster of points that are
over-predicting at 10% fill. Furthermore, there is greater variability at
the higher fill levels but this is potentially due to increased sparsity of
data points at higher percentages. This sparsity at these higher fills, is
a feature of the experiment, due to RPM highly dominating the system,
irrespective of material or alternative process parameters (discussed in
Section 5.1); the result is a higher number of points around lower fill
levels due to increased RPMs.

The generated data from the full experimental dataset indicates that
most operations should be at or below the 35% fill mark. However,
further experimentation within these higher fill levels, through both
material and process changes (e.g. higher feed rates), would provide the
model with greater reasoning, and therefore, the improved capability
to predict these fills.

The model was intentionally limited, in terms of accurate predictive
capacity, to be able to derive the ‘logic’ from the system. In this
simplified model, only the most important features will be shown, with

the most contrasting changes between turning at each feature. This is

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Fig. 5. Random Forest Regression (RFR) model performance. The top left graph shows a parity plot of the measured vs predicted fill level. Top right, training data (only) k-fold
cross-validation. Bottom left, RFR’s residual histogram. Finally, the bottom right shows the Feature Importance (FI) of each of the parameters on the RFR’s predictive capability,
higher indicates more importance. The error bars show the standard deviation of the FI across the 𝑛 = 20 generated estimators.
done in contrast to having fewer samples to split and minimum samples
for leaf – which would result in more and longer branches to reach the
answer – giving rise to less granular predictions. Accordingly, these
trees with higher complexity result in a cumbersome tree with many
turns, inevitably resulting in the loss of ‘what factors really matter’.

4.4.2. Artificial Neural Network (PyTorch)
Artificial Neural Networks (ANN or NN) have demonstrated a great

ability to make predictions from data on a wide range of applications.
The following ANN model was developed from the guidance provided
by Goodfellow et al. (2016) comprehensive book on machine learning
(ML); the book covers foundational elements of ML in detail, with
Chapters 5 and 7 playing a pivotal role in this model’s creation.

ANNs function by propagating input data through layers of artificial
neurons. These neurons apply a linear transformation followed by a
non-linear activation function. Mathematically, each layer’s output, ℎ,
is computed as:

ℎ = 𝜎(𝑊 𝑥 + 𝑏) (5)

In Eq. (5), 𝜎 represents the activation function empowering the
model to capture intricate relationships between inputs and outputs.
The term 𝑊 stands for the weights, which dictate the significance
of each input. The bias 𝑏 adjusts the neuron’s output, while 𝑥 is
the input to the neuron. As data is fed into the network, it under-
goes transformations by each layer. The process, known as forward
propagation, continues until the final layer produces the network’s
output or prediction. The connections between neurons, characterised
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by the weights and biases, determine the strength and nature of the
relationships the network captures. However, after a single forward
propagation, the network’s predictions may not be accurate. This is
where backpropagation comes into play. Backpropagation is an optimi-
sation algorithm used for minimising the error in the predictions. It
works by computing the gradient of the loss function with respect to
each weight by the chain rule and iteratively adjusting the weights and
biases in the direction that reduces the error. An epoch refers to one
complete forward and backward pass of all the training examples. By
running multiple epochs, the network continues to refine its weights
and biases, aiming to enhance its prediction accuracy over time.

ANNs are complex systems that require iteration to configure and
fine-tune model performance. The following hyperparameters (used for
the model) are detailed and described below:

• Architecture:
This study employs PyTorch to construct an Artificial Neural
Network. Given the dataset’s size, this architecture was chosen
to be relatively simple to prevent overfitting, which occurs when
the model becomes too closely tailored to the training data and
performs poorly on unseen data.

– Input Layer: Comprises 9 nodes, corresponding to the num-
ber of features in the dataset.

– Hidden Layers: Two layers with 41 and 14 nodes respec-
tively. These layers process and transform the input data.

– Output Layer: A single-node layer, providing the final pre-
diction.
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Fig. 6. ANN training and performance: Left, parity plot of the measured vs. predicted fill level percentage. Centre, training and validation losses (in MSE (Mean Squared Error))
of the model vs. the number of epochs. Right, histogram of the residuals (measured-predicted). The relative root mean squared error was 12%.
• Hidden Layer Nodes (Linear): Each node applies a linear trans-
formation to the data, based on the weights and biases. Using
the following equation: ℎ = 𝜎(𝑊 𝑥 + 𝑏). These nodes within the
network form the basis of the prediction.

• Activation Function (ReLU): Defined as 𝜎(𝑧) = max(0, 𝑧). It
introduces non-linearity into the network, allowing the model to
understand and represent complex relationships in the data.

• Dropout Rate (0.0155): A regularisation method where a frac-
tion of neurons are randomly deactivated during each training
iteration. This helps in preventing the model from over-relying
on specific neurons and mitigates overfitting.

• Learning Rate (0.0185): Determines the magnitude of adjust-
ments made to the network’s weights during training. A smaller
learning rate means slower convergence but possibly more precise
outcomes, while a larger rate could speed up the training but risk
overshooting the optimal solution.

• Epochs (500): Refers to the number of times the entire dataset is
presented to the network during training. More epochs can allow
for better learning, up to a point, after which overfitting might
occur.

• Batch Size (32): The number of data samples processed before
the model’s internal parameters are updated. Using batches is
more memory-efficient than using the entire dataset.

• Optimiser (ADAM): An optimisation algorithm that adjusts the
weights of the network. ADAM is known for its adaptive prop-
erties, where individual learning rates are computed for each
parameter.

• Loss Criterion (Mean Squared Error (MSE)): Measures the
squared differences between the predicted and actual values. The
goal during training is to minimise this value.

• Data Normalisation (MinMaxScaler): Transforms features to lie
in a range between 0 and 1. This ensures that no particular feature
dominates the learning process due to its scale, leading to more
balanced and efficient training.

• Other Hyperparameters: Any parameters not explicitly men-
tioned were kept at PyTorch’s default settings to maintain stabil-
ity and general best practices in training.

The Python package OpTuna was utilised to methodically search for
the best combination of two vital parameters: learning rate and dropout
rate. The learning rate determines how quickly the model updates its
weights in response to the calculated error, while the dropout rate is
a technique where certain neurons are randomly ‘‘dropped’’ or deac-
tivated during training to enhance model robustness. OpTuna’s search
spanned across 100 combinations, bounded within 1𝑒−5 to 1𝑒−1 for the
learning rate and 0.0 to 0.5 for the dropout rate. The performance of
the model was gauged through a combination of metrics, visualised in
Fig. 6.
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First, a key indicator of a good model includes a steady decrease in
the training and validation loss (centre), indicating that the model is
learning, and a close match between these two loss curves, suggesting
minimal overfitting. The training loss provides a measure of the model’s
error on the data it is actively learning from, effectively the loss seen at
its current epoch. The validation loss measures the error on a separate
subset of data not used during training (unseen data at the current
epoch), offering insights into the model’s ability to generalise to new,
unseen data.

Second, once the model has been trained on the ‘training data’
(80% of the dataset) the model is asked to predict the remaining
‘test’ (20%) data, the result is the parity plot (left) — which further
validates/indicates the model’s ability to predict unseen data. The fit of
the model can be quantified by an RMSE of 2.27 and a high 𝑟2, which
in this case is exceptional with 0.97.

Third, a residual histogram plots the distribution of the actual data
minus the predicted data. A narrow and normal distribution here would
conclude that the model has minimal bias under or over-predicting
across the range of predicted test values. In addition, the frequency
distribution of the residuals is greatly improved compared to the RFR’s.

Lastly, the developed ANN was investigated using SHAP (SHapley
Additive exPlanations) analysis, a method rooted in game theory (Lund-
berg and Lee, 2017); further details and documentation can be found at
https://github.com/slundberg/shap. Effectively SHAP treats each dis-
crete data point as a player and allows the ‘game’ to unfold to determine
which features are the most ‘useful’ for predicting the response variable.
The resultant is a graph (Fig. 7) similar to that found in the RFR’s
Feature Importance (Fig. 5).

The top-performing features match in the same rank order for both
models; highlighting the reliability of these factors in the prediction
of fill level. The remaining features differ in rank order suggesting the
models utilise the remainder of the variables differently. Alternatively,
it suggests that the variables (and/or the differences between them) are
statistically insignificant compared to the important ones.

4.5. Symbolic regression — 𝑀2𝐸3𝐷

Multiphase Materials Exploration via Evolutionary Equation Dis-
covery — or 𝑀2𝐸3𝐷, further abbreviated simply to MED, is a data-
driven tool for discovering analytical equations modelling the un-
derpinning physics or correlations of industrial systems that are too
complex to be modelled from first principles (Nicusan and Windows-
Yule, 2022a,b). The core algorithm of 𝑀2𝐸3𝐷 is its symbolic regression
engine, the SymbolicRegression.jl library written in the Julia program-
ming language (Cranmer et al., 2020; Bezanson et al., 2017), which
discovers analytical expressions 𝑓 mapping given input values 𝑋 to a
measured output 𝑦 = 𝑓 (𝑋); the general algorithmic steps are:

https://github.com/slundberg/shap
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Fig. 7. ANN SHAP analysis, showing the mean of the modulus SHAP Values. Effec-
tively, the average impact of each of the variables on the output magnitude. This is
then ranked-ordered from the most influential feature to the least. The scale quantifies
the relative importance of the variables.

1. The user selects the operators available to the symbolic re-
gression engine, including common binary operators (addition,
multiplication, etc.) and unary operators (log, sin, etc.) or cus-
tom functions — allowing users to incorporate some domain
knowledge into the equation search, e.g. if the process outputs
are modelled against system geometry, trigonometric functions
might be included.

2. The operators, along with inputs and fitting coefficients are
combined in a tree to form equations (see Fig. 8).

3. The free coefficients are fitted against the measured data 𝑦 and
the residuals are computed 𝑓 (𝑋) − 𝑦.

4. An evolutionary algorithm is used to minimise both residuals
and equation complexity (the latter measured simply as the
number of branches in the equation tree) - this multi-objective
optimisation problem is necessary to discover sensible, phys-
ical, interpretable equations rather than overfitted chains of
functions.

5. The process of equation generation - fitting - evaluating - evolv-
ing is continued until the best-performing equations at each level
of complexity are found to stabilise (i.e. not change between
generations) - and hence a Pareto front of equation complexity-
accuracy is found.

The main advantages of the technique include:

• Interpretability: the equations found give insight into the un-
derlying physics governing the system, while coefficients bear
physical units which, again, allow physical interpretation of the
correlations found.

• Robustness against noise: as equation complexity is also min-
imised, the most persistent underlying physical terms are identi-
fied, naturally removing measurement noise.

• Requiring few measurements: if the system is governed by
underlying physical laws whose inputs are included in the train-
ing data, identifying them requires 𝑂(10) data points, which is
orders of magnitude lower than what surrogate models and neural
networks typically require.

• Ability to solve the inverse problem: oftentimes it is not just
a predictive model that is desired, but the ability to dynamically
change a process input to achieve a fixed output (e.g. fill level);
this is possible by rearranging the equations found and can be
integrated in continuous on-line process control schemes.

• Allowing some degree of extrapolation: unlike virtually all
surrogate modelling approaches, if an underlying physical law is
identified (e.g. Stokes’ law in fluid flow), it can be extrapolated
beyond the input training data range to a point (e.g. in the
previous example, until turbulence becomes significant).
9

Fig. 8. 𝑀2𝐸3𝐷 representation of an example analytical model (bottom right), built as
a tree with its nodes (circles) representing input parameters (purple), constants which
need fitting (green), binary operators (blue) and unary operators (orange).

Fig. 9. 𝑀2𝐸3𝐷 Parity Plot, measured vs predicted.

Both the algorithm and the codebase for 𝑀2𝐸3𝐷 can be found on
GitHub: https://github.com/uob-positron-imaging-centre/MED)

𝑀2𝐸3𝐷 has been trained on the same 80:20 train-test split data as
the other AI/ML methods and produced an equation (Eq. (6)) whose
specific form and interpretation are discussed below. The equation was
then used to predict the test data and produced the parity plot shown in
Fig. 9. It is recognised that there is a single prediction with a negative
fill level, this would be considered erroneous and scrapped (since a
negative fill level is impossible), but displays the potential limitation
of selecting an equation which is not complex enough. 𝑀2𝐸3𝐷 could
also be told to use different or more complex operators and re-trained,
this may improve the tool’s ability to generate more suitable equations
— for the training of this model, it was limited to binary operators.

https://github.com/uob-positron-imaging-centre/MED
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Fig. 10. Correlation Heatmap (−1 to +1) between process parameters, material
properties and response variable (fill level). The colour bar indicates the positive
correlation (+1, Red) and negative correlation (−1, Blue).

5. Results

5.1. General data trends

The correlation between the response and variables (normalised
between +1 and −1) was calculated and plotted as a heat map 10. The
correlations between the response variable, Fill Level, and the other
variables highlight the effect that variables have on the response. For
instance, it shows that RPM is highly negatively correlated with Fill
Level, whereas Mixing Blades are moderately positively correlated with
Fill Level. It is of particular interest how the material properties are
related to the Fill Level — but there are no correlations of a moderate
magnitude that point to a specific characteristic being a significant
influence.

Plotting the fill level against RPM (shown in Fig. 11) produces a
clear, negative linear trend, and in some cases resembles a reverse
Sigmoidal curve. Fig. 11, shows the fill level response against the three
processing parameters: RPM, Mixing Blades, and Feed Rate. As men-
tioned, RPM dominates the system, reducing the fill level, irrespective
of both material properties and mixing blade configuration. A higher
feed rate sees a translation upwards, effectively increasing the fill level
10
– but not necessarily changing the shape of the curve – this is seen to
have an increased effect for a higher mixing blade configuration (16H).
Perhaps this is due to a decrease in axial transport in the centre of the
mixing volume, and so there is less direct transport of the powder from
the inlet to the outlet. Moreover, increasing the higher mixing blade
configuration, resulted in higher fill levels across the rpm range but
had a lesser effect at higher RPMs — again suggesting RPM is the most
influential parameter on fill level. These observations agree well with
prior experimental and numerical studies (Portillo et al., 2008, 2010;
Vanarase and Muzzio, 2011; Van Snick et al., 2017; Palmer et al., 2020;
Zheng et al., 2022).

5.2. Model: Random forest regression

Evaluating the general data trends with a single material property
provides no significant distinction or correlation. This may be due to
the difficulty of discerning a true pattern with a single bulk characteris-
tic — as it would be considered too granular. Therefore, we can better
understand their behaviour by modelling how these bulk characteristics
interact with other material characteristics or process parameters.

The decision tree (35 of 50), seen in Fig. 12, showcases an example
of the logic output. The tree can be interpreted by moving down
the tree from the initial top node. Each node then passes another if
statement, questioning if the assessed sample possesses values greater
or less than what the node is asking, which will decide the following
node. The final box (called a ‘leaf’) contains the predicted (value) Fill
Level %, for the specific path of logic gates used to reach the leaf.

The results align with Section 5.1, insofar as saying that both RPM
and Mixing Blades show great significance on the final fill level as these
parameters dictate the breadth of the fill levels, sitting at Tier 1 and 2
of the tree. Interestingly, BFE, WFA, d10 and RPM show on the 3rd
tier but these are shown to be dependent on the fill level at this point.
Furthermore, this is reflected in the initial correlation plot (Fig. 10),
meaning that at higher fill levels BFE and WFA are shown to be factors
to make a further distinction on the fill level.

Furthermore, when evaluating the positional importance of a node it
is also important to consider the colour of the node — which highlights
the mean fill level of all samples at the current node. It is shown at
higher fill levels (where motion is likely more frictionally dominated),
particle physical properties influence the prediction, demonstrated by
the position and colour association of BFE, WFA and FFC. Whereas
at lower fill levels (where motion is more likely collisionally domi-
nated) the rotation rate seems to dominate; intuitively described by the
increased influence of processing parameters due to the reduction of
powder volume and the resultant increase in both the frequency and
intensity of particle–wall collision and reduction of particle–particle
contacts.
Fig. 11. Scatter graphs showing the fill level response of the materials used for the experiment with respect to the three processing parameters: RPM, Mixing Blades, and Feedrate
(kg/h).
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Fig. 12. Decision Tree (35 of 50) from the Random Forest Regression Model, with darker colours indicating high Fill Level. Samples refer to the number of data points, and value
is the mean Fill Level for those samples – in percentage (%) – for that node.
5.3. Model: PyTorch ANN feature analysis & contour mapping

The wall friction angle (WFA @ 2 kPa, 0.4 Ra) is shown to be
the material characteristic with the greatest feature importance in
the model, which holds true for both ANN and RFR models. The
practical application of understanding this is formulation adjustment.
Different excipients can be paired with the existing blend or pow-
der, in order to modify the final powder characteristic. The result
of this allows a quality-by-design approach, as the prediction allows
for the understanding of how sensitive a particular property is to
processing parameters. This is especially important when building in
robustness and early mitigation of risks associated with potential batch-
to-batch variation. This operational sensitivity is best shown in Fig. 13,
where the two highest-ranking operational parameters have been plot-
ted against the range of WFA values used to train the model. Thus, the
sensitivity of the material property can be effectively gauged.

The model shows that the effect of WFA on fill level is, generally,
lower at rpms greater than 300 — agreeing with the RFR decision tree
(Fig. 12). At these RPMs, the fill level is lower, typically ranging from
6%–20%, which complements the previous discussion point (from the
previous section) on collision-based bulk motion/mixing. The mixing
blade configuration comes into play by holding up more mass, promot-
ing a higher fill level. This interaction, which promotes more ‘frictional’
mixing, results in a more complex interaction between the WFA and the
discussed process parameters. This is best demonstrated by the change
of shape and colour across the three contour plots.

The application of this knowledge in a practical setting suggests
that: if there were (for example) a perturbation from the feeder and
thus a slight transient change in the formulation’s WFA (due to compo-
sitional change), this combination of parameters would provide greater
confidence that the fill level (and thus the desired process outcome) will
be preserved. This methodology and philosophy build in key quality by
design aspects to harmonise formulation development and operational
robustness.

5.4. Model: 𝑀2𝐸3𝐷’s symbolic regression

While ANNs and random forest regressors can be interrogated to
some extent – as has been demonstrated in the preceding sections – they
remain, to some extent ‘black boxes’. 𝑀2𝐸3𝐷’s methodology (discussed
in Section 4.5), meanwhile, produces complete, closed-form equations
to describe the behaviours of the systems to which it is applied. For
the present data set, the 𝑀2𝐸3𝐷 equation which provided the highest
‘score’ was the following:

Fill Level = 100 ×

(

0.0032 × Feed Rate − 0.003 × WFA

− 0.0004 × d10 +
4.284 × Mixing Blades

RPM

)

(6)

The linear equation can also be viewed as separate terms (seen in
(8)), where the following terms can be used as descriptors for their
11
Table 2
ANOVA Table for the generated 𝑀2𝐸3𝐷 equation (see Eq. (6)) based on the split
terms (See Eq. (7) and Eq. (8)), showing the sum squared variance (sum_sq), degrees
of freedom (df), F-Statistic (F) and P-Statistic (PR(>F)).

sum_sq df F PR(>F)

Term1 0.38 1 7.1e+15 0.00e+00
Term2 0.35 1 6.8e+15 0.00e+00
Term3 0.29 1 6.2e+15 0.00e+00
Term4 2.96 1 2.0e+16 0.00e+00
Residual 0.00 249 nan nan

relation to the fill level. Furthermore, these equation terms can be
evaluated using an ANOVA. To do this, the 𝑀2𝐸3𝐷 Equation’s terms
were gathered and fit into an OLS (ordinary least squares) model before
assessing the statistical significance of each of the terms.

The ANOVA results can be found in Table 2. Each term was found to
have significance in predicting fill level, which was expected as 𝑀2𝐸3𝐷
ensured that every term was significant. However, by assessing the sum
squared variance of the prediction based on each term’s sensitivity –
quantified as the change in the predicted fill level in response to a
standardised perturbation, such as a 1% or 10% increase from the mean
value of each term – we can determine their relative importance in
predicting fill level. The rank order is as follows: 𝑡4 ≫ 𝑡1 > 𝑡2 > 𝑡3.
This indicates that the fourth term is responsible for the largest range
of variability in the prediction. These findings align with the other
modelling (in Sections 5.2 and 5.3) methods as they show RPM and
Mixing Blades to be the most important features for predicting.

‘𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 100 × (𝑡1 + 𝑡2 + 𝑡3 + 𝑡4)’ (7)

𝑊 ℎ𝑒𝑟𝑒 ∶

[𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑] → Fill Level
[𝑡1] → (0.0032 × Feed Rate)
[𝑡2] → (−0.003 × WFA)
[𝑡3] → (−0.0004 × d10)

[𝑡4] →
(

4.284 × Mixing Blades
RPM

)

(8)

6. Discussion

6.1. Blind formulation validation and model comparison

The described models (Sections 5.2–5.4) have been developed with
the same single excipient data. In this section, we test whether –
despite this considerable limitation in their training data – they can
accurately predict the behaviours of a full pharmaceutical blend. The
same experiments were run using a 4-component blend which served as
a surrogate for a real drug formulation — the active compound of the
campaigned drug is replaced with powdered paracetamol, ensuring the
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Fig. 13. Fill Level Contour Plot Prediction using the ANN as a function of RPM and WFA. The (shared) colour bar indicates the fill level in percentage for the 3 plots. The held
values for the contour plot are as follows: RPM (150–450), MB (8, 12, 16), Feed Rate (22 kg/h), BFE (188 mJ), WFA (5–50), d10 (61 μm), d50 (122 μm), d90 (206 μm), 1/FFC
(0.189).
final characteristics of the surrogate blend remain representative of the
campaign. The surrogate was validated by ensuring the bulk properties
of the surrogate formulation and the true formulation still possessed
similar bulk physical characteristics (notably the bulk density and FFC),
after the proprietary API was switched out. The bulk characteristic
behaviours of this blend were gathered using the same methodology
described in Section 3.1, and included in the final row of Table 1.

The experiments measured the fill level of the surrogate formulation
at 3 speeds (250, 350, 450 rpm) at 15 kg/h feed rate and 16 mixing
blades. The blend’s material characteristics were then measured and
used to predict the fill level. The results can be seen in Fig. 14.
The models were all, to varying degrees of precision, able to predict
the fill level of the blend and the variation thereof with RPM. This
means that, despite the complexity of a multi-component formulation,
there is a correlation between the formulation’s characteristics and the
resultant fill level. This is an important and potentially exciting finding,
as it suggests that the models developed may be used to predict the
behaviours of new formulations with no additional training.

The prediction accuracy ranked the model’s Mean Absolute Error
(MAE) in the following order ANN (1.4), 𝑀2𝐸3𝐷 (3.7), and then RFR
(4.6). The contour plots between the ANN and 𝑀2𝐸3𝐷 are similar,
displaying similar fills in the same areas. ANN and 𝑀2𝐸3𝐷 differ in
terms of linearity, 𝑀2𝐸3𝐷 generally presents a very linear progression
of contours — with tighter packing (of boundaries) in the lower corner
and wider packing at the maximum. ANN showcases complex shapes
and curvature, which has been shown to be advantageous for predic-
tion. RFR, on the other hand, shows almost categorical boundaries.
highlighting that despite the granularity of the model, there are some
key features which allow for reliable fill level prediction. Ultimately,
the following can be said: using each of the predictive methods pro-
vides a trade-off between accuracy and conceptual understanding. By
using all three tools, however, one can achieve both highly accurate
prediction, as well as strong mechanistic insight.

It is finally important to note that data-driven models have the
highest predictive accuracy within the bounds of their training data
— that is to say, while our models show impressive predictive capa-
bilities within the parameter ranges upon which they were trained,
this same level of accuracy cannot be assured outside this parameter
space. Nonetheless, as we conduct more experiments, the model can
be retrained, and the predictive confidence boundary correspondingly
expanded. Furthermore, if the blender used were not fixed in inclina-
tion, it could be another processing variable for the training data. Thus
making it possible to evaluate the mixing conditions across a wide set
of inclinations, improving applicability for other commercial blenders.

6.2. Predicting mixing performance

Strain, determined as the number of blade passes through a given
powder (calculated using Eq. (3)) has been demonstrated to be a strong
12
predictor of good mixing in several prior publications (Vanarase and
Muzzio, 2011; Portillo et al., 2008; Palmer et al., 2020; Vanarase et al.,
2013; Zheng et al., 2022).

Using the validated ANN, we can input a given blend’s material
properties to calculate the strain from the predicted fill level. The re-
sultant strain values across the range of processing parameters can then
be plotted as a set of surface plots in Fig. 15. The detailed landscape
describes the interaction between the formulation’s properties and the
range of processing parameters in the context of mixing performance.
The surface plots seen in Fig. 15 are generated for the surrogate formu-
lation (detailed in Table 1). The surface plots are then coloured by the
ANN’s prediction of the fill level at those same conditions. The fact that
the model is able to predict the surrogate accurately (demonstrated in
Section 6.1) provides confidence in the surface’s shape and position of
the colours.

It is immediately interesting to note that, irrespective of processing
conditions, the optimum strain seems to consistently be found at or
near a fill level of 1/3. The correlation suggests that the material in
the blender has reached an idealised balance between the RPM and
Mean Residence Time. To speculate on exactly why this occurs; it seems
to suggest that the powder is, at this fill level, exhibiting regime-like
behaviour which promotes ideal mixing conditions.

To better describe the hypothesis of optimum strain occurring
around 1/3 fill level, it is useful to consider similar surrogate systems
which show regime-like behaviour. There are two situations that can
be conceptually related: rotating drums and fluidised beds.

• Rotating Drums utilise a single continuous motion within a batch
vessel to mix the granular media within. Thus, when different
processing conditions are used, the granular media (e.g. powder)
within the drum demonstrate different bulk motion behaviours,
which are described as regimes. Increasing the rotating speed of
the drum, results in a progressive pulling of the granular media
up the side of the drum in the direction of motion, resulting in
regimes labelled as (from low to high RPM) rocking, rolling, cas-
cading, cataracting, and centrifuging (to name a few) (Morrison
et al., 2016). The transitions between these regimes are known
to be affected not only by drum RPM, but also fill level — as
is the mixing achieved thereby Arntz et al. (2008). If mixing
is intended for the media, motions which cause high levels of
granular dispersion (cascading/cataracting) result in improved
mixing. In the context of the incline linear blender, the described
1/3 fill level suggests that this fill may be the balance for adequate
powder volume for the powder to mix into (increasing MRT, and
therefore macro mixing), whilst providing a sufficient mixing rate
(RPM).
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Fig. 14. Parity Plot between the experimental and predicted fill levels. The parity plot shows the three different models predicting the fill level. Each experiment was repeated 3
times, the mean is shown and the bars indicate the range of values (on the 𝑥-axis). Each model demonstrates the operating space between the RPM and mixing blades. The three
models are ranked by the MAE (Mean Absolute Error) prediction of the experiment. Subsequently, an example of the design space showing the two most important processing
parameters is plotted for each of the models. The model’s contour plots are indicated by the graph’s title. Furthermore, all contour graphs share the same colour bar and number
of gradient steps (12) between the min and max.
Fig. 15. Surface plots showing the strain by the three processing parameters for the drug surrogate formulation. The continuous parameters (those that can change during operation)
share the same plot as the strain. The colour bar indicates the ANN predicted fill level, the three graphs share the same colour scale — allowing comparison.
• Vibrofluidised Beds utilise mechanical agitation in the form of
vibration to cause an effective reduction in gravity, invoking
fluid-like or even gaseous motion of dicrete solid particles (Rosato
and Windows-Yule, 2020). To achieve this, a certain amount of
agitation (i.e. a suitably high vibration strength) is necessary for
13
the powder bed to reach fluidisation. Similarly, in the context of
the inclined linear blender, the rpm agitator also has a mechanical
agitation influence. The suggestion for the incline linear blender
is that at a suitably high rpm (Froude Number), the motion of
the impeller causes the powder to reach this fluidised state, in
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which the effects of both gravity and inter-particular cohesion
are sufficiently overcome to markedly reduce the resistance to
inter-particular mixing.

Thus the hypothesis describes the resulting regimen as a combi-
ation of the two situations but in the context of continuous powder
lending, where the powder flux receives enough work through agi-
ation, leading to semi-fluidised behaviour. This overcomes the effects
f gravity and inter-particulate cohesion of the powder, therefore pro-
oting the local displacement and replacement of powder leading to

mproved micromixing. When paired with higher ‘H’ mixing blade
onfigurations (otherwise described as larger mixing zones) there is
n increase in axial slippage, which promotes the similarly described
e-constitutive behaviour as the cascading regime seen with rotating
rums. This, in turn, explains that for a given powder (or formulation),
eed rate and blade configuration there is an optimum rpm, at which
he powder reaches this regime; which coincides with the blender
eing 1/3 full. Either side of this apparent optimal fill level leads
nto contact-dominated mixing (for higher rpms) or friction-dominated
ixing (lower rpms) — similar to that outlined by Zheng et al. (2022).

However, to attain this regime at a higher strain value- and there-
ore improved mixing, blade configuration is key, as it will manage the
ulk mass — due to its role of promoting both axial and radial trans-
ort. In the context of this study, that would be the 16H configuration
when compared to 8H and 12H), which should, by these standards,
upply adequate transport at the base (inlet), improved ‘slippage’ and
adial dispersion in the mixing region, and lastly enough transport at
he latter part of the barrel to remove sufficiently blended powder.
his is supported further by the ‘folding region’ seen in the Positron
mission Particle Tracking (PEPT) study of Jones-salkey et al. (2023b)
hich describes localised spatial residence time retention of powder in

he former part of the barrel, just prior to the mixing zone.
While it is possible that this is a specific feature of the helical

ixing blade configuration (H) arrangement, the findings implicitly
uggest that alternative blade configurations can form different regime-
ike behaviour. Nevertheless, in this instance, it would be sensible to
ffer the use of the H-configuration in order to exploit the described
eature. It would be interesting to evaluate alternative configurations,
ike those discussed in Van Snick et al. (2017), to see if they present
aried regime-like behaviour; and if not, would the configurations they
escribe present different processing sensitivities to those regimes?

To expand upon the insights from Fig. 15, let us examine how the
roposed theory compares with the broader literature on this subject.

Building on the work of Kushner and Schlack (2014), who ex-
lored the scaling of blending powdered lubricant in both bin and
ubular batch blenders, they highlighted a parameter 𝐾 that could scale

blending across vessel sizes spanning five orders of magnitude, given
a constant Froude number of 0.4. Here, 𝐾 denotes the ‘amount of
mixing’, which is the product of the ‘number of rotations (𝑟)’, the ‘batch
blender’s characteristic length scale (𝐿)’, and the ‘fraction of headspace
(𝐹headspace)’.

𝐾 can be broken down into two components: ‘mixing intensity’
(𝐿×𝐹headspace) and ‘mixing duration’ (𝑟). Specifically, the characteristic
length roughly indicates the mixing region and the headspace gives
the powder room to move, facilitating mixing. These combine to show
the dispersive potential of each rotation. Meanwhile, the number of
rotations conveys the number of times the powder undergoes dispersive
rotations. Fortunately, for batch systems, these two components are de-
coupled, meaning ‘mixing intensity’ can be compensated by increasing
‘mixing duration’, and vice versa.

Transitioning this concept from batch to continuous processes leads
to the formulation of the strain equation (strain = rpm × mean residence
time), where rpm and mean residence time encapsulate the mixing
intensity and duration, respectively. In continuous systems, however,
since the MRT is a function of RPM (assuming a constant feed rate),
one cannot independently adjust intensity and duration, emphasising
14

that a balance is required.
Critical to these discussions is the underlying principle that regard-
less of scaling in batch or varied continuous setups primarily depends
on fostering particle–particle interactions — the real catalyst for mix-
ing. This becomes evident in bulk powder flow regimes, especially
visible in granular mixing within rotating drums.

Relevant studies by Van Snick et al. (2017), Palmer et al. (2020),
Bekaert et al. (2022a), and Zheng et al. (2022) offer deeper insights.
The first three emphasise that maximising strain results in better con-
tent uniformity in both horizontal and inclined (15◦) linear powder
blenders. The latter provides context on regimes.

Interestingly, Bekaert et al. (2022a), using a horizontal mixer, found
no interaction between the number of blade passes and blend prop-
erties, which contrasts the findings of this study. The interpretation
is that the inclination of the blender seems to play a pivotal role
in powder transport, which is best illustrated by materials showing
different fill levels at the same rpm- see Fig. 11. This highlights the
importance of understanding how the material properties interact with
the geometrical differences.

Van Snick et al. (2017) indicated that in the same blender used in
this study (15◦ linear blender), accurate and consistent content unifor-
mity was achieved at intermediate residence mass and an intermediate
rpm. This finding was reinforced when comparing two different blade
configurations under identical conditions.

Moreover, Palmer et al. (2020) demonstrated that after achieving
a certain strain, there is only a minimal further increase in blend
uniformity, effectively stating that there is an effective ‘ideal strain’
for a formulation which achieves optimal mixing for a minimal time-
and energy-expenditure. Thus, by utilising this tool we can predict
the maxima and work back towards this ‘effective’ strain. Such in-
sights enable researchers to pinpoint the optimal strain for increased
processing efficiency whilst ensuring consistent content uniformity.
Furthermore, an additional graph shows a V-shaped dip in the Peclet
Number (Pe) plotted against fill level, with the lowest point (of this
V-shaped dip) at around 1/3 fill level. Pe number is a ratio which
indicates a balance between advective and diffusive transport rates;
which could be effectively described as a balance of micro-to-macro
mixing. A Pe of one, seems to occur at the fill level that provides the
highest strain (demonstrated in Fig. 15).

Lastly, Zheng et al. (2022) utilised calibrated DEM simulations to
identify two distinct regimes, which transition at an intermediate RPM
of 250. This aligns with the first logic gate in the RFR decision tree
shown in Fig. 12; whilst it is important to note, the model has similarly
outlined this RPM across the ten different excipients and remains
comparable to the simulation.

In conclusion, the body of literature, when analysed in tandem
with the findings from Fig. 15, and the related discussions provide a
comprehensive rationale of the behaviour being exhibited under these
conditions. The significance of this should provide both researchers
and industry professionals with an initial look into continuous blending
regimens.

6.3. Application: Identifying the strain window

One potential practical application of these tools could be to adjust
the process to compensate for a large disturbance. For example, APC
could be used to reduce the RPM, and therefore increase the MRT, in
response to a large disturbance. Following the disturbance, the RPM
can be returned back to the steady-state set-point.

Referring to Palmer et al. (2020), the lowest rpm on the APC should
match the most suitable point on the exponential decay curve, which
could be effectively termed ‘Strain Point (𝜔𝑃 )’. This represents the
minimum blade passes needed for desired content uniformity. Given
that cohesive species are given an effective shear rate (tip-speed)
to sufficiently break particle agglomerates/aggregates. This leads to
questions for future research: ‘‘what is the minimum tip speed required for

effective blending of cohesive powders" and ‘‘are two equal strain values
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Fig. 16. Graphical Representation of the Strain Window (𝜔𝑊 ). Points 2, 3, and 4,
indicate guided experiments to find the Strain Point (𝜔𝑃 ) — or the expansion of the
current Strain Window (𝜔𝑊 ).

with different RPMs similar for mixing?" especially concerning values
above or below the specific shear requirement for a formulation.

The predictive toolkit highlighted in Figs. 13, 14, and 15 enables the
identification of ‘Maximum Strain’ (𝜔𝑀 ) for specific processing param-
eters, verifiable through subsequent experimentation. Upon confirming
the attainment of minimum shear, our focus shifts to optimising the
‘Strain Window’ (𝜔𝑊 ), which is the difference between 𝜔𝑀 and 𝜔𝑃 , as
depicted in Fig. 16. We can direct our experiments to maintain content
uniformity around the ideal RPM, as illustrated by points 2 and 3 in the
figure. These experimental points establish a strain window from the
lowest acceptable strain value to 𝜔𝑀 . Further exploration, as seen at
point 4, could widen this window. For a comprehensive understanding
of the process limits, additional guided experimentation, towards point
𝑛 (𝜔𝑃 ), may be performed to identify the threshold of failure.

It is noteworthy that theoretically, the toolkit could streamline
experimentation to just three pivotal points. This top-down approach
defines a steady-state set-point and establishes bounds for upper and
lower RPM ranges. Similarly, it can assess the impact of other variables
like feed rate changes on blend properties.

The deployment of these modelling tools is instrumental in develop-
ing robust control strategies, offering a nuanced understanding of the
process and its operational parameters up to the point of failure. This
outlines a safer operating domain, ensuring the product meets critical
quality attributes. The use of these tools allows this understanding to
be achieved with reduced experimentation, which is particularly impor-
tant as extensive large-scale experimentation can slow development as
well as impact on cost and sustainability. Furthermore, they can verify
the consistency of processes or formulations, valuable for modifications
like reformulation or changes to processing set-points. This process
similarity can be corroborated through a series of validation trials,
affirming the model’s accurate prediction of the operational landscape.

7. Conclusion

In this paper, we have developed several machine learning/artificial
intelligence models for predicting the performance of a continuous
pharmaceutical blender, whilst also facilitating new insight into the
fundamental behaviours thereof.

The methods used include RandomForestRegression (RFR), which
extracts logic from the data; a novel symbolic regression and evolution-
ary AI tool (𝑀2𝐸3𝐷), which produces complete, closed-form equations,
effectively creating a reduced order model of the data; and Artificial
Neural Networks (ANN), which provide more accurate predictions at
the expense of a less-interpretable model. All three models indepen-
dently identified the agitator speed (RPM), the number of mixing
blades, the wall friction angle (WFA, 2 kPa with 0.4 Ra coupon) and the
feed rate (kg/h) as the most important features for the prediction of fill
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level, and thus the strain experienced by the powder — an important
predictor for mixing. By interrogating the models further, we were also
able to gain valuable insight into the dynamics and mechanics of the
blender explored, through prediction of the operating space.

In terms of pure predictive capability, the ANN demonstrated the
greatest strength, both for the single components on which it was
trained, as well as in further blind validation, predicting the behaviour
of a 4-component formulation to a high degree of accuracy. Its ability
to accurately predict the fill level of a previously unseen formulation,
containing an API not included in its training data set, shows consider-
able promise for such an approach, in the future, to be used as a means
of reducing the time and cost currently associated with bringing new
drugs to market.

It is worth noting that we have discovered an interesting correlation
between the maximum strain and 1/3 fill level (during steady state) in
the prediction of the operating space. This correlation applies regard-
less of formulation or variable processing parameters, and it represents
a crucial set point for blending processes that use a 15-degree incline
blender. By achieving this, 1/3 fill level, set point during operation, a
balance between advective and diffusive mixing can be attained. It is
of further interest if other fill-level, and thus space–time, optimisations
exist for other blending platforms and inclinations.

The magnitude of strain can be increased if the process is in-
tensified — in effect simultaneously increasing both RPM and MRT.
Yet, since RPM and MRT are coupled, increasing RPM will decrease
MRT. Therefore, it is important to consider both the feed rate and the
blade configuration. Decreasing the feed rate will increase MRT while
decreasing the number of radial mixing blades will decrease MRT.

Given that maximising throughput is often desired, the blade con-
figuration should be adjusted to include more radial mixing blades
to retain higher fill levels (at the same RPM) and the RPM should
be increased — thus intensifying the process. Similarly, this resolves
the issue for highly agglomerated species, where using a higher RPM
provides a higher tip speed, which then acts to break the highly
agglomerated species. There may be slight differences between the
clinical commercial equipment and the prototype (used in this study),
however, the fundamental understanding remains the same. To validate
this observation, we performed additional runs using various blade
configurations, feed rates, and surrogate formulations (as detailed in
Section 2.1). These runs were not included in the model training.
However, they have shown that the maximum strain is also consistently
observed at a fill level of 1/3. In addition, these findings were checked
against a backlog of development runs for other formulations using the
GMP-compliant CDC-50 from GEA and saw the same relationship of
around a 1/3 fill level delivering the highest strain values.

Ultimately, the predictive tools described in this publication can
find this optimum range of processing parameters for a newly char-
acterised formulation and then evaluate both the operational and for-
mulation stability of that formulation within the blender. Said tools
thus stand to both mitigate risk and reduce wastage of time, energy
and materials during product development through prediction of the
variability at these early phases, meaning a directed first-time-right
approach to experimentation, validation and process establishment,
carrying benefits both economic and environmental.
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