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Abstract
Cost-effective and accurate quantification of biodiversity is important for biodiver-
sity conservation, resource management, and forecasting. Traditional monitoring 
approaches have relied on direct observations, remote sensing, and mark-recapture 
techniques, providing insights into species ecology and the impact of pollution and cli-
mate change on indicator species. However, these techniques are typically low through-
put, expensive, and can be invasive. In addition, they cannot detect cryptic diversity 
and are biased toward species that leave identifiable remains. DNA-based methods, 
such as metabarcoding or single marker gene assays, have enabled high throughput 
screening of a wide range of taxonomic groups, including ones without well-preserved 
remains. When compared with traditional techniques, these approaches have high 
throughput, can resolve cryptic diversity, do not require taxonomic specialist skills, 
and are non-invasive. However, although they are comparatively cheaper than tradi-
tional approaches, they are expensive when applied at the community-level as single 
marker assays are amplified and sequenced independently. Multilocus approaches in 
which multiple gene markers are amplified in a single reaction are desirable to deliver 
community-level assessments in a cost-effective manner. Yet, they are uncommon be-
cause of technical challenges that may lead to biases in downstream analyses, such as 
index hopping and unbalanced representation of taxonomic groups. Here, we devel-
oped a highly multiplexed protocol that combines the early pooling of marker genes 
that target broad taxonomic groups and taxon-specific markers in a single tube reac-
tion. This step is followed by the pooling of up to 384 samples per locus (N = 15,636 
samples) with unique dual-indexed sequencing adapters in a single sequencing run. 
This approach dramatically reduces the costs of community-level biodiversity quanti-
fication and lowers the need for input DNA without compromising output quality. We 
optimized the multiplex assay on lake freshwater sediment samples and benchmarked 
the assay on samples from other environmental matrices, demonstrating its direct ap-
plication to the river and marine communities.
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1  |  INTRODUC TION

Biodiversity monitoring is the foundation for effective biodiversity 
conservation, resource management, and forecasting. Traditional 
biodiversity monitoring techniques, such as direct observations, re-
mote sensing, and mark recapture techniques have provided valuable 
insights into species ecology and the impact of pollution and climate 
change on indicator species (Eveleigh et al., 2007; Ropert-Coudert & 
Wilson,  2005; Yoccoz,  2012). However, they have significant limita-
tions due to the difficulties associated with the correct identification of 
(cryptic) species or life stages from the same species. These techniques 
require specialist taxonomic expertise, are not standardized when it 
comes to sampling protocols, and can be invasive. Traditional tech-
niques are also typically low throughput and biased towards species 
that leave identifiable remains (Gillson & Marchant, 2014).

In the last decade, DNA-based methods (e.g., metabarcoding) 
have revolutionized conventional biodiversity research by enabling 
high throughput screening from environmental matrices without 
being limited to taxonomic groups with well-preserved remains (Creer 
et al., 2016; Cristescu & Hebert, 2018). DNA-based approaches have a 
higher throughput than traditional approaches, do not require taxono-
mist specialist skills, can resolve cryptic diversity, and be applied to bulk 
DNA extracted from environmental matrices (‘Environmental DNA’ or 
eDNA; (Cristescu & Hebert, 2018)). Furthermore, large surveys can be 
conducted in a relatively fast and cost-effective manner, and over large 
geographic areas, including remote regions, non-invasively (Taberlet 
et al., 2018). By matching sequence similarity to records in public da-
tabases (e.g., NCBI and SILVA), molecular operational taxonomic units 
(MOTUs) can be identified, enabling the analysis of taxonomic compo-
sitional shifts and estimates of species richness.

To date, most metabarcoding studies have used a single locus 
approach; cytochrome c oxidase subunit I (COI) is commonly used 
for vertebrates and invertebrates (Krehenwinkel et  al.,  2018; Leray 
et al., 2013), the internal transcribed spacer (ITS) is used to identify 
fungi (Schmidt et al., 2013), plastid DNA (rbcL) is used for plants and 
primary producers (Chase & Fay, 2009; Tse et al., 2018), and 12S is 
used for fish (Miya et al., 2015). A multi-locus approach is highly desir-
able to deliver community-level assessments in a cost-effective man-
ner (Ficetola & Taberlet,  2023). However, thus far, community-level 
assessments of biodiversity have only been achieved with the inte-
gration of results from individual loci (Eastwood et al., 2022, 2023; Li 
et al., 2023). A multi-locus approach improves the robustness of taxo-
nomic assignment alleviating false negatives caused by random missed 
amplifications of target genes caused for example by DNA degrada-
tion or mutation in primer sites (Zhan et al., 2014). Species detection 
rate based on multiple loci can be up to 35% more accurate than when 
using single locus approaches (Zhang et  al.,  2018). However, highly 
multiplexed approaches that enable estimates of the community-level 

biodiversity in a cost-effective manner are largely missing because 
they can be challenging to optimize (Ficetola & Taberlet,  2023). A 
step in the right direction is the 2-step PCR protocol, which includes 
a first-round PCR (PCR1) that amplifies a target DNA locus or marker 
gene region using universal primers, followed by a second-round PCR 
(PCR2) that appends sample-specific indexes to marker gene regions 
(Bohmann et al., 2022). After PCR2, samples are usually combined in 
a multiplex for high-throughput sequencing. Alternatively, a sample-
specific index may be added to PCR1 (Bohmann et al., 2022). This ap-
proach improves throughput, but it requires upfront costs (Bohmann 
et al., 2022; Caporaso et al., 2011; Ushio et al., 2022).

We developed a highly multiplexed protocol that combines pool-
ing of samples amplified with a multiplex approach at the PCR1 stage, 
including four loci, and pooling after PCR2 at the sequencing stage of 
up to 384 samples per locus, significantly reducing costs of metabar-
coding and lowering the amount of input DNA required to capture 
community-level biodiversity. We optimized this protocol for lake 
freshwater communities because these communities support humans 
and wildlife (Darwall et al., 2018), and have high conservation value, 
delivering important ecosystem services (e.g., clean water, food provi-
sion, and recreation) (Dudgeon et al., 2006; Ruckelshaus et al., 2020). 
The samples used for this protocol optimization were a subset of 
samples isolated from a well-characterized sedimentary archive (see 
(Eastwood, 2023) for details). In this previous study, a traditional single 
locus approach was applied to eDNA extracted from sediment sam-
ples, providing reassurance on the quality of the input DNA used in 
this study. Here, we combined three metabarcoding primer pairs that 
target 18S and 16S loci, broadly capturing prokaryotes and eukary-
otes, with a taxon-specific locus (rbcL) used by regulators to determine 
water quality in both rivers and lakes. By combining four loci, we cap-
ture community-level biodiversity in a single tube reaction.

We benchmarked the multiplex by comparing taxonomic detec-
tion rates and accuracies of the multiplex with single locus metabar-
coding assays on the same samples. We validated the multiplex on 
independently sampled material originating from diverse environ-
mental matrices, including river water, soil, peatland, coastal, and 
offshore marine environments. The developed multiplex approach 
has the potential to significantly improve the capacity for both bio-
diversity routine monitoring and research discoveries.

2  |  MATERIAL S AND METHODS

2.1  |  Multiplex optimization on freshwater 
sedaDNA samples

A standard 2-step PCR protocol includes a primary reaction for the 
target locus or marker gene regions in PCR1, in which primers with 

K E Y W O R D S
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5′ sequence overhangs are added to the marker gene of choice, 
and a PCR2, which carries sequencing adapters and indices to be 
attached to cleaned PCR1 products (Bohmann et  al.,  2022; Ushio 
et al., 2022). PCR2 libraries are then pooled for sequencing on an 
Illumina or Illumina-compatible platform, following removal of ex-
cess primers. We modified this protocol by multiplexing four loci in 
PCR1 (Figure 1). The multiplex protocol was optimized on randomly 
selected bulk environmental DNA (eDNA) samples extracted from 
a freshwater lake sediment core from a previous study (Eastwood 
et  al.,  2023) using DNeasy PowerSoil kit (Qiagen) (sedaDNA), fol-
lowing the manufacturer instructions, in a PCR free environment. 
Extraction and PCR blanks were used to monitor for contamination. 
The metabarcoding loci used in the multiplex were: two regions 
targeting eukaryotes broadly [(18SV1V2) (Hadziavdic et  al.,  2014) 
and (18SV8V9) (Bradley et  al.,  2016)], and prokaryotes (16SV4) 
(Caporaso et al., 2011), plus a taxon-specific marker targeting dia-
toms (rbcL) (Kelly et al., 2018). Triplicate samples were amplified in 
PCR1 using Q5 HS High-Fidelity Master Mix (New England Biolabs) 
following the manufacturer's instructions. To protect commercially 
sensitive information, the amplification parameters of this step will 
not be disclosed. After removing excess primers with High Prep PCR 
magnetic beads (Auto Q Biosciences), cleaned PCR1 products were 
pooled in a second PCR in which unique dual-indexed sequencing 
adapters allowed the pooling of up to 384 samples per locus in a 
single sequencing run (N = 1536 samples per run). Unique dual in-
dices were used to reduce index-misassignment and index-hopping 
between samples (MacConaill et  al.,  2018). PCR2 amplicons were 
purified using High Prep PCR magnetic beads (Auto Q Biosciences) 
and quantitated using a 200 pro plate reader (TECAN) using qubit 
dsDNA HS solution (Invitrogen). A standard curve was created by 
running standards of known concentration on each plate against 
which sample concentration was determined. To confirm that all 
amplicons were equally represented in the PCR1 multiplex, we per-
formed single locus or gene marker PCRs on the cleaned PCR1 prod-
ucts (Figure S1). This approach was adopted because the amplicons 
had overlapping lengths and could not be distinguished based on gel 
migration alone (Figure S1). PCR2 libraries were mixed in equimolar 
quantities (at a final concentration of 12 pmol) using a biomek FXp 
liquid handling robot (Beckman Coulter). The final molarity of the 

pools was confirmed using an HS D1000 tapestation screentape 
(Agilent) prior to 250 bp paired-end sequencing on an Illumina MiSeq 
platform.

2.2  |  Single and multiplex performance on 
freshwater sediment samples

The sequenced reads were demultiplexed per locus using cutadapt 
v4.1 (Martin,  2023), and analyzed with QIIME2 v2022.8 (Bolyen 
et  al.,  2019). Trimming, filtering, merging and denoising of reads 
was done using the QIIME2 DADA2 module (Callahan et al., 2016) 
with pooling-method set to ‘pseudo’ and all other parameters set 
to default. Taxonomy assignment was completed with the QIIME2 
feature-classifier module (Bokulich, Kaehler, et  al., 2018) with 
naive-bayes taxonomic classifiers trained using different reference 
databases, depending on the marker gene: the SILVA v138 data-
base was used for the assignment of the 16S and 18S reads (Yilmaz 
et al., 2014); and the diat.barcode v9.2 was used for the assignment 
of rbcL reads (Rimet et al., 2019). The cleaned reads were rarefied 
and diversity indices (e.g., alpha and beta diversity) were calculated 
using the QIIME2 diversity module.

The performance of single and multiplex assays was assessed by 
comparing alpha and beta diversity, using the rarefied reads. Alpha 
diversity was measured as Pielou evenness and Shannon diversity, 
supported by Kruskal-Wallis (Kruskal & Wallis,  1952) using the 
function alpha-group-significance in the QIIME2 diversity module. 
Beta diversity was measured as Bray-Curtis distance and signifi-
cant differences between single and multiplex assays assessed with 
a PERMANOVA test (999 permutations) using the funciton beta-
group-significance in the QIIME2 diversity module.

2.3  |  Benchmarking the multiplex on eDNA from 
other environmental matrices

We benchmarked the multiplex using eDNA samples extracted 
from different environmental matrices and including grassland, ma-
rine coastal and marine offshore water, marine coastal and marine 

F I G U R E  1 (a) The composition of a dual-indexed metabarcoding Illumina library sequence, including a gene marker or locus, forward (F) 
and reverse (R) primers, sequence adapters, Illumina indexes (i5 and i7) and sequences used to prime to sequencing flow cell. (b) Multiplex 
key steps are shown, including eDNA extraction, multiplexed PCR1 with 4 metabarcoding markers plus a cleaning step to remove excess 
primers, PCR2 plus a second cleaning step and a final pooling step before sequencing on an Illumina or Illumina compatible platform.
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offshore sediment, river water, peatland and woodland (Table S1). 
These samples were provided by NatureMetrics (www.​natur​emetr​
ics.​co.​uk) and are therefore anonymised to adhere to data protec-
tion requirements. eDNA from water samples (freshwater and ma-
rine) was extracted using a DNeasy Blood and Tissue Kit (Qiagen) 
following Spens et al. (2017). The original method was modified as 
described in Egeter et al. (2023). Briefly, proteinase K was added di-
rectly to the disc filters on which water was filtered and stored. 1 mL 
of the lysate was carried forward for extraction with the DNeasy 
Blood and Tissue Kit (Qiagen). eDNA was extracted from soil and 
sediment samples using DNeasy PowerSoil Kit (Qiagen). An extrac-
tion blank was processed with each batch of extractions to assess 
potential contamination in the DNA extraction process. DNA was 
purified to remove PCR inhibitors using a DNeasy PowerClean Pro 
Cleanup Kit (Qiagen). Purified DNA extracts were quantified using 
a Qubit dsDNA HS Assay Kit on a Qubit 3.0 fluorometer (Thermo 
Scientific). The DNA concentration was quantified using a Qubit 
DNA broad-range kit.

Some samples extracted from woodland, grassland, and peat-
land did not generate a visible PCR1 product on agarose gel. We 
suspected that PCR inhibitors (e.g., humic substances) were respon-
sible for these failures. Therefore, we tested the single and multiplex 
assays with the addition of bovine serum albumin (BSA) (Ramalingam 
et  al., 2017) and compared the performance of these assays with 
the regular assays described above. The samples collected from dif-
ferent environmental matrices were amplified with the same four 
amplicons used in the sedaDNA samples above, both in single and 
multiplex assays. The metabarcoding libraries and sequencing strat-
egy were the same as above. The sequenced reads were demulti-
plexed and analyzed with QIIME2 v2022.8 (Bolyen et al., 2019), as 
above. The taxonomic assignment followed the same strategy used 
for the sedaDNA samples described above.

The performance of the benchmarking samples used in sin-
gle and multiplex assays was assessed by comparing overall alpha 
and beta diversity, as above. Significant differences in beta diver-
sity (Bray-Curtis distance) between single and multiplex assays 
was assessed with a PERMANOVA test (999 permutations) with 
sample type as strata using the function pairwise.adonis2 (v0.0.1) 
(Arbizu, 2017), wrapping the package vegan (v2.5–7) (Oksanen et al., 
2020) in R (v4.0.2) (R Core Team,  2020). In addition, we assessed 
alpha diversity (Pielou evenness and Shannon diversity) of sample 
types (e.g., river water, marine sediment) between single and multi-
plex using a Wilcoxon signed rank test with Benjamini & Hochberg 
correction for multiple testing using the pairwise-distances function 
in the longitudinal module in QIIME2 (Bokulich, Dillon, et al., 2018). 
PCoA of Bray-Curtis distance was used to visualize the similarity be-
tween single and multiplexed samples, plotted using ggplot2 (v3.4.0) 
(Wickham, 2016) in R (v4.0.2) (R Core Team, 2020). A Venn diagram 
was used to visualize the overlap of species and ASVs between the 
single and multiplex assays for the total number of features (100%), 
as well as for the topmost abundant features making up 85% and 
70% of the reads in the two assays, plotted using the package ggven 
(v0.1.10) (Yan, 2023) in R (v4.0.2) (R Core Team, 2020). This approach 

was used to determine whether discrepancies, if any, between as-
says could be explained by the capture efficiency of rare species. 
To assess whether sequencing effort would lead to a convergence 
in the number of ASVs detected by the two assays, we performed 
a rarefaction analysis with resampling strategy, with the function 
rarecurve in the package vegan (v2.6–4) (Oksanen et  al.,  2020) 
using R (v4.0.2) (R Core Team, 2020), plotted with ggplot2 (v3.4.0) 
(Wickham, 2016).

3  |  RESULTS

3.1  |  Single and multiplex assays on sedaDNA 
samples

The rarefaction depth for the sedaDNA samples was as fol-
lows: 16SV4 = 8245; 18SV1V2 = 12,584; 18SV8V9 = 17,703; and 
rbcL = 6372. The alpha diversity measured on sedaDNA samples, 
both as Pielou evenness and Shannon diversity, did not significantly 
differ between single and multiplex assays (Table 1). The beta diver-
sity measured as Bray-Curtis distance across the four loci or gene 
markers did not differ significantly between single marker and mul-
tiplex assays (Table 2).

3.2  |  Benchmarking the newly developed multiplex 
in other environmental matrices

The rarefied sequence depth for the multiplex benchmarking samples 
were as follows: 16SV4 = 5549; 18SV1V2 = 7734; 18SV8V9 = 10,900; 
rbcL = 1590. The Pielou evenness index (alpha diversity) measured 
across all samples extracted from different environmental matrices 
did not differ significantly between single marker genes and mul-
tiplex assays for the 16S and both the 18S loci (Table 3; Figure 2). 
A significantly different Pielou index was observed between single 
and multiplex assays for the rbcL locus, for which some samples in 
the single and multiplex assays showed dissimilar evenness (Table 3; 
Figure 2). The Shannon index showed more variability than the Pielou 
evenness with three out of four indices showing significant differ-
ence between single and multiplex (Table 3; Figure 2). The addition 

TA B L E  1 Kruskal-Wallis test on Pielou's evenness and Shannon 
diversity calculated between single and multiplex assays for four 
loci (18SV1V2; 18SV8V9; rbcL; and 16SV4) sequenced on the 
sedaDNA samples.

Pielou evenness
Shannon 
diversity

H p H p

16SV4 0.0 1.0 2.4 0.12

18SV1V2 1.8 0.18 0.2 0.65

18SV8V9 1.5 0.22 0.0 1.0

rbcL 0.6 0.44 0.6 0.44

http://www.naturemetrics.co.uk
http://www.naturemetrics.co.uk
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of BSA to the PCR reactions improved the amplification results, but 
did not significantly change the sequencing results, as the statisti-
cal tests comparing multiplex assays with and without BSA showed 
(Table 3). No significant (Wilcoxon signed rank p adj. <=0.05) differ-
ence in alpha diversity (both Pielou evenness and Shannon diversity) 
was observed between individual sample types that successfully 
amplified with both the single plex and multiplex (Table 4).

The beta diversity, measured as Bray-Curtis distance, did not 
significantly differ between single and multiplex across all marker 
genes (Table 5; Figure S2). There was no significant difference in beta 
diversity between multiplex assays with and without BSA (Table 5).

The percentage of ASVs identified by both single and multiplex 
assays ranged between 44.9% in 18Sv1v2 and 21.1% in rbcL when 
100% of the features were considered (Figure 3). The performance 
of the two assays converged when the top 85% most abundant 
features were included in the analysis (Figure 3). The similarity in-
creased more evidently for the 18S regions (97.2% in 18Sv1v2, 
97.4% in 18Sv8v9), whereas it increased to a lesser, but still con-
siderable, extent in 16Sv4 and rbcL (82.1% and 80.0% respectively; 
Figure 3). When the 70% most abundant features were considered, 
the ASVs identified by single and multiplex assays overlapped 98.9% 

in 18Sv1v2, 98.9% in 18Sv8v9, 96.4% in the 16Sv4 and 97.9% in the 
rbcL gene marker (Figure 3). The single and multiplex assays showed 
similar performance when overlap was studied at species rather than 
ASV level (Figure S3).

The rarefaction analysis, aimed at understanding whether a 
higher sequencing effort would lead to more congruence between 
single and multiplex assays, showed that both assays had plateaued 
at the rarefied number of reads used in our analyses (Figure S4), sug-
gesting that a higher sequencing effort would not increase the num-
ber of ASVs or species detected.

4  |  DISCUSSION

Holistic approaches that enable the quantification of community-
level biodiversity are critical to research and monitoring efforts. 
Because environmental change affects taxonomic groups differ-
ently, ignoring the biotic interactions of a species within its food 
web can lead to wrong estimation of effects (Fricke et  al.,  2022; 
Urban et al., 2016). Only by capturing the response of entire com-
munities to environmental change, can we begin to understand the 
diagnostic links between environmental drivers and loss of biodiver-
sity (Eastwood et al., 2022, 2023; Li et al., 2023; Urban et al., 2016).

Highly multiplexed metabarcoding approaches have the poten-
tial to meet the challenge of capturing community-level biodiver-
sity and help identify the causes of biodiversity loss, at comparable 
efforts and costs than required by single gene markers (e.g., Balint 
et  al.,  2018). However, they have technical challenges that may 
lead to biases in downstream analyses. One of the most common 
challenges of multiplexing is finding suitable DNA regions and 
achieving a balanced amplification of all regions, avoiding poten-
tial competitive PCR amplifications. It is often challenging to ob-
tain an even amplification success rate across diverse taxonomic 

TA B L E  2 Permutational Multivariate Analysis of Variance 
(PERMANOVA) using Bray-Curtis distance (F) assessing differences 
between single plex and multiplex assays on sedaDNA samples 
(999 permutations) across four loci (18SV1V2; 18SV8V9; rbcL; and 
16SV4).

Locus F p

16SV4 0.52 0.65

18SV1V2 0.53 0.74

18SV8V9 0.37 0.69

rbcL 0.18 0.68

Group 1 Group 2

Pielou evenness Shannon diversity

H p adj value H p adj value

16Sv4 bsa mplex 0.003 0.955 0.079 0.779

bsa splex 1.228 0.402 7.277 0.011

mplex splex 1.271 0.402 7.226 0.011

18Sv1v2 bsa mplex 0.103 0.749 0.053 0.817

bsa splex 1.473 0.337 5.975 0.022

mplex splex 1.920 0.337 7.013 0.022

18Sv8v9 bsa mplex 0.127 0.973 0.062 0.803

bsa splex 0.001 0.973 1.276 0.388

mplex splex 0.015 0.973 1.830 0.388

rbcL bsa mplex 0.006 0.937 0.002 0.968

bsa splex 11.590 0.001 16.388 0.000

mplex splex 12.650 0.001 17.614 0.000

Note: p-values are Benjamini & Hochberg corrected. Significant adjusted p-values are in bold. Splex 
– single plex; mplex – multiplex (regular protocol); bsa – multiplex with addition of BSA.

TA B L E  3 Kruskal-Wallis test on 
Pielou's evenness (H) and Shannon 
diversity calculated between single and 
multiplexes (both regular and BSA), and 
between the two multiplexes assays in the 
benchmarking samples.
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groups (Bohle & Gabaldon, 2012). A step in the right direction are 
recent efforts that successfully apply early pooling strategies after 
PCR1 in a 2-step traditional PCR protocol (e.g., application to fish 
communities (Ushio et al., 2022)). Yet, these strategies are costly 
because each sample is tagged with a unique string of nucleotides 
to make the assignment of sequences to samples more robust. 
We overcame the limitations of combining primers with different 
length and amplification performance by balancing the concentra-
tion of each primer according to its amplification performance, at 
the same annealing temperature.

A second challenge common to multiplexing individual gene 
markers is the wrong assignment of reads to samples and bar-
codes, a phenomenon known as index hopping (MacConaill 
et  al.,  2018; Taberlet et  al.,  2018). We used a paired end strat-
egy with unique 384 × 384 dual tag barcoding to reduce crosstalk 

between samples in downstream analyses. Furthermore, we ad-
opted downstream bioinformatics tools to reduce the number of 
false positives due to index-hopping and PCR and sequencing er-
rors (Bolyen et al., 2019).

A third challenge affecting multiplexing assays is the lower 
accuracy in detecting taxa in each DNA sample. Singleplex me-
tabarcoding is expected to have higher accuracy than multiplex 
metabarcoding because a single target sequence is included in 
each reaction. Working with individual gene-markers can reduce 
the risk of cross-contamination between samples and the error 
rate introduced during amplification and sequencing of a pool 
of barcodes (Caroe & Bohmann, 2020). Accuracy and low cross-
contamination are particularly important when working with low 
abundance or endangered species critical for conservation efforts 
(Giebner et al., 2020). We showed that alpha diversity measured 

F I G U R E  2 Alpha diversity mean and standard error for the benchmarking samples listed in Table S1 measured in single (black) and 
multiplex (red) assays. For each sample type mean and standard deviation are shown. Lack of a data point indicates that the specific sample/
plex failed.
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with Pielou evenness and beta diversity did not significantly dif-
fer between single and multiplex assays across different sample 
types.

However, our results showed significant difference between sin-
gle and multiplex assays when alpha diversity was measured with 
the Shannon index. This may be explained by the Pielou evenness 

index accounting for species relative abundance, as opposed to an 
overall assessment of richness measured by the Shannon index, 
and a higher sensitivity of the Shannon index to species abundance 
(Johnston & Roberts, 2009). This is supported by the non-significant 
difference between single and multiplex assay for individual sam-
ple types successfully amplified in both assays, even if this analysis 

Locus Sample type

Shannon diversity Pielou evenness

W score p adj value W score p adj value

16Sv4 Marine Coastal 0 1 0 1

Marine CoastalSed 1 0.21875 4 0.765625

MarineOffshore 0 1 0 1

MarineOffshoreSed 0 0.875 1 1

Peatland 0 1 0 1

River 0 0.58333333 2 1

Woodland 0 0.58333333 0 0.875

18Sv1v2 Diatom 0 1 0 1

Grassland 0 0.375 0 0.45

Marine Coastal 0 0.375 3 1

Marine CoastalSed 0 0.28125 0 0.28125

MarineOffshore 0 0.64285714 1 1

MarineOffshoreSed 0 1 0 1

Peatland 0 0.375 0 0.45

River 0 0.375 0 0.45

Woodland 0 0.375 0 0.45

18Sv8v9 Diatom 0 1 0 1

Grassland 0 0.75 0 0.75

Marine Coastal 0 0.75 0 0.75

Marine CoastalSed 0 0.28125 1 0.5625

MarineOffshore 1 1 0 0.9

MarineOffshoreSed 0 0.9 1 1

Peatland 3 1 3 1

River 0 0.9 0 0.9

Woodland 3 1 2 1

rbcL Marine Coastal 0 0.41666667 1 0.625

Marine CoastalSed 0 0.3125 0 0.3125

MarineOffshore 0 1 0 1

MarineOffshoreSed 0 0.625 0 0.625

River 0 0.41666667 0 0.625

Note: p-values are Benjamini & Hochberg corrected.

TA B L E  4 Wilcoxon signed rank test on 
Shannon Diversity and Pielou Evenness 
calculated between samples successfully 
amplified with both single plex and 
multiplex (regular only) assays for the 
benchmarking samples.

Locus
Single/multi 
(p val)

Single/multiplex + BSA 
(p val)

Multi/multix + BSA 
(p val)

16Sv4 0.268 0.733 0.989

18Sv1v2 0.923 0.954 1

18Sv8v9 0.995 1 0.999

rbcL 0.597 0.602 0.978

Note: Beta diversity was also tested between regular multiplex and multiplex with addition of BSA.

TA B L E  5 Pairwise PERMANOVA on 
Bray-Curtis distance between single 
plex (single) and multiplex (multi, both 
regular and with addition of BSA) in the 
benchmarking samples following 999 
permutations, with strata set to sample 
type.
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could not be completed on all paired samples due to amplification 
failure of some samples. Furthermore, higher sequencing effort of 
the single plex when compared with multiplex assays may have re-
sulted in a skewed estimate of richness, affecting the Shannon index 
more pronouncedly than Pielou evenness.

We also showed that the ASVs and species captured by the 
two assays largely overlapped. This overlap was higher for genes 
targeting a wide range of taxonomic groups than for taxon-specific 
genes. This is expected, given the variable performance of the 
taxon-specific gene rbcL with different sample types. For exam-
ple, the rbcL performed poorly with samples originating from soil, 
peatland and woodland, in which freshwater diatoms are not ex-
pected. It is possible that nonspecific amplification affected single 
and multiplex differently for this locus. The congruence between 
single and multiplex assays improved for all marker genes when 
rare ASVs/species were excluded from the analyses, suggesting 
that rare species were less efficiently captured in multiplex as-
says. This could be explained by the lower depth of sequencing of 
the multiplex when compared with single plex assays. However, 
the rarefaction and resampling approach we used to determine 

whether higher sequencing depth of the multiplex assay would 
capture more species, showed that both assays had already pla-
teaued at the depth of sequencing used for the data analysis (rar-
efied reads). This suggests that a higher sequencing effort alone is 
not likely to increase the capture of rare ASVs/species in multiplex 
assays. The likely strategy needed to capture rare species involves 
a higher eDNA input and/or a higher number of biological repli-
cates in PCR1. In particular, a higher number of replicates has been 
previously shown to reduce errors and biases, such as the missed 
amplification of rare species due to preferential amplification of 
abundant species (Bohmann et al., 2014, 2022).

In conclusion, we have shown that multiplexing gene markers in 
the same reaction improves throughput, reduces costs and enables 
the amplification of community-level biodiversity with limited input 
material. The cost savings are at the metabarcoding library con-
struction stage, where a single tube reaction on four loci reduced 
the cost to a fourth. Further savings are achieved in the pooling of 
1536 samples in a single sequencing run. In addition, the choice of 
sequencing platform (MiSeq, HiSeq and BGISeq) can result in 40% 
cost saving. Our multiplexing approach is a significant advancement 

F I G U R E  3 Venn diagrams showing ASVs shared between single (blue) and multiplex (red) assays, as well as unique to either assay for the 
total number of detected features (100%), the top 85% and 70% features.



    |  9 of 11EASTWOOD et al.

over previous studies using multiple primers to improve the am-
plification of longer marker regions (e.g., COI-5P gene (Govender 
et al., 2022)) and the detection capacity of target taxonomic groups 
[e.g., zooplankton (Zhang et al., 2018) and fish (Ushio et al., 2018)]. 
Multiplexing four loci at PCR1, combined with sample-specific dual 
indexes, and pooling of PCR2 libraries, provided significant savings 
without compromising quality and accuracy and reducing require-
ments on input DNA. The multiplex optimized for freshwater se-
daDNA performed comparably well on samples extracted from 
rivers, marine coastal and marine offshore samples (water and sedi-
ment). As expected, the multiplex performed poorly when applied to 
peatland, soil and woodland samples in which phytoplankton (e.g., 
diatoms) are not expected to occur. This seemingly negative result 
increases confidence on the specificity of the multiplex. A potential 
limitation of our assay was the lower detection of rare species. We 
suggest that this limitation can be overcome with a higher number 
of biological replicates or input eDNA. It is noteworthy that the mul-
tiplex assay presented here shows a high congruence with single 
marker genes, especially when targeting a wide range of taxonomic 
groups, which was the intended use for this tool.
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