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Development and application of an optimised Bayesian shrinkage prior for 
spectroscopic biomedical diagnostics 
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A B S T R A C T   

Background and objective: Classification of vibrational spectra is often challenging for biological substances 
containing similar molecular bonds, interfering with spectral outputs. To address this, various approaches are 
widely studied. However, whilst providing powerful estimations, these techniques are computationally extensive 
and frequently overfit the data. Shrinkage priors, which favour models with relatively few predictor variables, 
are often applied in Bayesian penalisation techniques to avoid overfitting. 
Methods: Using the logit-normal continuous analogue of the spike-and-slab (LN–CASS) as the shrinkage prior and 
modelling, we have established classification for accurate analysis, with the established system found to be faster 
than conventional least absolute shrinkage and selection operator, horseshoe or spike-and-slab. These were 
examined versus coefficient data based on a linear regression model and vibrational spectra produced via density 
functional theory calculations. Then applied to Raman spectra from saliva to classify the sample sex. 
Results: Subsequently applied to the acquired spectra from saliva, the evaluated models exhibited high accuracy 
(AUC>90 %) even when number of parameters was higher than the number of observations. Analyses of spectra 
for all Bayesian models yielded high-classification accuracy upon cross-validation. Further, for saliva sensing, 
LN–CASS was found to be the only classifier with 100 %-accuracy in predicting the output based on a leave-one- 
out cross validation. 
Conclusions: With potential applications in aiding diagnosis from small spectroscopic datasets and are compatible 
with a range of spectroscopic data formats. As seen with the classification of IR and Raman spectra. These results 
are highly promising for emerging developments of spectroscopic platforms for biomedical diagnostic sensing 
systems.   

1. Introduction 

Raman spectroscopy (RS) and infrared spectroscopy (IR) provide 
powerful, non-invasive vibrational spectroscopic methods for analytical 
applications and for diagnostics with insight into molecular environ-
ments and relative concentrations. RS has been continuously exploited 
for many emerging healthcare-related applications in diagnostics 
including for instance traumatic brain injury [1–4], cancer [5–10], 
tuberculosis [11,12], and screening of keratitis [13–15]. While prom-
ising, the majority of clinical studies including healthy volunteers and 
patients tend to only have small, limited populations in early-stage 
studies to acquire samples from, especially when compared with the 
number of potential parameters involved in spectroscopic techniques. 

The sample size required for an 80 % power, an accepted level or 
higher for determining whether the research study shows an actual ef-
fect [16], would not be a viable for most initial case studies for various 
diseases. For example, a disease that affects 4 % of a population and is 
only expected in 6 % of a study group would require over 850 samples 
for an 80 % power with 0.05 type-I error rate. Availability of patients 
and healthy controls capable to provide samples for early-stage spec-
troscopic diagnostic studies are typically significantly smaller, on the 
order of. This issue leads to small groups and therefore, small sample 
numbers in initial studies prior to progressing to larger trials where 
greater resources would be required. Therefore, the number of obser-
vations (n) is expected to be smaller than the number of possible pa-
rameters (p) that can be extracted from Raman or Infrared spectra. 
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Several rules of thumb have been proposed regarding sample sizes, for 
PCA, to be either minimum 100 or, 5–10 times the number of variables 
[17–19]. This renders the commonly used principal component analysis 
(PCA) (for dimensional reduction analysis to extract spectral features) 
and linear discriminant analysis (LDA) as less reliable given the small n 
observations for each class during early-stage studies. Alternatively, 
other methods could be employed including the self-organising maps 
based on artificial neural networks (ANN), which tend to perform better 
than PCA-based approaches. However, even machine learning ap-
proaches, such as ANN, require sample sizes that are significantly larger 
than the weightings. For the ANN, Alwosheel et al. had proposed that the 
sample size should be 50 times greater than the weightings [20]. By 
contrast to ANN, Bayesian methods (an approach that observes new 
information to adapt the model to offer better accuracies) are known to 
provide better insight into incomplete or small datasets. Additionally, 
recent Bayesian approaches enable the parameter estimation in the oral 
minimal model of glucose dynamics [21], as well as predicting cardio-
vascular risk [22]. Thus, Bayesian methods offer a potentially powerful 
classification avenue for analysing vibrational spectroscopies, where the 
number of possible relevant peaks may well exceed the possible number 
of observations given the initial study group sizes being generally small. 
Unlike frequentist approaches, which are purely data-driven, Bayesian 
methods incorporate prior information into the analysis [23]. Where the 
prior updated with new information that is then used to obtain the 
posterior probability distribution. For shrinkage priors, there is a 
weighting at zero for smaller models that favour for sparse solutions, i.e., 
those in which many coefficients are set to zero and so the corresponding 
features do not contribute to classification. Although Bayesian statistics 
is a well-established branch of statistics [24], it was not until relatively 
recently when Bayesian models have started to be applied to Raman 
spectroscopy analysis [25], and its application for disease diagnostics 
was not reported for a further four years [26]. More specifically, Raman 
spectroscopy towards the diagnostics of cancer was not reported in 
conjunction with a Bayesian method until 2013 [10]. In this study, the 
authors had applied a Naïve Bayes classifier to Resonance Raman 
spectra of breast tissue to determine if a sample was healthy or had 
cancer. From this, they were able to diagnose malignant invasive ductal 
carcinoma grade II with 99.9 % sensitivity and 100 % specificity. 
Furthermore, whilst many of the Bayesian methods provide a powerful 
method for parameter and measurement estimation, the gold-standard 
spike-and-slab regression methods can often become computationally 
intractable for large sets of parameters, which is expected when there 
are large number of potentially relevant peaks in the spectra. 

To address the computational expense issues with the spike and slab 
approach, a Bayesian prior distribution [27], which uses a logit-normal 
continuous analogue of the spike-and-slab (LN–CASS) is presented as a 
Bayesian classifier approach for IR and Raman spectra. First, LN–CASS 
has been assessed for its performance against other Bayesian methods 
such as the Horseshoe prior, as well as the frequentist techniques of least 
absolute shrinkage, and selection operator (LASSO), ordinary least 
squares (OLS) and sparse group lasso (SGL). These approaches have then 
been examined with a parameter estimation based on a linear regression 
model. Subsequently, the LN–CASS prior has been assessed in a classifier 
model for simulated Raman and IR spectra of sucrose and glucose. 
Random forest (RF) and LASSO were also modelled on the same dataset 
for comparison. Finally, these three models and a self-organizing map 
(SOM) model which uses an artificial neural network were compared for 
their ability to classify biological sex based on Raman spectra of human 
saliva. The overall results lay the groundwork for the development of a 
classification model for vibrational spectroscopy studies, particularly for 
when sample numbers are small compared to the number of variables. 

2. Materials and methods 

2.1. Simulated vibrational spectra via DFT calculations 

Density functional theory (DFT) calculations were carried out using 
ORCA 5.0.2 using the ORCA quantum chemistry package [28]. A 
modified version of Avogadro molecular visualization software (that 
enables ORCA-related extensions) was used to create input data files and 
process software outputs [29]. For DFT, B3LYP was chosen for its 
reasonable computational cost to accuracy-ratio paired with a 
Pople-style basis set (6–31G**). Spectra were then exported using the 
ORCA built-in utility ensuring the range between 300 and 2000 cm− 1 

wavenumbers was exported over 1024 data points, with a 15 cm− 1 peak 
width. To produce a dataset, each spectra had jitter noise (factor set to 
150 and random seed to 55) applied to produce unique spectra. 

2.2. Raman characterisation 

To compare with the simulated Raman spectra of D-(+)-glucose and 
sucrose, both materials were individually dissolved in minimum water 
(15 MΩ-cm) then deposited onto aluminum substrate and dried in a 
vacuum desiccator. For Raman spectroscopy measurements, Renishaw 
InVia Qontor Raman microscope system was employed using the 785 
nm, excitation laser at 10 % laser power (100 % laser power at the 
sample, with no objective, was measured to be 120.2 mW using Thorlabs 
laser power meter (PM100D digital console equipped with an S121C 
standard Si photodiode sensor) with the 1200 lines/mm grating. The 
measurement settings selected were x50 objective with 5-second expo-
sure over three accumulations. 

2.3. Modelling with LN–CASS 

The LN–CASS and other modelling was conducted with R code, R- 
Stan was used for the implementation of Bayesian methods [30], where 
the sampling of the posterior was done with a No-U-Turn sampler; this 
approach is more efficient than conventional random walk approaches 
and moreover provides adaptive step [31]. For the LN–CASS model, this 
was adapted from Thomson et al. code available at [32]. The LN–CASS 
prior requires the choice of hyperparameters, τ, μλandσλ.μλ, these are 
fixed throughout the study as 5, logit(a).σλ and 10 respectively. τ is the 
standard deviation of the ‘slab’, the other two are the parameters of the 
logit-normal distribution that are the median of the logit-normal dis-
tribution and is based on the belief that priori that each coefficient has a 
probability a of being non-zero. In essence, to run the code, the spectra 
data should be prepared as text files (csv or txt), which are then im-
ported into the IDE (RStudio was used as the IDE for this work) with the 
R code. Once all the data has been imported into the IDE, the modelling 
could begin and once complete, data plots would be generated. A more 
accessible guide to running this analysis on Raman spectroscopy can be 
seen in supporting information (S2.3). 

3. Results 

3.1. Recapitulation of Bayesian approaches for a linear regression model 

This test expands to parameters values that are closer to Raman 
spectra data where typically the number of parameters p >> observa-
tions n for typical studies. (Full range of values of p can be found in 
supporting information Fig. S1). The results of these data fits are shown 
in Figs. 1 and S1, where at low p, all methods were observed to work well 
as their accuracies are within 20 % for 10 parameters with 100 obser-
vations except the SGL, which was observed to consistently perform the 
worst among the models tested. 

H.O. Chu et al.                                                                                                                                                                                                                                  
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3.2. Classification of IR and Raman data 

Fig. 2 presents the classification of Raman data for glucose and su-
crose, comparing the different methods (LN–CASS, RF and LASSO) as 
well as showing the difference between experimentally and theoretically 
derived Raman spectra. 

Table S1 summarising the performance of the models presented in 
Figs. 1, S1 and S2 across p = 10, 50, 100, 150, 250 and 500. Table 1 
summarises the leave one out cross validation (LOOCV) for each method 
and spectra type. 

Fig. 3 presents the classification of sucrose and glucose via the 
simulated IR spectra data, comparing LN–CASS, RF and LASSO. 

3.3. Performance of the LN–CASS method on human saliva Raman data 
for biological sex classification 

Fig. 4 presents the classification abilities of determining biological 
sex based off the Raman spectra of saliva using LN–CASS, RF, LASSO and 
the SOM approaches and Table 2 presents the Raman peak assignments 
for human saliva. 

Fig. 1. Coefficient predictions with n = 100 observations and p = 500. Horseshoe, LASSO, LN–CASS, and OLS. The SGL method was omitted from these as that 
method breaks down for when p > n. The actual coefficient values are shown in blue and the fittings in red. Fig. S1, in the supplementary information has a larger 
range of different p values tested. 

Fig. 2. Classification of Raman spectra, comparing sucrose with glucose. Classification of glucose and sucrose assessing Raman spectra with (a) LN–CASS (b) Random Forest 
and (c) LASSO. For all models, these are based on a Wald test, and 35 Raman shifts are selected based on the magnitude of their z-scores. (d) Comparison of the simulated 
Raman spectra for glucose (red) to the experimentally observed spectra (black). Whilst most of the peaks align well with the measured observations, there are several peak 
intensities that are significantly different. 

H.O. Chu et al.                                                                                                                                                                                                                                  



Computer Methods and Programs in Biomedicine 245 (2024) 108014

4

4. Discussion 

Firstly, the LN–CASS prior was evaluated with randomised parame-
ters and compared with other techniques such as the Horseshoe prior, in 
addition to the frequentist techniques LASSO, OLS, and SGL. Thomson 
et al. previously had conducted this test but with values of p tested only 
up to 120 [27]. Regardless of the model for p = 10 and n = 100, all were 
able to provide area under the receiver operator curve (AUC) values of 1. 
Where an AUC value of <0.5 means the method is worse than random 
guessing, >0.5 it is better than the aforementioned and at AUC=1 it 
means the method is perfectly able to make predictions. This result is not 
surprising considering the ratio of observations and parameters are 
suitable for techniques as data-hungry as PCA, to cluster samples based 
on their first 2–3 principal components [19]. The predictions observed 
in Fig. 1 for each model are consistent with the same test performed by 
Thomson et al. with different ranges of p and n [27], such that all 
methods perform well for p 〈< n, but for p ~ n, it was observed that OLS 
falls apart since it is ill-defined for cases when p 〉 n. From Table S1 
summarising the performance of the models presented in Figs. 1 and S1 

across p = 10, 50, 100, 150, 250 and 500, the LN–CASS and LASSO 
approaches achieved some of the best AUC values. In particular, 
LN–CASS resulted in the lowest mean absolute error (MAE) values. The 
Horseshoe method was seen to struggle in cases when the number of 
parameters is sufficiently higher than the number of observations. In the 
cases of p = 150 or higher, implementation of the Horseshoe prior 
resulted in difficulties with the Markov Chain Monte Carlo sampler not 
converging after 4 chains ran in parallel, suggesting that the sample was 
not close enough to the set posterior distribution. The SGL approach was 
observed to be the worst performer of the methods tested, often 
providing the greatest MAE values. From these results, potential can-
didates for a classifier applied to vibrational spectra should be either the 
LASSO or LN–CASS options. 

Glucose and sucrose, common small molecules, were chosen since 
their vibrational spectra are well-defined and can be classified easily 
with visual observation. Density functional theory was used to simulate 
the IR and Raman spectrum of each molecule and a dataset was pro-
duced with a copy of each spectra having noise applied to it. This pro-
duced unique spectra between 300 and 2000 cm− 1. The datasets were 
preprocessed, first by applying a log-transformation, followed by sub-
traction of the mean and dividing by the standard deviation of the 
Raman intensity. Subsequently, the Raman intensities were passed 
through a Wald test and selected; 35 intensities with the largest Z-scores 
with absolute value. This would have represented 35 Raman peaks and 
for simple molecules such as sucrose this would represent approximately 
half of all possible Raman modes. Raising this selection number beyond 
that would mean selecting a parameter value that is greater than 
possible modes for a certain class. LN–CASS, LASSO and RF were 
modelled on the preprocessed Raman spectra with 10 observations from 
each class. The obtained output results are shown in Fig. 2 along with 
the comparison of the simulated and the experimentally observed 

Table 1 
LOOCV derived AUC and MAE scores for LN–CASS, LASSO and RF classifying 
between D-glucose and Sucrose using simulated Raman spectra for n = 20 and p 
= 35.  

Spectra Type Method AUC MAE 

Raman LN–CASS 1.00 0.00857 
LASSO 1.00 0.00525 
RF 1.00 0.01320 

IR LN–CASS 1.00 0.00143 
LASSO 1.00 0.00524 
RF 1.00 0.01130  

Fig. 3. Classification of sucrose and glucose via the simulated IR spectra data using (a) LN–CASS (b) RF and (c) LASSO. While all approaches show excellent classification 
performance with IR, the amount of distance between the predicted values to the true value is observed to be reduced for LN–CASS by a factor of 6.99 when compared with the 
Raman dataset. 
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representative spectra. The relative Raman shift positions of the calcu-
lated spectra were found to be consistent with the observed ones 
(Fig. 2d). Differences in experimental data presented small disparities in 
relative peak intensities and peak widths. The peak width disparity is 
due to the potential measurement of a sample with limited long-range 
order. In the 1300–1500 cm− 1 range, the relative intensities are signif-
icantly lower than predicted in contrast to the 1000–1200 cm− 1 range. 
As expected, the statistical methods worked well for classification of 
sugars based on their Raman spectra, all having achieved an AUC value 
of 1.00, revealing high classification capabilities. Therefore, the only 
critique from here would be to compare the MAE values, not as a 
comment on the method’s ability for classification but rather an obser-
vation on how the models predict values. The machine learning model 
(RF) also showed promising results for the sugar classification, dis-
playing similar MAE to the LN–CASS approach (0.013 for RF compared 
with 0.009 for LN–CASS). The results for classification based on the IR 

spectra (Fig. 3) showed a similar trend, except for the mean absolute 
error for LN–CASS, which was found to be significantly smaller than 
observed for the Raman data. While all methods showed 100 % accuracy 
in classification between glucose and sucrose based on the IR spectra, 
the random forest approach consistently showed the greatest amount of 
error in the predictions. For IR spectral analysis, LN–CASS revealed the 
lowest error values and LASSO showed impressive classification per-
formance. The leave-one-out cross validation is summarized in Table 1, 
with results indicating that using any of these methods for classification 
of vibrational spectra with clear peak features will yield high accuracy 
and low errors. The lowest MAE obtained for Raman analysis was found 
to be 0.005 with the LASSO method, whereas for IR, the LN–CASS 
exhibited considerably reduced MAE of only 0.001, which is an 
improvement over LASSO approach by a factor of 6.99. This level of 
performance similarity between Raman and IR analysis was expected, as 
both datasets present intensity versus wavenumber. For such simple 

Fig. 4. Binary classification of human saliva samples predicting whether they are originating from male or female donors. Red dots represent samples from female 
donors and blue from male donors. Methods used for these classifiers are (a) LN–CASS, (b) LASSO (c) RF and (d) SOM. In (d), the top row is for classification without 
the LVQ option applied to the trained map and the lower row is with LVQ applied. The SOMDI values are also presented, which presents which peaks contribute most 
to the classification. Dominant Raman peaks include the C–S stretch and C–C twist of proteins and tyrosine (628 cm− 1), C–C stretch of the amino acids (proline, 
hydroxyproline and valine), proteins (930 cm− 1), symmetric ring breathing mode (phenylalanine, tryptophan) at 1003–1005 cm− 1, C–O and C–N stretch at 1050 
cm− 1, amide-III band at 1300 cm− 1 and CH2 and CH3 deformation vibrations (proteins and lipids) at 1450 cm− 1. (e) Comparison of the AUC values for the LN–CASS, 
LASSO and RF methods. Since the values are close in value, the y-axis has been truncated from 0.1 to 0.8 for clarity. 

H.O. Chu et al.                                                                                                                                                                                                                                  



Computer Methods and Programs in Biomedicine 245 (2024) 108014

6

molecules, the 100 % classification accuracy with only 10 observations 
per class indicates that any of the Bayesian models or RF would be 
suitable for simple cases. In biological studies however, there may be 
many overlapping peaks with similar relative peak intensities which 
would be difficult to classify. We have thus applied a test case of any 
single Raman spectrum of complex biological dataset comprised of 
human saliva to determine biological sex. 

Biological samples typically exhibit many overlapping peaks which 
render visual classification of Raman spectra difficult without additional 
post-processing. For comparison, in addition to the LASSO and RF 
models, the self-organising map algorithm that uses an artificial neural 
network developed by Banbury et al. was applied [33]. Our dataset 
contained 60 Raman spectra from 30 healthy males and 30 healthy fe-
male participants. Fig. 4d presents the Raman peaks in measured human 
saliva which contribute most to the classification. The identified peaks 
of importance are assigned to phenylalanine, tryptophan, CH modes 
from proteins and lipids, amide I and III. Table 2 summarises the overall 
peak assignments for Raman spectra of human saliva. The 
self-organising map is comprised of many empty neurons, which is due 
to the low sample numbers as neural networks by nature require 
significantly large sample numbers, which is not the case in this dataset. 
Despite this, the SOM was able to analyse the highly noisy spectral data 
and obtain good results when learning vector quantisation (LVQ) is 
applied (50 % accuracy on the training data without the learning vector 
quantisation applied to the trained map and 100 % accuracy when the 
LVQ is applied to the model) achieving a 10-fold cross-validation score 
of 0.75. Further details on how the SOM operates can be found in [33]. 

Compared with the vibrational spectra of single molecules, the saliva 
data is significantly noisier. Fig. 4 shows a significantly different per-
formance for the Bayesian and RF classifier models on the relatively 
noisy data. In Fig. 4(a) LN–CASS was shown as the only classifier to not 
have any of the predicted samples proceed past the default decision 
boundary. In the other approaches, results indicate significant inaccu-
racy in determining the biological donor sex. Fig. 4(b) and (c) reveal at 
least 9 incorrect classifications for LASSO and 6 for RF. Despite these 
misclassifications, LN–CASS has predicted many of the samples close to 
the decision boundary therefore, obtaining the worst MAE score among 
the three methods (0.375). LASSO and RF methods acquired MAE values 
of 0.274 and 0.351, respectively. Nevertheless, it must be reinforced that 
the MAE value is not a useful metric for comparing the classifier per-
formance but rather a comment on the computational modelling accu-
racy of predicted values. AUC is by far the more relevant statistic for the 
comparison between the classifiers. AUC values for LN–CASS, LASSO 
and RF were 0.996, 0.90 and 0.98, respectively. As presented in Fig. 4 
(e), such comparison is omitted from the methods comparison using the 
simulated datasets as all tests showed AUC value of 1.00. Whilst these 

approaches may appear relatively high compared to the presented SOM, 
it must be stressed that the dataset examined in this study is consider-
ably smaller than expected for applications of neural networks and 
hence, the lower cross-validation accuracy scores. This could be 
explained by the fact that ANN methods are significantly more data 
hungry than Bayesian modelling approaches, the latter of which is best 
suited to small or incomplete datasets [34]. One issue which remains for 
Bayesian modelling approaches is the sampling of the posterior distri-
bution as one of the major rates determining steps in analysis. For the 
LN–CASS sampler, a Markov Chain Monte Carlo algorithm was 
employed and therefore, took longer among the tested classifiers when 
higher parallel chains are implemented. Despite this issue, on the 
timescale for clinical diagnostics, this extra time requirement of a few 
minutes would be negligible in practice. In future applications of the 
Bayesian classifiers, additional clustering approach could potentially 
benefit the LN–CASS approach to improve the MAE scores [35]. 

5. Conclusions 

This communication presents the application of a Bayesian shrinkage 
prior in modelling the classification of vibrational spectra datasets. 
Parameter inference based on grouped LN–CASS prior around the 
regression coefficients in the simulated coefficients study, show that 
even at high parameters-to-observations ratios of 5:1, this approach was 
able to achieve an AUC of 0.98 with consistently the lowest mean ab-
solute error values. Given the level of noise that was introduced to the 
simulated dataset to produce unique Raman spectra is at the same ex-
pected levels when measuring pure chemicals in vibrational spectros-
copy, this AUC would be representative for those types of data. 
Simulated Raman and IR spectra modelling of small molecules of 
glucose and sucrose for low sample numbers (10 observations per class), 
via the Bayesian and Random Forest approaches can be accurately 
classified. However, when a biologically complex human saliva Raman 
dataset is analyzed, the LN–CASS prior was most capable of classifying 
the donor sex with 100 % accuracy and an AUC of 1.00 despite obtaining 
the greatest MAE value for that dataset among the tested machine 
learning approaches. Nevertheless, it should not detract from the 
achievements as a classifier since the MAE is not a statistic used for 
determining the performance of classifiers but rather the computational 
performance in predicted expected values. Since the dataset was suffi-
ciently small to cause issues (lots of empty neurons in the self-organizing 
maps) for the ANN approach, a future application of the LN–CASS prior 
would potentially be to study different disease states based on the 
vibrational spectra, for the early-stage exploratory biomedical studies 
that involve low sample numbers. 

Turning to the development and evaluation of diagnostic and prog-
nostic models for clinical application, we note that penalization is not a 
‘magic bullet’ to remove any difficulties associated with small sample 
sizes. For example, a recent systematic review of machine learning 
models in oncology found that there rarely is an explanation for the 
sample sizes used [36]. While penalization reduces overfitting, its use 
can incur increased variability in out-of-sample predictive performance, 
thus, it will be critical to assess this variability including the variability 
with tuning parameters carefully [37]. Thus, LN–CASS does not remove 
the need for adequate sample sizes for later stage model development 
and assessment in the clinical setting. Nevertheless, it is a valuable 
method for early-stage research and identification of predictive features 
for subsequent assessment and clinical translation. 

Data accessibility 

All code and data used in this study is available on GitHub. htt 
ps://github.com/hinonchu/LN–CASS_for_vib-spectrsocopy. Alterna-
tively, the code and data can also be accessed via the DOI (https://doi. 
org/10.5281/zenodo.8028655). 

Table 2 
Peak assignments for the Raman spectra of human saliva [3].  

Peak Wavenumber 
(cm− 1) 

Assignment 

628 C-S stretch and C–C twist Protein; tyrosine 
760 Ring breathing mode tryptophan; proteins 
855 C–C; ring breathing mode tyrosine 
960 Calcium-phosphate stretching band (cholesterol), α-helix. 

Proline, Valine (n (C–C)) 
1003 Symmetric ring breathing mode (phenylalanine, 

tryptophan) 
1076 C-C (Lipids); symmetric stretch of phosphates in 

hydroxyapatite 
1125 C–C skeletal stretch (lipids); C–N stretch (proteins) 
1205 Amide III; CH2 wagging and vibrations (glycine, proline, 

tyrosine and phenylalanine) 
1337–1339 CH2/CH3 wagging and twisting (proteins, nucleic acid, 

lipids), nucleic acid bases (n (C–H)) 
1456 CH2 and CH3 deformation vibrations (proteins and lipids) 
1655 Amide I region; C––C stretch (lipids); C––O stretch (proteins)  
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