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A B S T R A C T

We introduce and investigate the iterated application of Generalized Matrix Learning Vector Quantization
for the analysis of feature relevances in classification problems, as well as for the construction of class-
discriminative subspaces. The suggested Iterated Relevance Matrix Analysis (IRMA) identifies a linear subspace
representing the classification specific information of the considered data sets using Generalized Matrix
Learning Vector Quantization (GMLVQ). By iteratively determining a new discriminative subspace while
projecting out all previously identified ones, a combined subspace carrying all class-specific information can
be found. This facilitates a detailed analysis of feature relevances, and enables improved low-dimensional
representations and visualizations of labeled data sets. Additionally, the IRMA-based class-discriminative
subspace can be used for dimensionality reduction and the training of robust classifiers with potentially
improved performance.
1. Introduction

Prototype-based systems such as Learning Vector Quantization
(LVQ) [1–4] can serve as genuinely interpretable and transparent
classification tools [5]. In combination with the use of adaptive distance
measures [6,7], they provide valuable insights into the structure of the
problem at hand and into the relevance of features for the actual classi-
fication task. However, the presence of correlated features or multiple
subsets of features enabling similar performance can lead to ambiguous
relevance assignments and non-unique outcomes of training. This fre-
quently complicates the interpretation of relevance learning, see e.g. [8,
9]. Similarly, a classifier trained by gradient descent will converge
towards a single minimum of the cost function. For classifiers in the
LVQ-family, this minimum corresponds to a specific subspace of the
original feature space, while the remaining subspace may still contain
class-relevant information. In this way, in a traditionally trained model,
often only a part of the potentially useful class-specific information is
used.

In this work, we extend our contribution to the 2023 European
Symposium on Artificial Neural Networks, Computational Intelligence,
and Machine Learning (ESANN) [10]. There, we presented an exten-
sion of Generalized Matrix LVQ (GMLVQ) [6,7] and showed that the
successive removal of dominantly relevant directions in feature space
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Netherlands.

E-mail addresses: s.s.lovdal@rug.nl (S. Lövdal), m.biehl@rug.nl (M. Biehl).

and subsequent re-training of GMLVQ with the remaining information
allows to infer the most class-relevant subspace. This Iterated Relevance
Matrix Analysis (IRMA) facilitates the detailed analysis of feature rele-
vances — especially in presence of multiple weakly relevant features.
Moreover, we demonstrated that the discriminative low-dimensional
representation and visualization of labeled data sets could be enhanced
compared with the basic GMLVQ approach [6,7]. In this work, we
extend the feature relevance analysis and discriminative visualization
from a binary to a multi-class setting. Furthermore, we investigate
the potential of IRMA-based dimensionality reduction, by comparing
the performance of a simple GLVQ classifier [3] in three different
spaces: using no dimensionality reduction, GMLVQ-based and IRMA-
based dimensionality reduction. This work being an extension of our
conference contribution, some sections have been adopted from the
original work without explicit further indication.

Learning in mutually orthogonal subspaces, similar to the basic idea
of IRMA, has been considered earlier for Support Vector Machines
and Linear Discriminant Analysis, see e.g. [11,12], with emphasis on
the dimensionality reduction as an alternative to Principal Component
Analysis. This work is also partially building on van Veen et al. [13],
where a GMVLQ-based orthogonal direction is learned and projected
out to reduce source-specific bias in data. Here, we focus on exploiting
vailable online 7 February 2024
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orthogonal discriminative subspaces for the improved interpretation
of feature relevances and the potential construction of more robust
classifiers.

Other approaches to the analysis of feature relevances in linear map-
pings and prototype-based classifiers have been addressed previously in
several studies, see e.g. [8,9,14,15].

Our paper is structured as follows. In Section 2 we introduce the
suggested procedure (IRMA), and describe our experimental setup. The
illustrative application of IRMA to our artificial and benchmark data
sets (binary and multi-class) is presented and discussed in Section 3.
With this work, we aim to answer the following research questions.
First, can IRMA be used to improve the interpretation of feature rele-
vances in classification problems? Additionally, we wish to investigate
whether the class-discriminative subspace created by IRMA is able to
capture additional relevant information, in order to potentially improve
the performance of a classifier. To this end, we compare the perfor-
mance of a simple GLVQ classifier, and evaluate the second research
question: Is IRMA-based dimensionality reduction better than GMLVQ-
based? Finally, in Section 4, we discuss the potential further ways to
exploit the class-specific information extracted by IRMA, and suggested
future work.

2. Methods

2.1. Iterated relevance matrix learning

An LVQ system assigns 𝑁-dim. feature vectors 𝐱 ∈ R𝑁 to one of 𝐶
lasses labeled by 𝑆 ∈ {1, 2,… , 𝐶}. The nearest prototype classification is
ased on the distances of 𝐱 from a set of 𝑀 prototypes {𝐰𝑗 ∈ R𝑁}𝑀𝑗=1.
ach prototype represents one of 𝐶 classes as denoted by the labels
(𝐰𝑗 ) ∈ {1, 2,… , 𝐶}.

GMLVQ in its basic variant [6] employs a global distance measure
f the form

(𝐰𝑗 , 𝐱) = (𝐱 − 𝐰𝑗 )⊤𝛬(𝐱 − 𝐰𝑗 ), with 𝛬 = 𝛺⊤𝛺. (1)

ere, the relevance matrix 𝛬 ∈ R𝑁×𝑁 is re-parameterized in terms of
n auxiliary matrix 𝛺 ∈ R𝑁×𝑁 as to guarantee that 𝛬 is symmetric and
ositive semi-definite with 𝑑(𝐰𝑗 , 𝐱) ≥ 0. Extensions to local relevance
atrices or rectangular 𝛺 have been considered in the literature [6,7].

Given a set of data {𝐱𝜇 , 𝑆𝜇}𝑃𝜇=1, prototypes 𝐰𝑗 and matrix 𝛺 are
ptimized in a training process which is guided by the minimization of
he cost function [3]

=
𝑃
∑

𝜇=1
𝜙
[

𝑑𝛬(𝐰+, 𝐱𝜇) − 𝑑𝛬(𝐰−, 𝐱𝜇)
𝑑𝛬(𝐰+, 𝐱𝜇) + 𝑑𝛬(𝐰−, 𝐱𝜇)

]

, with 𝜙(𝑧) = 𝑧 in the following.

(2)

For a given example {𝐱𝜇 , 𝑆𝜇}, 𝐰+ denotes the closest correct prototype
with 𝑑(𝐰+, 𝐱𝜇) ≤ 𝑑(𝐰𝑗 , 𝐱𝜇) among all 𝐰𝑗 with 𝑆(𝐰𝑗 ) = 𝑆𝜇 . Corre-
spondingly, 𝐰− is the closest wrong prototype carrying a label different
from 𝑆𝜇 . In practice, GMLVQ ensures that the data points are linearly
mapped by 𝛺 into a space where classes are separated as well as
possible. An additional normalization of the form
𝑁
∑

𝑖=1
𝛬𝑖𝑖 =

𝑁
∑

𝑖,𝑗=1
𝛺⊤

𝑖𝑗𝛺𝑗𝑖 = 1 (3)

is imposed in order to avoid numerical instabilities and support com-
parability of relevance matrices [6]. The resulting diagonal entries 𝛬𝑗𝑗
uantify the relevance of dimension 𝑗, provided all features 𝑥𝑗 are of
he same magnitude [6]. Throughout the following we achieve this by
pplying a feature-wise 𝑧-score transformation in all considered data
ets.

The symmetric semi-definite relevance matrix can be expressed as:

=
𝑁
∑

𝜆𝑗𝐯𝑗𝐯⊤𝑗 with 𝛬 𝐯𝑗 = 𝜆𝑗𝐯𝑗 . (4)
2

𝑗=1
he matrix 𝛺 =
∑𝑁

𝑗=1
√

𝜆𝑗𝐯𝑗𝐯⊤𝑗 serves as a canonical, symmetric repa-
rameterization of 𝛬 in the following. Furthermore, we assume that
eigenvalues can be ordered as 𝜆1 ≥ 𝜆2 … ≥ 𝜆𝑁 without loss of
generality.

After training, the relevance matrix typically assumes a low rank
and is dominated by a few leading eigenvectors, see [16] for a detailed
discussion and analysis. This property facilitates e.g. the discriminative
visualization of the data set in terms of projections onto the first
eigenvectors [6,7].

In two-class problems, for instance, the training typically identifies
a single, most discriminative direction 𝐯(0)1 with 𝜆(0)1 ≈ 1 and 𝛬(0) ≈
𝐯(0)1 𝐯(0)⊤1 . Here and in the following the superscript (0) refers to the
esults of a first, unrestricted GMLVQ training. In such a situation,
he eigenvectors 𝐯(0)𝑗 with 𝑗 ≥ 2 form an arbitrary basis of the space
rthogonal to 𝐯(0)1 with no particular order, and at the end of training
his subspace is ignored when the model computes its distances. Note,
owever, that the corresponding (𝑁−1)-dim. subspace very likely still
ontains relevant information about the classes, reflecting the potential
mbiguity of the relevance assignment. The selection of a particular
(0)
1 may depend strongly on initial conditions and on properties of
he actual training data set, possibly leading to an overfitted relevance
nalysis.

In order to obtain more comprehensive insights, we can perform a
econd GMLVQ training process which is restricted to an orthogonal
ubspace by considering a distance measure of the form (1) with 𝛬(1) =
(1)⊤𝛺(1) under the constraint that 𝛺(1)𝐯(0)1 = 0. This can be achieved
y applying the projection
(1) → 𝛺(1) [𝐼 − 𝐯(0)1 𝐯(0)⊤1 ] (5)

fter each update step, followed by the normalization of 𝛺(1) (cf. Eq.
3)). In other words, this projection ensures that contributions corre-
ponding to 𝐯(0)1 are disregarded in the feature space. Now, the leading
igenvector 𝐯(1)1 of the resulting 𝛬(1) represents the most discriminative
irection orthogonal to 𝐯(0)1 . The degree to which 𝐯(1)1 carries class
elevant information can be evaluated in terms of a performance mea-
ure of the restricted classifier, e.g. by the balanced accuracy 𝐵𝐴𝐶 (1),
stimated in an appropriate validation procedure.

Obviously, we can apply the idea iteratively and obtain a sequence
f vectors 𝐯(𝑗)1 each of which is orthogonal to all 𝐯(𝑖)1 with 𝑖 = 0, 1,… , 𝑗−
. In each step 𝑗 ≥ 1 of this Iterated Relevance Matrix Analysis (IRMA)
e perform GMLVQ training where the projection

(𝑗) → 𝛺(𝑗)

[

𝐼 −
𝑗−1
∑

𝑖=0
𝐯(𝑖)1 𝐯(𝑖)⊤1

]

(6)

s applied after each update together with the appropriate normal-
zation. We will refer to the unrestricted GMLVQ training as the 0-th
teration. The key step (6) is reminiscent of the subspace correction
n [13], where it however serves a different purpose.

The procedure can be terminated when the classifier in iteration
𝑘+1) achieves only random or near random classification performance
s signaled by, for example, a 𝐵𝐴𝐶 (𝑘+1) ≈ 0.5. in a binary problem. The
btained subspace

= span{𝐯(0)1 , 𝐯(1)1 ,… 𝐯(𝑘)1 } with associated projections 𝑦𝜇𝑖 = 𝐱𝜇 ⋅ 𝐯(𝑖)1 (7)

an be interpreted as to contain (approximately) all class relevant
nformation in feature space. Hence, it can serve for further analysis
f feature relevances. An obvious application could be the low-dim.
epresentation of labeled data sets in terms of the 𝑦𝜇𝑖 , e.g. for the
urpose of two- or three-dim. visualizations.

We would like to stress again that 𝑉 in Eq. (7) differs significantly
rom the set of leading eigenvectors {𝐯(0)1 , 𝐯(0)2 ,… 𝐯(0)𝑘 } as obtained in a
ingle application of unrestricted GMLVQ. There, no particular order is
mposed on the orthogonal vectors 𝐯(0)𝑗 for 𝑗 ≥ 2. In a typical two-class
roblem only the discriminative power of 𝐯(0) is represented explicitly.
1
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When applying IRMA in a multi-class setting, multiple relevant
eigenvectors per iteration could be removed. For multi-class problems,
the converged 𝛬 is typically dominated by a set of (several) relevant
eigenvectors [6]. Their number is dependent on the number of classes
and the properties of the data. The eigenvalue profile of 𝛬 can be
inspected in order to make a decision regarding the number 𝐾 of
igenvectors that should be removed in each iteration by applying

(𝑗) → 𝛺(𝑗)

[

𝐼 −
𝑗−1
∑

𝑖=0

𝐾
∑

𝑙=1
𝐯(𝑖)𝑙 𝐯(𝑖)⊤𝑙

]

. (8)

ere, 𝐯(𝑖)𝑙 denotes the 𝑙th leading eigenvector of the relevance matrix
btained in IRMA iteration 𝑖.

The choice of 𝐾 also depends on the actual motivation for apply-
ng IRMA. If the goal is a thorough analysis of feature relevances,
t is favorable to inspect models operating in mutually orthogonal
ubspaces. Alternatively, by removing single eigenvectors in each it-
ration, the classifiers will use partially overlapping information, with
ossibly better performance but harder to interpret relevances. To
nspect models operating in orthogonal subspaces, one could remove a
ariable number of eigenvectors such that the sum of their eigenvalues
s close to 1. On the other hand, if the goal is to construct a class-
pecific subspace, one or a fixed number of multiple eigenvalues can
e removed per iteration. Removing one eigenvector per iteration will
e slightly less efficient than removing multiple at the time, while it
otentially will be more precise with respect to maximizing the class
eparation in the resulting IRMA-subspace.

.2. Experiments

We will use three different illustrative data sets to demonstrate
he properties of IRMA: One artificial data set drawn from a mixture
f two Gaussians, and two data sets from the UCI machine learning
epository (one two-class and one seven-class). For simplicity and in-
reased interpretability of feature relevance profiles, we apply a 𝑧-score
ransformation to all features once before the start of training.

For all three data sets, we estimate the BAC per iteration (or number
f orthogonal solutions with a reasonable performance) by performing
30 times repeated application of IRMA with a 50/50 train–test split.
he training and test sets are determined by stratified random sampling
or each experiment.

We will inspect both the discriminative visualizations for each data
et, projecting the data onto the eigenvectors obtained by GMLVQ or
RMA. For this purpose, we display the result of one arbitrary training
rocess in the validation scheme. In addition, we inspect the feature
elevance profiles, as given by the diagonal elements of 𝛬, per iteration
or the real-world data sets. To this end, we apply IRMA once on the full
et of available data. For binary problems, we remove one eigenvector
er iteration, and for the multi-class problem, we remove multiple per
teration, such that the summed eigenvalues indicate that most of the
ubspace relevant for the solution in question is covered.

Additionally, we investigate the suitability of IRMA for dimensional-
ty reduction, using the two real world data sets. For this purpose, we
ompare the performance of a simple GLVQ classifier in (a) original
ata space, (b) GMLVQ-space, and (c) IRMA-space. As 𝛬 typically con-
erges to a low-rank representation, it is known that traditional GMLVQ
an also be used as a form of dimensionality reduction, by projecting
he data onto the leading eigenvectors of 𝛬. We are interested in
hether the iterative approach by IRMA may capture more relevant

nformation than a single solution identified by GMLVQ. Therefore,
e again use a 50/50 train–test split, and measure the performance

n terms of balanced accuracy. For (a), we apply GLVQ without any
imensionality reduction. For (b), we apply GMLVQ on the training set,
roject all data onto the eigenvectors comprising 99% of the summed
igenvalues, and then train a GLVQ classifier in the lower-dimensional
pace using the same set of training data. In (c), we apply IRMA on the
3

c

raining set, and project all data into the growing subspace combined
rom the iterations of the method. We then retrain the GLVQ classifier
n this IRMA-space, using the same training set. For extracting this
‘class-specific subspace’’, we remove one eigenvector per iteration for
oth the two-class and seven-class data set. We perform experiments
–c for 1, 2 and 3 prototypes per class, in order to observe how the
erformance changes with increasing flexibility of the GLVQ model.
or each training and test round, the GLVQ, GMLVQ and IRMA models
re assigned the same number of prototypes. We specifically employ a
imple GLVQ model to test our dimensionality reduction hypothesis, as
eapplying GMLVQ in IRMA-space would most likely converge back to
he initial solution of the 0-th iteration.

We use the same standard parameters for all LVQ-based models in
he experiments: 30 epochs of stochastic gradient descent, activation
unction identity, and initial step sizes of 0.1 and 0.01 for the proto-
ypes and relevance matrix, respectively. The rest of the parameters
re left as the default values, as implemented by the Python sklvq
ackage [17].

Below, we cover further details of the data sets, as well as the results
nd discussion of the experiments.

. Results and discussion

.1. Artificial data

We first consider an extremely simple and clear-cut artificial two-
lass data set illustrated in Fig. 1(a). Feature vectors 𝐱 ∈ R4 comprise
wo informative components 𝑥1, 𝑥2 in which each class corresponds to
n elongated Gaussian cluster with means 𝜇1 = [−1,−8], 𝜇2 = [1, 8]
nd covariance matrix 𝛴 =

( 2 0
0 12

)

for both clusters. The remaining
omponents are independently drawn from an isotropic zero mean, unit
ariance normal density, before applying the 𝑧-score transformation.
s can be seen in panel (a), feature 𝑥2 should be sufficient to separate

he classes with almost 100% accuracy. However, classes also separate
long 𝑥1, albeit less perfectly. Unrestricted GMLVQ with one prototype
er class realizes near perfect classification with 𝐵𝐴𝐶 (0) ≈ 0.99 (w.r.t.
raining and test) in a balanced data set of 600 samples, where the
raining set contains 300 randomly drawn examples and the remain-
ng 300 form a test set. Projections on the leading eigenvectors are
hown in panel (b) of Fig. 1. The dominating eigenvector is 𝐯(0)1 ≈
0.18, 0.98,−0.02, 0.01)⊤ corresponding to 𝛬(0)

𝑗𝑗 ≈ 𝛿𝑗,2. The orthogonal v(0)2
s essentially random as indicated by the absence of a separation of
lasses, resulting in an effectively one-dim. visualization.

In the first IRMA iteration, the leading eigenvector of 𝛬(1) ap-
roaches the second relevant direction: 𝐯(1)1 ≈ (0.98,−0.18,−0.02,
0.02)⊤ with 𝛬(1)

𝑗𝑗 ≈ 𝛿𝑗,1. As expected, the performance drops compared
o the unrestricted system: we observe a 𝐵𝐴𝐶 (1) of 0.70 (training) and
.68 (test). As shown in panel (c) of Fig. 1, the projections 𝑦0, 𝑦1, cf. Eq.
7), of the data set onto 𝐯(0)1 and 𝐯(1)1 display both relevant separating
irections and reproduce the cluster structure of the original features
1, 𝑥2. Already in the second iteration of IRMA, the accuracy drops to
𝐴𝐶 (2) ≈ 0.52 and 0.51 for training and test data, respectively. As
xpected, no further relevant directions can be identified.

.2. Wisconsin diagnostic breast cancer data

This benchmark data set from the UCI Machine Learning Reposi-
ory [18,19] contains 569 samples with 30 features extracted from cells
n an image of a fine needle aspirate of a breast mass (357 benign,
12 malignant). Fig. 2 shows the projection of part of the training
ata into GMLVQ space at the end of training for the unrestricted
ystem (iteration 0, (a)), and after the 1st iteration (b). Here, the
enign samples are displayed as cyan triangles, and the malignant as
urple diamonds. Fig. 2(c) shows the training data projected onto the
eading eigenvector of the 0th and 1st iteration, where you can see a

lear discrimination of the two classes along both coordinate axes. The



Neurocomputing 577 (2024) 127367S. Lövdal and M. Biehl
Fig. 1. Artificial data: original features 𝑥1 , 𝑥2 of the data set (a), projections on 𝑣(0)1 , 𝑣(0)2 of unrestricted GMLVQ (b), and projections on the eigenvectors 𝑣(0)1 and 𝑣(1)1 of the
unrestricted system and the first iteration of IRMA in (c).
Fig. 2. Wisconsin data set: Projections after 0th (a), 1st iteration (b), and data projected onto leading eigenvectors of 0th and 1st iteration, respectively (c).
Fig. 3. Wisconsin data set: Diagonal of 𝛬 per iteration (𝑖), which is indicated as 𝑖 in the upper left corner of each panel. In addition, the obtained random sampling validation
𝐵𝐴𝐶 w.r.t. test data are shown.
leading eigenvalue of the GMLVQ system from both the 0th and 1st
iteration is ≈ 1.0 respectively, meaning that there is no contribution
from non-dominant eigenvectors from iteration 0 in iteration 1.

The application of IRMA allows deeper insights into the feature
relevances. For example, Fig. 3 shows that features 4 and 14 display
significant 𝛬𝑗𝑗 > 0.1 in iteration (1) (being the most important features),
while they appear irrelevant in the unrestricted system (0). However,
the performance of the two systems is virtually identical with 𝐵𝐴𝐶 (1) ≈
𝐵𝐴𝐶 (0). Hence, these features constitute examples of weakly relevant
dimensions in the sense of the discussion given in [8,9]: they enable
successful classification in (1), but are replaced by other (combinations
of) features in (0). Similarly, the single feature 𝑗 = 21 dominates the
classification in iteration (2), while it plays only a minor role in the
other classifiers.

Note that the test set accuracies decrease to 𝐵𝐴𝐶 (4) ≈ 0.84 and
𝐵𝐴𝐶 (5) ≈ 0.78, 𝐵𝐴𝐶 (6) ≈ 0.74, 𝐵𝐴𝐶 (7) ≈ 0.70, 𝐵𝐴𝐶 (14) ≈ 0.56.
Here, we restrict the discussion to 𝑉 = {𝐯(0), 𝐯(1), 𝐯(2), 𝐯(3)} as the most
4

1 1 1 1
discriminative subspace. Five features (𝑗 = 9, 12, 13, 18, 19) display
diagonal relevances 𝛬(𝑖)

𝑗𝑗 < 0.02 for all 𝑖 ≤ 3 and, therefore, could be
considered irrelevant. Two features (𝑗 = 7, 21) were rated relevant with
𝛬(𝑖)
𝑗𝑗 ≥ 0.02 for all 𝑖 ≤ 3.

Table 1 presents the balanced accuracy scores when training a GLVQ
classifier in original data space, GMLVQ-space, and IRMA-space, for 1,
2 and 3 prototypes. GLVQ trained in the original data space performs
consistently worse than the GLVQ models trained in one of the lower-
dimensional data spaces (BAC ≈ 0.90 − 0.92 vs. 0.96 − 0.97). GLVQ
trained in IRMA space is marginally better than GLVQ trained in a
data space derived from GMLVQ, and the scores improve slightly with
a larger number of prototypes. The highest score was obtained by
training GLVQ with three prototypes in two-dimensional IRMA space
(BAC ≈ 0.97). Interestingly, GLVQ in two-dimensional IRMA space with
three prototypes performs marginally better than classical GMLVQ with
three prototypes (the latter obtaining an average BAC of 0.963), despite
GMLVQ featuring the added possibility of weighing the coordinate axes.
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Fig. 4. Segmentation data set: Diagonal of 𝛬 per iteration (𝑖), which is indicated as 𝑖 in each panel, where IRMA has been applied using all available data. Three eigenvectors are
removed per iteration for this seven-class problem, and the average 𝐵𝐴𝐶 w.r.t. test data is indicated on top of each panel.
Table 1
Comparison of GLVQ performance when varying the dimensionality reduction technique
and number of prototypes (n𝑝). The balanced accuracy (with standard deviation
within brackets) is reported for a 30-times repeated random sampling validation
where the classifier has been trained in three different spaces: Original data space
(using no dimensionality reduction), GMLVQ-space (using GMLVQ-based dimensionality
reduction), and IRMA-space (using IRMA-based dimensionality reduction).

Data set n𝑝 Original GMLVQ space IRMA space

Wisconsin 1 0.900 (0.02) 0.956 (0.02) 0.958 (0.01), 1-dim
2 0.913 (0.02) 0.963 (0.01) 0.964 (0.01), 2-dim
3 0.921 (0.02) 0.962 (0.01) 0.965 (0.01), 2-dim

Segmentation 1 0.856 (0.01) 0.877 (0.01) 0.870 (0.01), 7-dim
2 0.871 (0.01) 0.879 (0.02) 0.889 (0.01), 7-dim
3 0.878 (0.01) 0.894 (0.02) 0.898 (0.01), 6-dim

3.3. Segmentation data

The segmentation data set from the UCI machine learning repository
[18,20] is based on a set of seven outdoor images. Features related
to color, contrast, hue, saturation, location in the image, and line
segments were extracted from 3 × 3 pixel regions. Each sample is
labeled as one of seven classes: brickface, sky, foliage, cement, window,
path or grass. We merged the original division of training and test
set of the repository into a single data set, due to the original split
having roughly a 10/90 proportion. We excluded a feature describing
the number of pixels per region, as this had the same value for every
sample, resulting in 18 remaining features.

For feature relevance analysis of the segmentation data set, we
remove three eigenvectors per IRMA iteration. Averaging 10 times
repeated experiments, this covers 89% of the summed eigenvalues
for iteration 0, and 97% in iterations 1–3. Even though one might
consider the removal of four or five eigenvectors after iteration 0,
with eigenvalues summing up to 0.96 or 1.0, respectively, we select
three eigenvectors consistently for illustrative purposes. We display the
relevance profiles of the first four iterations in Fig. 4. The six iterations
of IRMA obtain corresponding average BACs of 0.89 0.81, 0.66, 0.52,
0.30 and 0.16. Note that it is not possible to run more iterations
of IRMA on this 18-dimensional data set, as we would remove 18
eigenvectors with all data projected onto the origin in iteration (7). As
the performance drops considerably from iteration (1) to (2), we could
consider the first two iterations and the corresponding six-dimensional
subspace to carry the majority of class-specific information. In the
corresponding relevance profiles in Fig. 4, we see a similarly interesting
pattern as for the Wisconsin data set, where e.g. feature six seems
irrelevant in iteration 0, while it is by far the most important feature in
iteration 1. Features 𝑗 = 1 and 𝑗 = 3 are irrelevant for all four iterations
displayed, with 𝛬 ≤ 0.02.
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Fig. 5 displays the discriminative projections of the three first
iterations of IRMA, i.e., the training data projected onto the two leading
eigenvectors of each model resulting from an iteration. Fig. 5(a) and
(b) reveal a good visual separation between the classes for the first two
iterations, while the performance deteriorates visibly in (c). For this
third iteration, much of the class-relevant information already seems
to be absent, reflected by a more chaotic display of the class separation
landscape.

As for the Wisconsin data set, Table 1 displays the average BAC
scores obtained when evaluating the suitability of IRMA for dimen-
sionality reduction, by training a simple GLVQ classifier in the original
data space, GMLVQ-space, and IRMA-space. Again, the GLVQ classifiers
fair better after dimensionality reduction by either GMLVQ or IRMA:
𝐵𝐴𝐶 ≈ 0.86 − 0.88 vs 0.87 − 0.90. While GLVQ in GMLVQ-space was
slightly better than in IRMA-space when using one prototype, the high-
est score (𝐵𝐴𝐶 = 0.898) was obtained in six-dimensional IRMA space
using three prototypes per class. Still, this was not better than applying
classical GMLVQ with three prototypes per class, obtaining an average
BAC of 0.911. Most likely, this is due to the additional flexibility
of GMLVQ compared to GLVQ, i.e. the possibility of weighting the
coordinate axes of the model.

4. Conclusion and outlook

We have shown how IRMA based on GMLVQ with iterative sub-
space elimination can be used to find class-relevant subspaces for both
binary and multi-class classification problems. As an example, we have
demonstrated that two mutually exclusive directions provide the same
highest performance for the Wisconsin data set. Consequently, feature
profiles from each relevant subspace can be taken into account for the
final feature relevance analysis. This should be especially important
for data sets with correlated or multiple weakly relevant features, or
problems where only a small amount of training data is available. For
the seven-class segmentation data set, we found two distinct subspaces
providing a good classification performance. These two subspaces may
have had a minor overlap, reflected by that we removed eigenvectors
with summed eigenvalues of ≈ 0.89 after iteration (0).

Additionally, we have demonstrated the potential of using IRMA
for dimensionality reduction. Our results show that IRMA-based di-
mensionality reduction in general may be slightly better than GMLVQ-
based, and that it is clearly better than applying GLVQ with no dimen-
sionality reduction at all. Still, the improvements were marginal, and
future work may investigate the conditions under which IRMA may
provide a clear advantage. It is possible that the data sets included in
this work were not sufficiently complex, so that traditional GMLVQ
already provided a near optimal solution considering performance.
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Fig. 5. Segmentation data set: Projections after 0th (a), 1st iteration (b) and 2nd iteration (c). The main cluster was zoomed in on in (c), cutting out a few outliers.
Overall, the application of training a new classifier in IRMA space seems
promising: It is able to capture more class-specific information than
traditional GMLVQ, enabling slightly enhanced performance even with
a simple classifier such as GLVQ. Considering that the classification per-
formance increased when increasing the number of prototypes trained
in IRMA-space, we consider it highly interesting future work to evaluate
the performance of more complex models in IRMA space. Note that
for nonlinear classifiers, iteratively constructing a class-discriminative
subspace is nontrivial. While intrinsically linear models such as GMLVQ
and IRMA may be restricted by their limited complexity, applying
more complex models in lower-dimensional IRMA space might offer
performance enhancement by allowing flexible decision boundaries to
form in a lower-dimensional data space where a maximum amount of
class-relevant information is preserved.

Note that at each stage of IRMA a different classifier is obtained.
In particular, the respective prototypes are placed in entirely different
positions in feature space. Hence, it is non-trivial to construct a single
classifier from the individual results. In a binary problem, the naive
application of an LVQ classifier on the vectors (𝑦𝜇0 , 𝑦

𝜇
1 ,… , 𝑦𝜇𝑘 )

⊤, cf. (7),
will simply recover the unrestricted classifier by identifying 𝑦0 as the
most discriminative projection. Creating a weighted ensemble from all
models (iterations) that achieve high performance, may result in a more
robust performance and would be of particular interest in the presence
of subclusters within the classes. The suitability of IRMA for the purpose
of improving performance of classifiers may still be dependent on
the geometry of the cost function landscape for a particular data set,
especially if multiple local minima are present. Note that in both real
world data sets considered here, the performance of the plain GMLVQ
classifier is very good or even near optimal already. In future studies
we will aim at more difficult classification problems, in order to fully
explore the potential improvement by IRMA-based classifiers.

Furthermore, the issue of creating a weighted accumulated rele-
vance profile reflecting the importance of a feature across all relevant
subspaces is also nontrivial, since not all iterations have the same
discriminative accuracy. Note that the results of previous feature rel-
evance analyses depend strongly on the details of the method and the
considered classifiers, compare e.g. [8,9]. We leave the creation of
an accumulated relevance profile, as well as the formal evaluation of
stopping criteria for the IRMA iteration, as future work.
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