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Abstract State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap 
into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed 
insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics 
utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, 
restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping tech-
niques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actu-
ation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent 
studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clin-
ical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the 
necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, 
biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with 
optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhan-
cing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key 
challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. 
This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the 
promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
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What’s new?

• Recent technical breakthroughs in optical mapping and optogenetics 
are revolutionising cardiac research.

• Advancements include new motion tracking approaches, fluorescent 
probes and opsins offering new insights into cardiac electrophysiology.

• The integration of optogenetics and optical mapping into an ‘all- 
optical’ approach offers contactless actuation and sensing of cardiac 
electrophysiology, providing unprecedented spatial-temporal reso-
lution and control.

• Developments in optoelectronics are enabling the creation of min-
iaturised, biocompatible implantable cardiac devices like pacemakers 
and defibrillators with optoelectrical closed-loop systems.

• Application of optical methods to patient care are on the horizon, 
however challenges remain such as opsin delivery, real-time data 
processing, device longevity, and understanding the chronic effects 
of optoelectronic devices.

Introduction
Optical approaches for studying electrical function in the heart have 
fundamentally shaped our understanding of cardiac electrophysiology 
for 50 years (Figure 1).1 The origins of electrophysiology can be traced 
back to Galvani’s experiments in the 18th century, demonstrating in-
trinsic electrical activity generates muscle contraction in frog legs.2

Development of the capillary electrometer then allowed first record-
ings of cardiac electrical activity, leading to Einthoven’s refinement of 
the electrocardiogram (ECG).3 Microelectrode recordings from 
Purkinje fibres generated the first recorded cardiac action potentials.4

Subsequent single-cell techniques, such as voltage and patch-clamping, 
informed our understanding of distinct action potential phases and re-
spective currents.5 However, the limited scalability and throughput 
prompted the development of multi-electrode arrays (MEAs), enabling 
measurement of electrical propagation.6 Nevertheless, MEAs only re-
cord extracellular potential and spatial resolution is constrained by 
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electrode distance. Optical imaging overcomes these limitations in car-
diac electrophysiological interrogation, offering unmatched spatio-
temporal resolution.

Cardiac optical mapping uses voltage and calcium (Ca2+)-sensitive 
dye to image multi-cellular preparations at high spatiotemporal resolu-
tions.1 Cultured cardiomyocytes,7 induced pluripotent stem cell- 
derived cardiomyocytes (iPSC-CMs),8 engineered heart tissue 
(EHT),9 myocardial slices,10 isolated atria,11 and whole hearts12 have 
all been optically mapped. It has been crucial in deciphering the role 
of rotors in atrial fibrillation,13 the virtual electrode phenomena,14

and autonomic regulation of cardiac arrhythmias.15 Optical mapping 
is continually advancing with novel dye variants, improved hardware, 
motion tracking, and analysis tools.16

Optogenetics uses light to actuate transmembrane ion movement to 
modulate cardiac excitability in tissues expressing light-sensitive 
proteins called opsins.17 Optogenetic applications include precise 
control of pacing18 and arrhythmia induction19 or termination.20

Optogenetics provides huge potential for cardiac pacemaker develop-
ment and defibrillation. Unlike chemical and electrical stimulation, opto-
genetics utilizes contactless, cell-selective pacing with minimal 
cytotoxicity. More recently, optical imaging and optogenetics have 
been combined to realize ‘all-optical’ electrophysiology, enabling pre-
cise control and measurement of cardiac function using light alone.21,22

This review focuses on the applications, recent advances, and limita-
tions of optogenetics, optical mapping and all-optical imaging systems 
for cardiac electrophysiology mechanistic research and translational 
applications.

Principles of optical mapping
Optical mapping fluorescent sensors and 
illumination
Optical mapping is a fluorescence-based technique that visualizes elec-
trophysiological properties of multi-cellular preparations at unparalleled 
spatiotemporal resolution (Figure 2). This method involves the infusion 
of cardiac preparations, ranging from cellular monolayers to whole 

hearts, with voltage and/or Ca2+ fluorescent sensors. Once these indica-
tors are illuminated [e.g. by light-emitting diodes (LEDs)], the resulting 
fluorescence is captured by high-speed cameras.23 Consequently, optic-
al recordings of cardiac action potentials, Ca2+ transient morphology, 
and conduction are obtained that give crucial electrophysiological in-
sights in health and disease.

Established and novel optical mapping 
probes
Voltage-sensitive dyes
The coordinated generation and propagation of cardiac action poten-
tials form the electrical basis of the heartbeat. For this reason, synthetic 
voltage-sensitive dyes are the most used in optical mapping. These dyes 
[e.g. di-4-aminonaphthylethenylpyridinium (di-4-ANEPPS)] respond to 
changes in voltage in the picosecond range, enabling accurate optical re-
cording of surface cardiac electrophysiology.24

Voltage dyes are crucial tools for optical mapping; however, they 
are not without limitation. The fractional change in fluorescence out-
put is low, which can generate low-quality signals. Moreover, most 
commonly used dyes are optimally excited by blue/green light, limiting 
penetration depth and promoting phototoxic tissue interactions.24

Further, synthetic dyes can have potential adverse effects on electro-
physiology. For example, voltage-sensitive dye di-4-ANEPPS has 
demonstrated reduced spontaneous heart rate, sodium current, 
T-wave amplitude, and AV-node conduction in ex vivo and in vitro 
preparations.12,25

Red-shifted dyes help overcome some of these issues. 
Di-4-ANBDQBS is a potentiometric dye with red excitation (660 nm) 
and near-infrared emission, for greater penetration depth.26 Di-4- 
ANBDQBS has been used to capture information from the endocar-
dium26 with minimal effects on cardiac electrophysiology and 
cardiotoxicity.23,27

Most synthetic sensors show adequate stability for acute electro-
physiology investigation but exhibit signal decay over time due to photo-
bleaching and dye leakage. Recently developed photo-electron transfer 
dyes, such as fluoVolt, show high photostability, rapid response time 
(pico- to nanoseconds), and high fractional changes.28 Additionally, 
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high sensitivity makes these dyes better suited to two-photon imaging 
application, allowing greater penetration depth for transmural 
investigation.29

Calcium probes
Ca2+ couples the cardiomyocyte action potential to contraction.30

Imaging intracellular Ca2+ ([Ca2+]i) for Ca2+ transient recording is an-
other significant application of cardiac optical mapping, often con-
ducted simultaneously with voltage imaging.31 Ca2+ probes typically 
consist of a fluorophore, chelator, and conjugator to quantify [Ca2+]i. 
The most common of these are rhodamine (Rhod-2)-based probes 
such as rhod-2-AM, used to image cytosolic [Ca2+]i.

32

Recent advances have enabled organelle-specific [Ca2+]i imaging. 
Valverde et al.33 recorded sarcoplasmic reticulum Ca2+ transients 
alongside cytosolic Ca2+ transients in isolated murine whole hearts 
using pulsed local-field fluorescence microscopy of mag-fluo-4 AM 
and rhod-2-AM. Trollinger et al.34 developed a novel technique to 
achieve mitochondrial-specific [Ca2+]i measurement via a cold/warm 
rhod-2-AM loading protocol while simultaneously recording cytosolic 
[Ca2+]i using fluo3.

Several Ca2+ indicators are also suitable for ratiometry, measuring 
the ratio of emission signals at different excitation wavelengths (‘excita-
tion ratiometry’), as they exhibit wavelength-dependent fluorescence 
output. This enables more accurate quantification of absolute [Ca2+]i 
in single-cell models and Ca2+ amplitudes in whole heart optical map-
ping.35 Furthermore ratiometric dyes, including voltage-sensitive 
dyes,36 can significantly mitigate system noise and motion artefacts 
(see Motion tracking section).37

Genetically encoded voltage and calcium sensors
Genetically encoded voltage and Ca2+ sensors (GEVI/GECI) can achieve 
durable, cell-specific expression for long-term cardiac electrophysi-
ology in vitro studies with reduced cytotoxicity, offering unique capabil-
ities compared with synthetic indicators.38 However, their adoption is 
hindered by slower response times compared with ‘fast’ synthetic dyes 
and the necessity for genetic encoding.

Different sensor classes offer distinct properties and advantages de-
pending on intended use that cannot be fully explored here. Broyles 
et al.38 provide a comprehensive review of available dyes for optical 
mapping, while we have previously summarized dyes that are spectrally 
suitable for dual optical mapping and optogenetics24.

Optical mapping hardware
Optical mapping systems integrate various sophisticated components 
to capture cardiac electrophysiology. Figure 2 outlines key components, 
namely excitation sources, optical components, and high-speed cam-
era(s). Common excitation sources include LEDs,23 tungsten–halogen 
lamps,39 mercury/xeon arc lamps,27 and lasers.36 Optical filters can nar-
row excitation wavelengths to avoid spectral cross-talk and effectively 
filter photons for imaging. In multi-parametric set-ups (see 
Multi-parametric imaging set-up section), further filters are employed 
to deconvolve the fluorescent signals. Optical lenses are used to focus 
excitation and emission photons.

Charge-coupled device (CCD)23 and complementary metal-oxide 
semiconductor (CMOS)40 cameras are most frequently used in optical 
mapping, and recent advances in CMOS technology have provided 
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low-cost and portable imaging systems.40,41 Key camera metrics include 
quantum efficiency, dynamic range, signal-to-noise ratio, sampling rate, 
and pixel size. A high quantum efficiency, defined as the ratio of photo-
generated electrons to incoming photons within each pixel, enables suf-
ficient signal-to-noise ratio even with low fractional changes. More 
recently, back-illuminated CMOS cameras and electron multiplying 
charge-coupled devices (EMCCD) have been introduced to reduce 
noise and amplify emission signal, respectively, for increased sensitivity.42

A key consideration in optical mapping set-ups is the balance be-
tween spatial and temporal resolution. High temporal resolution 
(>500 Hz) is needed to capture millisecond scale changes in voltage 
and/or [Ca2+]i, while high spatial resolution (pixel size ≤ 100 s of mi-
crons) is required for detailed imaging of complex conduction patterns. 
Hardware constraints necessitate a trade-off between spatial and tem-
poral resolution, where higher spatial resolution limits maximum sam-
pling rate and vice versa.

More sophisticated optical mapping designs include panoramic, often 
multi-camera, all-optical stimulation and imaging, capturing the entire 
surface topology.43 Rieger et al.44 implemented a customized LED light 
source with 294 optical fibres for panoramic optical mapping of mouse 
hearts, expressing GEVIs. Importantly, panoramic view was captured 
through two lenses directing optical emission bands onto a single 
CMOS camera, thereby surpassing logistical complications of a multi- 
camera set-up.45

Probes with higher quantum yield, such as fluoVolt, require fewer 
photons for adequate signal quality and are compatible with two- 
photon microscopy techniques, capable of capturing tissue at greater 
depth.29 Multi-photon,29 optical coherence tomography46 and light 
sheet fluorescence microscopy techniques47 have allowed between 
400 μm and 4 mm depth ranges, capturing transmural activation. 
Future advancements are required to optimize camera sensor quantum 
efficiency at near-infrared wavelengths for three-dimensional (3D) re-
construction (Z axis profiling) and transmural optical imaging.

Data analysis
Short exposure times, small fluorescent changes, small pixel areas, and 
technical artefacts (e.g. motion and signal ‘blurring’ due to wavelength- 
dependent photon scattering48) all complicate processing and analysis 
of optical mapping data. Several approaches are applied to improve sig-
nal quality, including spatial and temporal filtering, temporal oversam-
pling, and baseline correction. However, misapplication of these 
approaches (for example, by ‘over smoothing’ signals) can lead to mis-
interpretation, and the reader is directed to relevant literature that out-
line effective handling of optical mapping data.35,49

Recent advances have seen the development of several open-source 
options for optical mapping data analysis. These include general all- 
purpose software49–51 and more specialized options for arrhythmia 
analysis,52,53 panoramic imaging,45 conduction,54 and alternans.55

Further automation (e.g. machine learning–based approaches for auto-
mated artefact detection), combined with technical advances in minim-
izing post-processing needs, will further reduce the risk of 
misinterpretation of optical signals.

Multi-parametric imaging set-up
Key physiological insights can be gained by combining voltage and Ca2+ 

imaging or other optically measurable parameters. Dual optical map-
ping is achieved by simultaneously exciting voltage and Ca2+ dyes 
with distinguishable emission wavelengths.31

Rh237 and rhod-2 are well suited for dual voltage and Ca2+ transient 
optical mapping set-ups, with similar peak excitation wavelength bands 
but distinct emission spectra.24 Furthermore, dual voltage and sarco-
plasmic reticulum Ca2+ mapping can be achieved using rh237 and 
fluo-5N AM dyes.56 Dual mapping enables voltage–Ca2+ coupling 

analysis, including voltage–Ca2+ latency, important for elucidating ar-
rhythmic risk.57

Triple-parametric optical mapping, recording voltage, Ca2+, and 
autofluorescent nicotinamide adenine dinucleotide (NADH), has 
been performed to investigate metabolism–excitation–contraction 
coupling.58 Optical mapping is also compatible with other imaging tech-
niques. Caldwell et al.59 measured cAMP activity and voltage simultan-
eously using a combined optical mapping and Förster resonance energy 
transfer (FRET) set-up in murine whole hearts. Reactive oxygen species, 
oxygen, and mitochondrial membrane potential optical probes can pro-
vide additional metabolic insights.60

Motion tracking
The heart is a dynamic organ. This presents a problem for optical map-
ping as motion can distort signal morphology.61 Therefore, cardiac op-
tical mapping is usually carried out on non-beating hearts, omitting 
physiologically important bidirectional electromechanical feedback62

and altering metabolic demand.63 The pharmacological electromechan-
ical uncoupler blebbistatin selectively inhibits myosin II isoforms, abolish-
ing contraction.64 Blebbistatin has been reported to alter cardiac 
physiology, increasing action potential durations and Ca2+ transient up-
stroke rise times while reducing NADH autofluorescence in isolated 
murine hearts.58 However, the effect of blebbistatin on cardiac physi-
ology is still disputed and contradictory findings may be due to species 
differences, blebbistatin concentration, or incorrect use (e.g. blebbista-
tin precipitation).64,65

Motion tracking by computational signal correction or ratiometry 
has made it possible to optically map the freely beating heart.37,66

Markers can be used to track and correct for movement.67 Motion cor-
rection can also be achieved without the use of fiducial markers, for ex-
ample, by optical flow methods, which compute displacement vectors 
to quantify pixel movement and motion.9,68 Christoph & Luther et al.68

showed up to a 80% decrease in motion artefacts when using marker- 
free motion tracking in optical mapping videos of contracting hearts. 
However, two-dimensional (2D) motion tracking exclusively captures 
movements along the horizontal and vertical axes, omitting movements 
along the depth axis, thereby limiting accuracy. Zhang et al.67 per-
formed 3D marker-based motion tracking to measure epicardial strain 
and deformation. Recent studies have shown how graphical processing 
units can be utilized to accelerate the application of open-source mo-
tion correction algorithms, demonstrating real-time correction of op-
tical signals.69

Ratiometry requires two signals, generated either during excitation 
or emission,36 which are similarly distorted by motion but differentially 
respond to, for example, voltage or Ca2+. The effects of motion on the 
time series signal, and artefacts due to uneven dye loading and illumin-
ation, can therefore be eradicated. However, ratiometry alone does 
not ensure spatial coupling, so can only be used in preparations with 
minimal dispersion.37 There are also inherent limitations, including re-
duced effective frame rates. Several studies have combined motion 
tracking, ratiometry techniques and tracking images within each spec-
tral band for further reduction in motion artefacts.70,71

Optical mapping of the freely beating heart is still a relatively specia-
lized application; however, recent advancements will pave the way for 
innovative optical mapping investigations with enhanced physiological 
relevance.

State-of-the-art applications of 
optical mapping
The advances outlined above have furthered the role of cardiac optical 
mapping as a central research tool, facilitating several important insights 
in cardiac electrophysiology and arrhythmogenesis, for example, the 
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genetic basis for atrial fibrillation,72 and insights into the chamber spe-
cificity of anti-arrhythmics.73,74

Human iPSC-CMs are an increasingly popular model for cardiac re-
search and drug screening, capable of modelling patient-specific cell 
lines. The field is moving towards organoid EHTs, often utilizing human 
iPSC-CMs, to mimic cell–cell interactions for higher physiological rele-
vance. However, chemical Ca2+ dyes have been demonstrated to signifi-
cantly impair blebbistatin efficacy in cardiac single-cell models, including 
human iPSC-CMs, increasing risk of motion artefacts.75 While micro-
injection has been suggested to reduce intracellular dye concentrations 
and subsequent adverse effects, this is not scalable.76 Mapping of beat-
ing human iPSC-CMs and EHTs using computational motion tracking 
has provided a solution, additionally capturing Ca2+–contraction coup-
ling, for accurate mapping of these models.9

The advent of both red-shifted dyes (e.g. di-4-ANBDQBS) and high-
er quantum yield dyes (e.g. fluoVolt) has increased single wavelength 
penetration depths from 0.5–1 mm using standard (green–red) dye 
to ∼1–4 mm in cardiac tissue using ‘near-infrared optical mapping’.29,77

Previously, studies used cardiac wedge preparations or myocardial 
slices to provide a 2D transmural surface10,57 or two CCD cameras 
on either side of the myocardium in ventricular wall preparations.78

Mitrea et al.79 applied near-infrared di-4-ANBDQBS for improved 
transillumination to record signals from four different layers of the 
myocardial wall. Furthermore, longer wavelengths of near-infrared 
dyes demonstrate reduced absorption by blood, offering opportunity 
for in vivo cardiac optical mapping.27 Hansen et al.80 performed the first 
in vivo cardiac optical mapping using near-infrared di-4-ANBDQBS dye 
for successful activation mapping of the canine left atrium during sinus 
rhythm and fibrillation. More recent studies have used excitation ratio-
metry or mechanical stabilization to reduce motion artefacts during in 
vivo cardiac optical mapping23,81; however, neither approach was suffi-
cient for broad-area, accurate APD measurement. Advances in motion 
tracking algorithms, combined with red-shifted dyes and novel signal 
processing, have improved optical mapping capabilities for in vivo pre-
parations.82 However, challenges remain including invasive surgery, lim-
ited optical view determined by the surgical thoracic window, and 
adverse effects of anaesthesia on cardiac electrophysiology.

Multi-parametric optical imaging unveils novel sequences of events in 
excitation–contraction coupling in cardiac disease. Hypertrophic mur-
ine hearts demonstrated prolonged voltage–Ca2+ latency, indicating al-
tered electrical–contraction coupling.57 Dual optical mapping also 
captures cross-talk between electrical and Ca2+ alternans, revealing 
positive or negative electromechanical coupling.83 Voltage and sarco-
plasmic reticulum Ca2+ signals simultaneously recorded in isolated rab-
bit hearts during ventricular fibrillation indicated ryanodine receptor 
refractoriness triggered sarcoplasmic reticulum Ca2+ alternans, subse-
quently leading to electrical alternans.56

Triple-parametric optical mapping using Ca2+-sensitive rhod-2-AM, 
voltage-sensitive rh237, and endogenous NADH fluorophores re-
vealed metabolic changes precede cardiac electrophysiology changes 
in murine ischaemic hearts.58 Recently, Caldwell et al.59 measured 
cAMP and electrical activity simultaneously, reporting higher apical 
phosphodiesterase activity in females vs. males which may contribute 
to sex-dependent electrophysiological variation.

Mechanistic understanding from optical 
mapping
Mapping of the freely beating heart has enabled excitation–contraction 
coupling and electromechanical feedback to be captured. Christoph 
et al.84 studied the spatiotemporal dynamics and topological 
organization of electrical and mechanical rotors in sinus rhythm and 
ventricular fibrillation. Three-dimensional mechanical scroll waves of 
contracting pig hearts were captured using combined panoramic optic-
al mapping and four-dimensional (4D) ultrasound. Marker-free motion 

tracking for simultaneous optical mapping of voltage, [Ca2+]i, and mech-
anical strain demonstrated cardiac tissue deformation was related to 
onset of electrical activation.84 Additionally, optical mapping of isolated, 
contracting pig hearts using excitation ratiometry demonstrated elec-
tromechanical decoupling during atrial fibrillation and highlighted Ca2+ 

remodelling as an important mediator in early stages of atrial 
fibrillation.85

Combining optical mapping with multi-modal 3D structural analysis 
has facilitated significant advances in mechanistic understanding of 
pathophysiological conduction and arrhythmia. Optical voltage map-
ping and tissue clearing approaches have revealed neurocardiac and 
myofibre remodelling post-infarct unique to the border zone region, 
which contributes to heterogeneous conduction and therefore ar-
rhythmia risk.86 Transmural near-infrared optical mapping has been 
combined with MRI, for improved clinical detection of re-entrant at-
rial fibrillation drivers.77 Optical action potentials were recorded over 
a depth of ∼4 mm to capture intramural microanatomic re-entry, 
commonly misinterpreted as focal patterns by ‘surface’ multi- 
electrode mapping. Combination with MRI assessment of intramural 
fibrosis enables delineation between re-entrant AF drivers and non- 
drivers, important for improving the efficacy of driver-targeted 
ablation.

Optical recording of the transmembrane voltage has the unique 
advantage of not being corrupted by signal artefacts during electrical 
stimulation, for example, during defibrillation. Therefore, optical 
mapping has been fundamental in investigating the virtual electrode 
phenomenon, whereby an external stimulus polarizes the cardiac tis-
sue, generating positive and negative virtual electrodes.14 Virtual 
electrode theory can be harnessed to better understand mechanisms 
of cardiac defibrillation, where the interaction between the shock- 
induced virtual electrodes and the ongoing electrical activity can ter-
minate re-entrant circuits or, conversely, reinduce arrhythmia.14

Efimov et al. demonstrated optimal biphasic shocks achieved success-
ful defibrillation in rabbit hearts without arrhythmia reinduction. 
Designing effective shock waveforms that capitalize on virtual elec-
trode effects may improve defibrillation success and minimize poten-
tial side effects.

Principles of optogenetics
Optogenetics, initially developed to study complex neuron interactions, 
has since been translated to cardiac applications with great effect.17 On 
wavelength-dependent illumination, opsins enable ionic transport 
across the cell membrane in a similar manner to voltage-gated, ligand- 
gated, or mechano-sensitive ion channels and pumps (Figure 3). 
Optogenetics has made possible several mechanistic insights and may 
potentially advance to clinical application.

Opsin design and mechanism
Channelrhodopsins
The most popular family of opsins are channelrhodopsins (ChR). 
ChR2 is the most common of these, a low-selectivity cation channel 
with high photosensitivity at ∼480 nm (blue) excitation wavelengths 
enabling passive ion movement for dynamic stimulation and depolar-
ization.87 Several studies have used ChR2 for pacing cardiac 
preparations.18,88,89

Since the first deployment of ChR2, several mutations have been 
genetically engineered. Chen et al. designed and validated ChRmine, a 
red-shifted excitation wavelength opsin, for non-invasive, in vivo opto-
genetic cardiac pacing in mice.90 Lin et al.91 engineered red-shifted opsin 
ReaChR with reduced tissue absorption and scattering, resulting in 
greater photocurrents. Additionally, other opsin variants with greater 
photocurrent conductance have been published, such as 
ChR2-H134R, ChR2-T159C and ChR-XXL, and CatCh.24
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ChR2 containing a mitochondria-targeting sequence at its 
N-terminus has been shown to successfully reach the inner mitochon-
drial membrane in neonatal rat cardiomyocyte cells, to optically control 
mitochondrial membrane potential and ATP synthesis.92 Additionally, 
sensor co-expression has enabled dual functionality of optical stimula-
tion and transduction signalling recording using FRET.93

Halorhodopsins, anion, and Kalium channelrhodopsins
Conversely, opsins such as halorhodopsins drive anion transport.94

Halorhodopsins Natronomonas pharaonic halorhodopsin (NpHR) and 
Halobacterium salinarum halorhodopsin (HsHR) exhibit extracellular 
chloride affinity and pump chloride ions (Cl−) into the cell upon light 
stimulation causing hyperpolarization.94 Anion ChRs such as GtARC1 
enable Cl− conductance and can be used to depolarize cardiomyo-
cytes95 or, through sustained depolarization, block re-excitation and in-
hibit cardiac action potentials,96 although this may be proarrhythmic 
due to sodium (Na+)/Ca2+ overload. HcKCR1, a natural Kalium ChR 
(KCR), was recently discovered as the first ChR which selectively con-
ducts potassium (K+) over Na+ ions, rapidly hyperpolarizing (<1 ms re-
sponse time) murine cortical neurons.97 WiChR, another KCR, was 
recently expressed in human iPSC atrial cardiomyocytes and inhibited 
action potentials, reversibly suppressing spontaneous contraction dur-
ing blue light illumination.8 Spectrally distinct depolarizing and 

hyperpolarizing opsins can be expressed and actuated in tandem, to en-
able bidirectional optical modulation.94

Limitations of opsins
Cytotoxicity can be a concentration-dependent side effect of op-
sins.98 Additionally, after repetitive stimulation, several ChR variants 
can demonstrate desensitization, including reduced peak and plateau 
currents, thereby reducing opsin efficacy.99 Interval switching proto-
cols100 or complete dark adaption of ChRs99 can prevent desensi-
tization or eliminate bias, although may alter photocurrent. 
Further optimization of opsin safety, efficacy, and durability is re-
quired to expand utility of optogenetics, including potential clinical 
applications.

Opsin delivery
Key to the application of optogenetics is the expression of opsins by 
target cells/tissues. Model species, targeted cell type, vector genome 
size, duration of expression, and expression level required must all be 
considered for opsin delivery efficiency.98 The main methods of opsin 
delivery are summarized in Table 1.

The model and method of opsin delivery must be compatible. For ex-
ample, lentivirus undergoes host genome integration unlike 
adeno-associated virus, providing a compatible vector for mitotic and 
stem cell optogenetic models.101 The most widely used method is viral 

Opsin ion channels

Photons
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pulse

Can prolong or
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action potentials

Cell membrane

+
+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

Examples and ion selectivities:
•   NpHR (CI–)
•   HsHR (CI–)

•   chRmine (Na +, Ca2+, etc.)

Opsin ion pumps
Depolarizing opsin

Hyperpolarizing opsin

Examples and ion selectivities:
•   ChR2 (Na+, Ca2+, etc.)

•   Kalium channelrhodopsins (K +)
•   GtARC1 (Cl –)
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completely
suppress action
potentials

Light
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Figure 3 Mechanisms of depolarizing and hyperpolarizing opsins in manipulating cardiac electrophysiology and examples. Upon photostimulation, 
depolarizing opsins enable cellular cation influx and hyperpolarizing opsins enable cellular anion influx or cation efflux. Light-activated depolarizing op-
sins generate optically stimulated action potentials or prolonged action potentials if light pulse is delivered during repolarization. Light-activated hyper-
polarizing opsins completely inhibit action potentials or shorten action potentials if light pulse is delivered during repolarization. ChR, channelrhodopsin; 
NpHR, Natronomonas pharaonic halorhodopsin; HsHR, Halobacterium salinarum halorhodopsin. Figure created on BioRender.com.
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transduction using adeno-associated virus (AAV), offering rapid and 
consistent transduction with cell specificity (viral tropism).99,102

Cardiac troponin T is a commonly selected promoter for 
cardiomyocyte-targeted opsin expression.90 Adeno-associated virus 
vectors display longer, more stable expression of opsins and minimal 
inflammatory response in post-mitotic cells, such as neurons or cardi-
omyocytes, compared with lentivirus.103–105 Self-complementary AAV 
vectors have recently been designed, eradicating the DNA synthesis 
step which AAVs normally undergo, increasing viral transduction 
speed.103 While non-viral opsin delivery methods including physical 
(electroporation) and chemical (liposomes, tandem-cell unit, nanopar-
ticles, and transgenic models) approaches usually allow high stability of 
opsin expression, they demonstrate lower specificity and/or poorer 
clinical translatability.

Illumination
Direction and focus of light aids region-specific photostimulation, 
alongside genetic targeting. Most opsins are activated by shorter, 
‘blue’ wavelengths, associated with reduced tissue penetration, provid-
ing only surface actuation.105 Therefore, transmural conductance and 
dyssynchrony cannot be optically modulated, despite established im-
portance in arrhythmogenesis.112,113 Additionally, studies have demon-
strated the significance of depth of photostimulation to terminate 
re-entrant arrhythmias.114,115 Strategies with deeper penetration cap-
abilities have been explored, including ultra-thin injectable optoelectro-
nic devices, flexible biocompatible membranes, and integration of 
opsins with X-ray excitable nanophosphors or upconversion nanopar-
ticles.116,117 Ultra-thin, waterproof micro-LED arrays on flexible 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Summary of main opsin delivery methods and characteristics

Opsin delivery 
method

Vector Cell-targeting method Characteristics References

Viral transduction Adeno-associated 
virus (AAV)

Pseudotyping (glycoproteins, 
antibodies) 

or 

cell-specific promoters

- No host genome integration
- Suitable for post-mitotic cells (e.g. cardiomyocytes or 

neurons)

- Smaller packaging capability (<4.7 kb)
- Self-complementary AAVs show improved transduction 

speed

- High durability and stability of expression with low 
immunogenicity

90,99,101–105

Lentiviral - Host genome integration

- Suitable for mitotic and stem cells
- Larger packaging capability (8–10 kb)

- Slower transduction speed/diffusion

Electroporation Opsin-encoding 

plasmid

Cell-specific promoters - Fast process

- Versatile (suitable for most cell types)

- Loss of cell viability/toxicity
- Non-targeted transfection

- Safety concerns for in vivo gene delivery

106

Lipid-based 

transfection

Opsin-encoding 

plasmid

Cell-specific promoters - Versatile

- Lower transfection efficiency vs. viral

- Non-targeted transfection

107

Tandem-cell unit Non-excitable 

opsin-expressing 
cells

Non-excitable opsin-expressing 

(donor) cells couple to target cells 
via gap junctional proteins for 

indirect photostimulation

- Improved safety compared with viral methods

- Energy-efficient
- Relies on cell coupling which may be affected by pathology

- Requires introduction of donor cells, presenting in vivo 

challenges

108

Carbon and gold 

nanoparticles

Genetic construct Nanoparticles carry ligands for 

cell-specific binding

- High efficacy, selectivity, and speed

- Multi-functional
- Sustained release and opsin expression

- Potential for in vivo application

- Complex

109,110

Transgenic animal 

models

Genetic construct Opsin gene introduced during 

specific time point of embryonic 
development

- Commonly used in mice models

- Achieves specific, stable opsin expression
- Less compatible with non-human primates

- High maintenance costs, long generation cycles, and ethical 

concerns

22,111

Genetic construct Cre-Lox system
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substrate can be implanted in vivo to deliver cardiac illumination for 
transmural optical stimulation.117 Near-infrared wavelengths allow sig-
nificantly greater tissue penetration and reduced light-induced cytotox-
icity.118 Upconversion nanoparticles can transduce low-energy 
near-infrared photons to high-energy infrared, visible, or ultraviolet 
photons.119 Yu et al.102 demonstrated addition of all-trans-retinal 
(ATR) photosensitizer to ChR2-H134R-expressing cardiomyocytes in 
vitro could significantly increase ChR2 membrane expression and re-
duce optical pacing energy. However, techniques altering opsin spectral 

sensitivity and ATR treatment can compromise opsin kinetics and car-
diac electrophysiology respectively.102

Unlike optical mapping where homogeneous illumination is pre-
ferred, optogenetics often employs directed illumination signals. 
Liquid crystal and digital micromirror devices, incorporating an array 
of microscopic mirrors, can acutely control LED-derived light impulses 
to narrow focus and increase spatial targeting.120 Moreover, light im-
pulse patterns in optogenetics have shown to be important in arrhyth-
mia termination studies.121
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Standard optical sources, such as LEDs, are bulky and therefore must be 
positioned externally to any in vivo preparations. Multi-LED probes in the 
form of LED-chips have been implanted into the septum of ex vivo mouse 
hearts, expressing ChR2, and enabled stable optogenetic pacing including 
endocardial actuation.88 While this still requires a complex surgery and 
risk of complications, these set-ups provide higher clinical translatability.

Applications of optogenetics in 
cardiac electrophysiology
Optogenetics has revolutionized cardiovascular research, with 
Bruegmann et al.18 first demonstrating its application for in vivo murine 
heart pacing in 2010. Subsequently, continued advances have broa-
dened optogenetics application to several domains. For example, red- 
shifted opsins (e.g. ChRmine) have enabled non-invasive, in vivo optoge-
netic cardiac pacing in freely moving mice wearing micro-LEDs.90

Implantable multi-LED devices delivering apical or transthoracic illumin-
ation with a closed chest have enabled in vivo arrhythmia termination in 
pathologically remodelled rat hearts, expressing ReaChR.122,123

Patterned illumination techniques have been employed for precise re-
gional stimulation of the heart. For example, Arrenberg et al.124 located 
and stimulated zebra fish cardiac pacemaker cells through altering light pat-
terns and selective plane illumination. Additionally, acute photostimulation 
has been employed to dynamically alter action potential duration, ranging 
from depolarizing opsins at precise phases of the action potential to elim-
inate arrhythmia125 to complete silencing of action potential firing.126

Targeted delivery methods facilitating cell-specific opsin expression 
have paved the way for comprehensive electrophysiological character-
ization and studying interactions between different cardiac cell types. 
Zaglia et al.22 crossed double-floxed ChR2-tdTomato mice with 
connexin-40-Cre mice to induce cardiac conduction system-specific op-
sin expression and reported myocardial ectopy sites correlated with 
Purkinje fibre connection. Nussinovitch et al.89 demonstrated the ability 
of ChR2-expressing mouse embryonic fibroblasts to pace neonatal rat- 
derived cardiomyocytes in co-culture, in response to blue light flashes.

Optogenetics has also offered a unique approach to study the car-
diac autonomic nervous system. For instance, Moreno et al.127 demon-
strated heart rate reduction via stimulation of ChR2-expressing 
intrinsic parasympathetic neurons in mouse hearts. This illustrates 
the potential for optogenetics in mimicking complex pathophysiology 
underlying cardiac disease.

In an in vivo study, Rao et al.128 successfully paced rat hearts using up-
conversion nanoparticles embedded in flexible polydimethylsiloxane 
films attached to the ventricle. This approach effectively modified near- 
infrared light spectra for ChR2 activation. Furthermore, pacing efficien-
cies were comparable with blue light pulsed stimulation, presenting a 
promising non-invasive method of cardiac rhythm modulation.

Finally, optogenetics plays a critical role in inducing, studying, and ter-
minating arrhythmias.20,129–132 For instance, Lemme et al.100 used opto-
genetic methods to pace 3D EHTs derived from human iPSC-CMs, 
simulating conditions like chronic tachypacing-induced cardiac dysfunc-
tion. Chronic optogenetic tachypacing correlated with greater vulner-
ability of EHTs to electrical burst pacing-induced tachycardia, as well 
as reduced action potential duration and effective refractory period.100

Further, optogenetic defibrillation with continuous blue light was suc-
cessful in terminating arrhythmias induced by burst pacing.

Cardiac all-optical 
electrophysiology
The application of cardiac all-optical imaging, combining optogenetics 
and optical mapping for acute control and sensing of cardiac 

electrophysiology, is expanding.41 Cells expressing opsins in conjunc-
tion with fluorescent dyes, or genetically encoded indicators for all- 
genetic delivery,133 enable contactless, cell-selective all-optical control 
and sensing. For an all-optical set-up, compatible opsins and sensors 
are essential, ensuring minimal spectral overlap.24

All-optical set-ups have been used for pacing and imaging human 
iPSC-CMs,40,134 cardiomyocyte subpopulations,135 ventricular slices,115

and ex vivo hearts.22 Red-shifted dyes facilitate all-optical electrophysi-
ology as they are spectrally distinct from ChR2. Optical mapping, using 
di-4-ANBDQBS, of optically paced ChR2-expressing rat hearts demon-
strated reduced total ventricular activation time and improved homo-
geneity of ventricular depolarization vs. electrical pacing.136 These 
findings suggest that broad-area optical stimulation may offer an im-
proved method for cardioversion therapy in patients with mechanical 
cardiac dyssynchrony.

Translational applications of 
cardiac optical methods
Although still far from clinical application, optogenetic pacing and defib-
rillation show promising translatability.125 The current gold standard 
for restoring sinus rhythm is defibrillation by electrical cardioversion, 
which is painful and not cell selective. Whilst effective, standard clinical 
pacemaker devices require complex surgery. One study reported 9.5% 
of cases show post-surgery complications within 6 months, such as pa-
cing lead dislodgement and infection.137 Consequently, there has been a 
large research effort exploring optogenetic cell-selective and pain-free 
arrhythmia termination.

Optoelectronic devices for cardiac pacing 
and defibrillation
Optoelectronic devices provide opportunity for accurate, real-time 
modulation of cardiac electrical activity for ex vivo or in vivo set-ups, of-
fering exciting research and future clinical applications. Miniaturization 
of optoelectronic devices has enabled previously unattainable in vivo ap-
plication in rodents.138 Implanted, bioresorbable optoelectronic de-
vices have achieved ex vivo concurrent cardiac pacing and 
electrophysiology measurement139,140 (Figure 4) and in vivo acute and 
chronic cardiac pacing.138,140

Recently engineered, transparent graphene electrode arrays were 
compatible with ex vivo cardiac optical sensing and stimulation, in add-
ition to generating electrograms.139,141 Xu et al.142 developed 3D elas-
tic membranes to envelop the rabbit heart with flexible arrays overlaid, 
consisting of micro-LEDs for optical pacing and multi-functional sensors 
for pH, temperature, and strain measurement.

Closed-loop all-optical pacing and modulation has been performed in 
real time (≤2 ms response time) to control electrical activity in ex vivo 
mouse hearts and restore sinus rhythm in abnormal conditions.120

Multi-functional optoelectronic devices may offer advanced cardiac 
diagnostic and treatment applications; however, feasibility of a 
closed-loop, implantable clinical pacemaker device may be limited due 
to the amount of spatiotemporal data to be processed in real time. 
These limitations however may be overcome by advancements in 
‘on-chip’ computing technologies.

Nevertheless, closed-loop optogenetics provides a promising re-
search tool for previously unverifiable hypotheses, such as determining 
the level of discordance in alternans required to trigger arrhythmia.120

Pre-clinical cardiotoxicity drug screening
All-optical interrogation could offer an improved pre-clinical 
cardiotoxicity screening platform for novel drugs. The current gold 
standard is electrode-based or patch-clamp recording to measure 
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QT-prolongation and human ether-a-go-go-related gene channel 
inhibition, which provides limited information on conduction or con-
tractility defects.143 A multi-parametric, all-optical set-up would enable 
multiple facets of cardiac physiology to be tested, including metabol-
ism–excitation–contraction coupling, for more accurate cardiotoxicity 
predictions.58,134,144

Challenges for clinical application of optical 
methods
A key barrier to clinical optogenetics is the safety and efficacy of opsin 
delivery and expression. Ongoing clinical trials are assessing the long- 
term safety of gene therapy to induce opsin expression,145 marking a 
crucial step in advancing this field.

A considerable limitation of optogenetic-based therapy is light 
attenuation due to photon scattering and absorption, causing trans-
mural gradients and potentially arrhythmia. Thus, implementing 
systems and opsins that allow greater penetration depth at safe irra-
diances must be prioritized. Advancing optoelectronic devices for 
clinical pacing and defibrillation also requires optimizing illumination 
strategies for successful and energy-efficient defibrillation of different 
heart rhythm pathologies using pre-clinical models. Device sensitivity 
for arrhythmia detection should be improved using artificial intelli-
gence (AI) approaches, although developing and validating algorithms 
will require a large training data set.146 The long-term effects of opto-
genetic pacing on cardiac electrophysiology and structural remodel-
ling must be investigated. Additionally, future studies should confirm 
whether optical pacemakers require less energy since they only target 
a subgroup of cells, which may improve longevity over standard clin-
ical pacemakers.

Combined near-infrared optical mapping and 3D functional imaging 
provides promising potential for improving arrhythmic driver- 
targeted catheter-based ablation77. However, this technique requires 
further in vivo study before progressing to clinic. Additionally, while 
pre-clinical in vivo optical mapping studies have been performed suc-
cessfully, inherent limitations including field of view, invasive surgery, 
and penetration depth remain. Similarly, although all-optical imaging 
provides a contactless, high-resolution research method for precise 
cardiac electrophysiology actuation and measurement, the logistical 
limitations of optical mapping imaging systems restrict clinical 
translatability.

Utilizing computational modelling 
and artificial intelligence in optical 
imaging and control
Advanced computational approaches have been paramount in optical elec-
trophysiology and are increasingly important for clinical translation. Deep 
learning predictive modelling has been implemented to compute phase 
maps and phase singularities in real-time using brief temporal sequences 
of electrical activity from optical maps,147 which may enable more accurate 
analysis of rotors and arrhythmia. Additionally, these models can predict 
future phase maps and phase singularity positions, targeting the ‘excitable 
gap’ as a low-energy method for arrhythmia termination.

Computational optogenetic models have also provided insight into 
spatial targeting for successful arrhythmia termination. Models revealed 
light pulses should last longer than the arrhythmia cycle length148 or 
provide precise optogenetic spatial–temporal control to drag rotors 
to non-excitable boundaries149 to reliably terminate arrhythmia. 
Computational optogenetics has also been applied and validated to 
study opsin kinetics and dynamics, across a range of voltage and irradi-
ance conditions,150 potentially accelerating the development of clinical-
ly suitable candidates.

Conclusions
Optical mapping and optogenetics have undoubtedly revolutionized 
the field of cardiac electrophysiology research, offering unique insights 
into cell–cell interactions, arrhythmia development, and defibrillation 
strategies. All-optical imaging has facilitated contactless cardiac electro-
physiology investigation, and implantable optoelectronic cardiac pace-
makers could enable pain-free, cell-selective defibrillation. Advances 
in optical imaging technologies and tools, to improve penetration 
depth, alongside long-term safety studies will further enhance clinical 
applications of optical imaging.
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