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A B S T R A C T

Purpose: We established the genetic etiology of a syndromic neurodevelopmental condition
characterized by variable cognitive impairment, recognizable facial dysmorphism, and a
constellation of extra-neurological manifestations.
Methods: We performed phenotypic characterization of 6 participants from 4 unrelated families
presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the
underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and
craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived
neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter
line.
Results: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-
auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts.
Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating
with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed
abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ
morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of
post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant
larvae showed mandibular patterning defects mimicking human facial dysmorphism.
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Conclusion: Our findings support the role of loss-of-function variants in CACHD1 as the cause
of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem
abnormalities.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Voltage-gated calcium channels (VGCCs) act as electrical
excitability transducers in neuronal, cardiac, and muscle
cells by mediating Ca2+ influx in response to action po-
tentials and subthreshold depolarizing signals.1 Distinct
molecular subtypes of VGCCs are implicated in signal
transduction in different cell types.1 This functional
specialization reflects specific physiological, pharmacolog-
ical, and regulatory properties of VGCC subtypes that play
critical roles in hormone secretion, transmitter release, and
both excitation-transcription and excitation-contraction
coupling.1 Dysfunctional VGCCs increase the risk for
schizophrenia, heart arrhythmias, muscle weakness, and a
broad range of other disorders known as channelopathies.2

The physiological properties of VGCCs—and the cells in
which they are expressed—are largely determined by the
pore-forming α1 subunits, whereas α1-interacting auxiliary
β and α2δ subunits modulate cell-surface expression and
trafficking.3,4 The importance of these subunits on VGCC
physiology is well established, but it is less clear if other
subunit-interacting proteins can influence channel function
and contribute to the onset of disease.

The α2δ-like cache domain containing 1 (CACHD1;
MIM: 620144) protein forms a complex with and modulates
the activity and expression of high-voltage-activated N-type
(Cav2.2) and low-voltage-activated T-type (Cav3) chan-
nels.5,6 High levels of CACHD1 mRNA and protein are
present in the mammalian central nervous system, especially
in the cerebellum, hippocampus, and thalamus.5 At the tis-
sue level, CACHD1 expression overlaps the distribution of
α2δ-3 proteins and Cav3 subunits; at the subcellular level,
this protein colocalizes with Cav2.2 and Cav3 channels at
the cell surface.5,6 Overexpression of CACHD1 significantly
increases Cav2.2 and Cav3 current density and maximal
conductance, and CACHD1 is thought to exert these phys-
iological effects by increasing cell surface expression and
reducing endocytosis of these N- and T-type channels.5,6

Importantly, members of the α2δ protein family have pu-
tative roles in development and disease independent of
VGCC modulation, suggesting that the same could be true
for CACHD1.7

In vitro studies have nominated CACHD1 as a regulator
of neural progenitor cell (NPC) proliferation and differen-
tiation,8 as well as neuronal presynaptic function, the latter
of which is consistent with the known contributions of N-
type channels to presynaptic neurotransmitter release.9

These early reports suggest that CACHD1 plays important
roles in the mammalian brain; however, the ramifications of
CACHD1 gene-disrupting variants on human health are
unknown.

We assembled a cohort of 6 affected individuals from 4
unrelated families who harbor biallelic putative loss-of-
function variants in CACHD1 and present with a rare neu-
rodevelopmental syndrome characterized by variable
developmental delay, cognitive impairment, craniofacial
dysmorphism, and a recurrent pattern of multisystem
abnormalities. Accordingly, molecular and cellular
characterization of CACHD1-depleted human stem
cell-derived NPCs revealed disease-relevant dysregulated
pathways and defects in neurogenesis. Furthermore, cachd1-
mutant zebrafish models recapitulated the craniofacial ab-
normalities observed in human patients. Our results provide
in vitro and in vivo evidence for a pathogenic role of biallelic
CACHD1 variants.
Materials and Methods

Study approval and recruitment

Six individuals from 4 unrelated families were recruited
after clinical assessment at different research centers and
hospitals (Supplemental Methods). The study cohort was
assembled using gene matching platforms10 and through
international collaborative efforts. Detailed phenotypic in-
formation related to prenatal and developmental history,
clinical evaluations, and medical imaging were provided by
the referring physicians. Informed consent was collected
from parents or legal guardians for genetic investigation and
publication of clinical and genetic data. Approval was ob-
tained as mentioned in the Ethics Declaration section.
Genetic analysis

Chromosomal microarray analysis was performed in in-
dividuals #1 to 4 as described,11 and the detected rear-
rangements were interpreted according to DECIPHER.
Exome sequencing (ES) was performed on genomic DNA
extracted from peripheral blood leukocytes. Parent-proband
ES was performed in all participants (trios in #1-4 and duos
in #5 and #6) as previously described.11 Additional
sequencing methodology is described in the Supplemental
Methods. Genetic variants were filtered for minor allele
frequency ≤ 0.01 in genomic databases (gnomAD), pres-
ence in ClinVar, conservation (Genomic Evolutionary Rate
Profiling), and predicted impact on protein structure and

http://creativecommons.org/licenses/by/4.0/
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function. Using the Ensembl Variant Effect Predictor pipe-
line, several in silico tools were used to predict variant
pathogenicity, including Combined Annotation Dependent
Depletion (GRCh37-v1.6 version), Polyphen-2, Mutation
Taster, and Splice AI, as previously reported.11 Sanger
sequencing was performed to confirm candidate variants and
for parental segregation analysis. Candidate variants were
classified according to the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology guidelines. All CACHD1 variants are reported
according to RefSeq NM_020925.4 (GenBank
NC_000001.11) and Human Genome Variation Society
recommendations. All variants were submitted to the Leiden
Open Variation Database with the following accession
numbers: #0000830402, #0000830403, #0000830406,
#0000830407, #0000830408, and #0000830409.

Cell culture and CRISPR

Human embryonic stem cells (hESCs) were transduced with
dox-inducible Ngn2 lentivirus and split every 4-5 days in
mTesR media (Supplemental Methods). Transduced hESCs
were then induced to NPCs using the stem cell-derived
NGN2-accelerated progenitor (SNaP) method,8 which
were cultured in bFGF/EGF-containing maintenance media.
NPCs were split weekly and plated at 120,000 cells/cm2.
NPCs were transduced with clustered regularly interspaced
short palindromic repeats (CRISPR) Cas9-lentivirus (pLX-
311-Cas9 vector), followed by selection with blasticidin (10
μg/mL). NPCs were then transduced with individual lenti-
virus single guide RNAs (sgRNAs) targeting CACHD1
before selection with puromycin (1 μg/mL) for 1 week.
Cells were harvested for Sanger sequencing and Tracking of
Indels by Decomposition (TIDE) analysis.

RNA sequencing

RNA-seq libraries were prepared with the KAPA Stranded
mRNA-Seq Kit (KAPA Biosciences) and sequenced on a
HiSeq 3000 (Illumina) to generate single-end 50 bp reads.
FASTQ files were aligned to the human reference genome
version GRCh38 and processed for DEG analysis and gene
functional enrichment analysis (Supplemental Methods).

Differentiation assay

NPCs were plated for 30 days in spontaneous differentiation
media before immunostaining as described in the
Supplemental Methods. For each well of a 96-well plate, 4-8
fluorescent images were captured using the Cytation5
multi-mode reader (BioTek Instruments). All images were
processed using the CellProfiler imaging analysis software to
quantify the percentage of HuCD+ neurons or SOX2+NPCs.
SNaP-derived neurospheres

SNaPs were dissociated in accutase and plated at 18,000
cells/well of an ultra-low attachment 96-well round bottom
plate (Corning, 7007) in 150 μL of SNaP maintenance
media supplemented with Y-27632 (50 μM). Two days later
(day 2), 75 μL of conditioned media was removed from each
well and replaced with 150 μL of fresh SNaP maintenance
media supplemented with Y-27632 (50 μM). The following
day (day 3), 125 μL of conditioned media was removed
from each well using the “blast” technique and replaced
with 150 μL of fresh SNaP maintenance media without Y-
27632.12 From day 4 onward, 150 μL of conditioned media
was removed every other day from each well using the
“blast” technique and replaced with 150 μL of fresh SNaP
maintenance media. Neurospheres were measured using the
Cytation5 multi-mode reader using the 4X bright field
objective.

Single-cell RNA sequencing

10X Genomics libraries from 10 pooled neurospheres were
generated and sequenced on a HiSeq 4000 (Illumina).
scRNA-seq data sets were analyzed using Seurat2.13 Graph-
based clustering approximated different cell groups, and t-
stochastic neighborhood embedding (TSNE) analysis was
used for 2D representation.

Generation and molecular characterization of
cachd1 zebrafish mutants

All studies performed in zebrafish were approved by the
Institutional Animal Care and Use Committees (Protocols
A154-18-06 and IS00016405) at Duke University Medical
Center and Northwestern University, respectively. To
identify the cachd1 ortholog in zebrafish, we performed a
reciprocal BLAST of human CACHD1 protein
(GRCh38.p13, Ensembl: ENST00000651257.2; RefSeq:
NP_065976.3) against the zebrafish genome. We synthe-
sized sgRNA using the Gene Art precision gRNA synthesis
kit (Invitrogen) per manufacturer’s instructions. We esti-
mated sgRNA efficiency using heteroduplex analysis (n = 2
wild-type [WT] and n = 10 injected embryos) and TOPO-
TA cloning-based sequencing (n = 1 WT and n = 5
injected embryos; 24 clones per embryo) as described14

(Supplemental Methods). To generate stable F2 homozy-
gous mutants (−/−), F0 mutants carrying germline cachd1
insertion-deletions (indels) were outcrossed with WT (+/+)
and then F1 heterozygous mutants (+/−) were in-crossed.
To assess the expression of mutant cachd1 mRNA, we
generated F2 larvae from in-crosses of heterozygous parents
(n = 20 larvae per genotype; 2dpf) and performed quanti-
tative (q)PCR assays.
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Zebrafish phenotyping

We used the Vertebrate Automated Screening Technology
(Union Biometrica) Bioimager platform to perform live
automated imaging of anterior cartilage structures in
-1.4col1a1:egfp larvae as described (Supplemental
Methods).15 We in-crossed genotype-matched adults
(either +/+ or −/−) to generate larvae for phenotyping.
Fluorescent images were assessed using ImageJ (NIH) by
measuring the area surrounded by ceratohyal, palatoqua-
drate and Meckel’s cartilage (defined as region of interest).
Statistical differences were calculated using an unpaired
student’s t test. Measurements were performed with in-
vestigators masked to genotype and repeated twice.
Results

CACHD1 patients show neurodevelopmental
impairment and congenital multisystem defects

Six affected individuals in 4 unrelated families presented
with a syndromic neurodevelopmental condition featuring
abnormalities in multiple organ systems (Table 1,
Figure 1A-D, Supplemental Table 1; Supplemental Clinical
Information). Excluding the fetal cases (#5 and #6),
neurological involvement was present in all participants. A
global impairment of psychomotor development was re-
ported in individuals #3 and #4, with the latter overcoming
developmental delays by the age of 2 years. The degree of
cognitive impairment was generally mild. Individuals #1 to
3 exhibited learning disabilities leading to writing and
speech impairment in early childhood. Psychomotor
regression was not reported. Behavioral disturbances
occurred in 2 participants (#1 and #2), including attention
deficit-hyperactivity disorder, irritability, immature social
skills, and anxiety. Mild sleep disturbances were reported in
patient #2, whereas an isolated epileptic episode occurred in
participant #3 at the age of 1 year. Brain magnetic resonance
imaging was normal in 2 of the 3 tested participants (#1 and
#3), whereas nonspecific findings were observed in indi-
vidual #4 (Table 1).

All cases displayed dysmorphic facial features that
included hypo- or hypertrichosis, medially sparse eyebrows,
and bulbous nose tip (Figure 1C). Minor dysmorphic fea-
tures were reported in individuals #1 (widely spaced nip-
ples) and #2 (nipple skin tag). Variable ear abnormalities
were observed in 5 of 6 individuals, and consisted of
microtia, ear displacement or malrotation, hypo-dysplasia of
the outer ear, preauricular skin tags, and uplifted earlobes.
Four participants (#1-4) showed variable congenital eye
anomalies, ranging from developmental defects (eg,
obstruction of the nasolacrimal ducts and bilateral glaucoma
with buphthalmos) to benign tumors of choristomatous na-
ture, such as epibulbar dermoid (individual #3) and lip-
odermoid (individual #1).
Congenital anomalies in different organ systems were
common (Table 1, Supplemental Table 1). Five participants
showed genitourinary abnormalities, of which 3 had renal
involvement (unilateral renal agenesis in individual #2;
uretero-renal obstruction leading to hydronephrosis in in-
dividuals #5 and #6); 3 cases presented with genital mal-
formations, such as hypospadias (individual #2),
cryptorchidism associated with inguinal hernia (individual
#3), and abnormal enlargement of the clitoris associated
with a distal skin tag (individual #4). Congenital malfor-
mations of the digestive tract (CMDTs) were diagnosed in 3
cases. Two participants (individuals #1 and #2) showed a
similar pattern of anorectal malformations consisting of anal
displacement or atresia combined with rectoperineal fistula,
whereas esophageal atresia was observed in participant #5.
Musculoskeletal features were less common and included
scoliosis (individual #1), foot malformation (individuals #1
and #4), and Perthes disease (individual #2). Cardiac
involvement consisted of patent ductus arteriosus and patent
foramen ovale in individual #2, and peripheral pulmonary
artery stenosis and ventricular septal defect in individual #4.
No rhythm abnormalities were detected.

Identification and in silico analysis of CACHD1
variants

We investigated each affected individual for copy-number
variants and single-nucleotide variants. Chromosomal
microarray analysis was uninformative for individuals #1 to
5; individual #5 had a normal karyotype, and individual #6
did not undergo chromosomal assessment (Supplemental
Table 1). However, ES led to the identification of biallelic
putative loss-of-function variants in CACHD1 (GenBank
ID: NM_020925.4) segregating with disease in all pedi-
grees: c.1783-1G>A and c.2387+1G>A in family I;
c.261+2T>C and c.648delC; p.(Ile217Serfs*13) in family
II; homozygous c.274dup; p.(Ile92Asnfs*52) in family III;
and c.277C>T; p.(Arg93*) and c.460C>T; p.(Arg154*) in
family IV (Figure 1A-B, Table 1, Supplemental Table 1).

All variants are rare (allele frequency ranging from 0 to
0.0000402), are absent in the homozygous state in gno-
mAD, and are predicted to be pathogenic by multiple in
silico tools (Table 1, Supplemental Table 2). The variants
are dispersed across the CACHD1 locus, although 4 of the 6
changes (2 frameshift and 2 stop gain variants) cluster in the
region from intron 2 to exon 6. All variants are predicted to
result in the loss of protein function either through
nonsense-mediated mRNA decay or the formation of an
unstable truncated transcript. According to gnomAD, the
probability of being loss-of-function intolerant (pLi) of
CACHD1 is 0. However, the loss-of-function observed/ex-
pected upper-bound fraction (LOEUF) score is 0.31 and the
Z score for predicted loss-of-function variants is 4.279,
leading to a 100% probability of intolerance to recessive
loss-of-function variants (https://varsome.com/gene/hg38/
cachd1). Furthermore, the screening of our in-house

https://varsome.com/gene/hg38/cachd1
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Table 1 Genetic and clinical features of CACHD1 participants

Patients #1 (family I) #2 (family II) #3 (family III) #4 (family III) #5 (family IV) #6 (family IV)

Age, gender 13.5 y, F 8.6 y, M 8 y, M 2 y, F 31+5 we, M 22+2 we, M
CACHD1

variant(s)
(NM_020925.4)

[c.1783-1G>A;
c.2387+1G>A]

[c.261+2T>C;
c.648delC
(p.Ile217Serfs*13)]

c.274dup
(p.Ile92
Asnfs*52)

c.274dup
(p.Ile92
Asnfs*52)

[c.277C>T
(p.Arg93*);
c.460C>T

(p.Arg154*)]

[c.277C>T
(p.Arg93*);
c.460C>T

(p.Arg154*)]
Inheritance Comp het Comp het Hom Hom Comp het Comp het
Allele frequency

(gnomAD,
v3.1.2)

0; 0 0.00000657; 0 0 0 0.00000401;
0.0000402

0.00000401;
0.0000402

ACMG/AMP class
(criteria)

Pathogenic
(PVS1, PM2,
PP3); Pathogenic

(PVS1, PM2, PP3)

Pathogenic (PVS1,
PM2, PP3);
Pathogenic

(PVS1, PM2, PP3)

Pathogenic
(PVS1,
PM2, PP3)

Pathogenic
(PVS1,
PM2, PP3)

Pathogenic
(PVS1, PM2,
PP3); VUS -
Likely
pathogenic

(PVS1, PP3)

Pathogenic
(PVS1, PM2,
PP3);

VUS - Likely
pathogenic
(PVS1, PP3)

Psychomotor
delay
(HP:0001263)

No No Yes Yes NA NA

Cognitive
impairment
(HP:0100543)

Yes, mild Yes, mild Yes, mild No NA NA

Seizures
(HP:0001250)

No No No Yes NA NA

Neuropsychiatric
features
(HP:0000708)

Anxiety;
irritability;
ADHD; poor
social skills

Anxiety; sleep
disorder

No No NA NA

Facial
dysmorphism
(HP:0001999)

Yes Yes Yes Yes Yes Yes

Ear abnormalities
(HP:0000598)

Microtia,
posterior
rotation,
preauricular
tags, helix
hypoplasia,
uplifted
earlobes

Overfolding of
superior helices,
preauricular skin
tags

No Preauricular
skin tags

Displacement,
dysplastic
outer ear,
preauricular
skin tags

Displacement,
dysplastic
outer ear,
preauricular
skin tags

Hearing loss
(HP:0000365)

No No No No NA NA

Eye
abnormalities
(HP:0000478)

Nasolacrimal
duct obstruction;
strabismus;
epibulbar
lipodermoid

Strabismus,
blepharitis

Peters
anomaly,
epibulbar
dermoid

Coloboma NA NA

CMDTs
(HP:0025031)

ARM with anal
displacement
rectoperineal
fistula

ARM with anal
atresia and
recto-urethral
fistula

No ARM Esophageal atresia
(Vogt Type 2)

No

Genital
abnormalities
(HP:0000078)

No Hypospadias Cryptorchidism,
inguinal
hernia

Clitoromegaly No No

Renal
defects
(HP:0000077)

No Unilateral renal
agenesis

No No Hydronephrosis
due to
urethro-renal
obstruction

Hydronephrosis
due to
urethro-renal
obstruction

Cardiac
abnormalities
(HP:0001627)

No PDA and PFO No Pulmonary
stenosis, VSD

No No

(continued)

M. Scala et al. 5



Table 1 Continued

Patients #1 (family I) #2 (family II) #3 (family III) #4 (family III) #5 (family IV) #6 (family IV)

Abnormal ECG
(HP:0003115)

No No No No No No

Musculoskeletal
features
(HP:0033127)

Scoliosis, short
neck, broad
halluces, flat
feet

Bilateral Perthes
disease, proximal
thumbs insertion

No Left forefoot
adduction

No No

Other clinical
features

Trigonocephaly
(HP:0000243);
obesity
(HP:0001513);
hemifacial
microsomia
(HP:0011332)

No No Relative
enlargement of
neurocranium
(HP:0002683)

Hypertrichosis
(HP:0000998),
accessory
spleen
(HP:0001747)

Hypertrichosis
(HP:0000998),
accessory
spleen
(HP:0001747)

Brain MRI Normal NA Normal Nonspecific
findings

NA NA

ACMG/AMP, American College of Medical Genetics and Genomics/Association for Molecular Pathology; ADHD, attention deficit-hyperactivity disorder; ARM,
anorectal malformation; CMDT, congenital malformations of the digestive tract; Comp het, compound heterozygous; ECG, electrocardiogram; Hom, homozygous;
NA, not applicable; PDA, patent ductus arteriosus; PFO, patent foramen ovale; PM, pathogenic moderate; PP, pathogenic supporting; PVS, pathogenic very
strong; VSD, ventricular septal defect; we, weeks; y, years.
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database of 6000 control exomes did not identify loss-of-
function genotypes comparable to those observed in the
reported individuals (Supplemental Table 3). Thus, our
sequencing data indicate that mutations in CACHD1 result
in the clinical symptoms observed in this patient cohort.

CACHD1 depletion disrupts neurogenesis in human
cells

It is unclear how CACHD1 ablation from early neural cells
could affect the mechanisms underlying brain development.
Fetal neurogenesis relies on normal NPC proliferation and
differentiation dynamics. To test the role of CACHD1 in
neurogenesis, we depleted CACHD1 expression in H1
hESC-derived NPCs that were generated using the SNaP
protocol8 (Figure 2A). Two CACHD1-targeting sgRNAs
were delivered separately to assess the reproducibility of
effects, whereas 1 non-targeting sgRNA was used as a
control. TIDE analysis revealed high mosaicism of over
95% editing efficiency for both guide RNAs (Supplemental
Figure 1A and B).

We allowed NPCs to spontaneously differentiate for 30
days to measure differentiation potential. CACHD1-edited
cell lines showed reduced percentages of HuCD+ post-
mitotic neurons, suggesting deficits in neuronal differentia-
tion (Figure 2B). Measurements of NPC content revealed a
modest but significant increase in SOX2+ progenitors in
CACHD1 sgRNA#2 conditions relative to controls, whereas
sgRNA#1-targeted cells showed a non-significant trend to-
ward an increase of NPCs (Figure 2C). These findings
corroborate recent analysis of CACHD1-depleted human
cerebral organoids8 and further suggest that CACHD1-dis-
rupted cells have an impaired ability to transition from
proliferative NPCs to post-mitotic neurons.
Genome-wide CRISPR-Cas9 screening in 2D cultures

previously identified CACHD1 as a regulator of NPC
proliferation.8 To test the impact of CACHD1 depletion
under conditions of relevant cytoarchitecture and cell-type
diversity,16 we developed a protocol for generating 3D
neurospheres from SNaPs (Figure 2D). Lightsheet imaging
of day 7 unedited neurospheres immunostained with the
NPC marker phospho-Vimentin (phVim) and the neurite
marker MAP2 showed that both progenitors and early
neuronal cells were present (Figure 2E). We further char-
acterized the cellular composition of SNaP-derived neuro-
spheres through scRNA-seq. Seven days post-neurosphere
formation, we found 12.5% of the cells expressed tran-
scripts enriched in post-mitotic neurons, such as ELAVL4
and STMN2 (group 4), whereas the remaining were either
MKI67+ mitotic cells (group 1, 34.3%) or progenitor cells
that expressed PAX6 and SOX2 (group 2, 28.2%;
Supplemental Figure 2A-E). A subset of the quiescent state
progenitors (group 3, 25.0%) expressed genes that are
typically upregulated under hypoxic conditions, such as
BNIP3 and SLC2A1. Together, these findings support the
utility of our SNaP-derived neurospheres for 3D modeling
of NPC proliferation.

We produced neurospheres from CACHD1-depleted and
non-targeting sgRNA control SNaPs and found that
CACHD1 sgRNA #1 and #2 neurospheres were significantly
larger than controls (Figure 2F and G) indicative of a
hyperproliferative NPC phenotype. Collectively, our results
indicate that CACHD1 plays a critical role in NPC cellular
functions that occur during the earliest stages of brain
development, and its genetic ablation could contribute to
profound neurodevelopmental disorders.



Figure 1 Genetic and clinical aspects of affected individuals harboring CACHD1 variants. A. Location of CACHD1 variants in
relation to exonic location (top); and domain structure (bottom; GenBank: NM_020925.4, NP_065976.3). CACHD1 consists of an exofacial
N terminus, a von Willebrand factor A (VWA) domain, 2 bacterial chemosensory-like cache domains, a short hydrophobic transmembrane
domain, and an intracellular C terminus. Exonic variants affect exons 3, 4, and 6. Intronic variants localize in introns 2, 12, and 16. Most
variants affect the early portion of the gene, predicted to lead to premature transcription termination and putative NMD. Numbers under the
protein schematic indicate amino acid numbers. Cache, Ca2+ channel and chemotaxis receptor; CR, cysteine rich; HR, histidine rich; MIDAS,
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Loss of CACHD1 alters neurodevelopmental gene
expression programs

To understand the molecular mechanisms affected by
CACHD1 loss, we harvested NPCs for bulk RNA
sequencing analysis. We detected 432 significant differen-
tially expressed genes (DEGs) between the control and
CACHD1 sgRNA#1, and 1924 DEGs between the control
and sgRNA#2 (Figure 3A). Overall, 382 dysregulated genes
(180 upregulated and 202 downregulated) were shared be-
tween the 2 data sets (Figure 3B and C). Enrichment anal-
ysis of Gene Ontology (GO) terms was conducted on these
DEG lists to identify dysfunctional biological functions.

Genes involved in broad neurobiological processes, such
as nervous system development (GO:0007399), neuro-
genesis (GO:0022008), and synapse structure and activity
(GO:0050803), were dysregulated in depleted cells
(Figure 3D and E, Supplemental Data File 1). Key neuro-
developmental genes showed dramatic changes in expres-
sion, including SIX3 (log2FC = −4.62), HES1 (−1.74),
CRABP2 (1.83), WNT5B (1.99), and NEUROD4 (2.51).
Interestingly, our list of 382 DEGs showed significant
overlap with high-confidence autism (P = 7.30e−04, odds
ratio = 2.1) and developmental delay risk genes (P =
7.20e−04, odds ratio = 3.5), such as CNTNAP2, GRIN2B,
and PTEN, indicating potential biological convergence with
established neurodevelopmental disorder risk factors.

Next, we set out to better understand the molecular
contributors to the defective neurogenesis phenotypes we
observed. Downregulated genes were enriched for such GO
terms as regulation of neurogenesis (GO:0050767), neuron
differentiation (GO:0045664), and negative regulation of
cell population proliferation (GO:0008285), whereas upre-
gulated genes were involved in neuroblast proliferation
(GO:0007405), neuron differentiation, and cell division
(GO:0051302). The downregulation of negative regulators
of growth, including PTEN (log2FC=−0.45), MAPK21
(−0.67), and CDKN1C (−0.77) could explain the hyper-
proliferative phenotype. CDKN1C downregulation is also of
interest given this gene’s role in promoting terminal dif-
ferentiation of NPCs.17 The reduced expression of
differentiation-stimulating genes, such as CDKN1C, SOX4,
and SOX11, could explain the lower differentiation potential
of CACHD1-depleted cells.

Our data also highlight a potential role for CACHD1 in
the Wnt signaling pathway, which regulates the balance
metal ion-dependent adhesion site; NLS, nuclear localization signal; TM
based on data from www.Uniprot.org. B. Pedigrees of the reported famili
unaffected individuals; filled shapes, affected individuals; square, male; c
C. Clinical photographs. Individual #1 at 13 years shows sparse hair,
posteriorly rotated ears with preauricular tags, underdeveloped crus of the
preauricular skin tags associated with overfolding of the superior helices.
thick eyebrows, periorbital rings, palpebral edema, low-set ears with dy
glossia. D. Graph summarizing the distribution of the most common cli
Abbreviations: CMDTs, congenital malformations of the digestive trac
applicable.
between NPC proliferation and differentiation.18 Down-
regulated genes were enriched for negative regulators of
Wnt (GO:0030178), whereas upregulated genes were
enriched for positive regulators (GO:0090263). These
reciprocal effects suggest that the Wnt pathway may be
overactivated in CACHD1-depleted cells, which is known to
enhance proliferation and impair differentiation of NPCs.19

Beyond neurodevelopment, we detected abnormalities in
other processes that may be relevant to our patient cohort.
For example, our DEGs were enriched for genes involved in
development of the head (GO:0060322), heart
(GO:0007507), kidney (GO:0001822), skeletal system
(GO:0001501), and urogenital system (GO:0001655;
Figure 3E). Our analysis also revealed defects in molecular
processes involved in pancreatic function (GO:0003310)
and formation of amyloid-beta plaques (GO:1902003), the
latter of which plays a central role in Alzheimer’s disease
pathology. Collectively, these results suggest that disruption
of CACHD1 expression affects essential developmental
processes and nominate gene expression programs that may
underlie CACHD1-associated defects in neuronal and non-
neuronal tissues.
Homozygous cachd1 mutant zebrafish larvae
recapitulate human craniofacial dysmorphism

In vitro human models are a powerful tool for studying the
mechanisms underlying disease but are not able to recapit-
ulate complex systems and structures, such as craniofacial
development. To further establish the physiological rele-
vance of CACHD1 dysfunction to human disease, we
generated a zebrafish model. Reciprocal BLAST with hu-
man CACHD1 protein identified a single cachd1 ortholog in
zebrafish (87% identity, 94% similarity; Figure 4A). cachd1
has robust mRNA levels detectable from the zygote stage,
which persist in whole-larval RNA-seq data until at least 5
dpf.20,21 We targeted exon 9 of the cachd1 locus by
injecting sgRNA and Cas9 protein into the cell of 1-cell-
stage embryos. Further molecular characterization of F0
mosaic mutants showed moderate mosaicism (47% mosai-
cism with insertion/deletion events proximal to the Proto-
spacer adjacent motif (PAM) site in F0s, n = 5 embryos per
condition, 24 clones per embryo). F0 animals were out-
crossed with WT (+/+) mates, and we identified an F0
founder carrying a 16 bp indel (p.(Phe452Leufs*3);
, transmembrane domain. Locations of domains are approximate
es with the segregation patterns of CACHD1 variants. Open shapes,
ircle, female, triangle, pregnancy not carried to term; wt, wild type.
medially sparse eyebrows, a pit on the left cheek, and small and
helix, and uplifted earlobes. Individual #2 at 1 year shows bilateral
Individuals #5 (31+5 weeks) and #6 (21+5 weeks) show long and
splastic outer ear and bilateral preauricular skin tags, and macro-
nical features (present in at least two cases) in the reported cohort.
t; DD, developmental delay; ID, intellectual disability; NA, not

http://www.uniprot.org


Figure 2 CACHD1 depletion alters NPC proliferation and differentiation. A. Schematic describing the workflow of NPC cellular. B.
Quantification of the percentage of HuCD+ post-mitotic neurons in Day 30 differentiation cultures from control and CACHD1-edited SNaP
lines. Representative images depict nuclei in blue and HuCD in green. Scale bar, 50 μm. C. Quantification of the percentage of SOX2+ NPCs
in Day 30 differentiation cultures from control and CACHD1-edited SNaP lines. Representative images depict nuclei in blue and SOX2 in
green. Scale bar, 50 μm. D. Schematic describing the production of 3D neurospheres derived from 2D SNaP cultures. E. Lightsheet imaging
of a day 7 SNaP-neurosphere stained with phospho-Vimentin (NPC marker) and MAP2 (neurite marker). F. Representative bright field
images of control and CACHD1-edited neurospheres at day 15 post-plating. Scale bar, 1 mm. G. Quantification of (F). Data are represented as
mean ± S.D.
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Figure 4B). We in-crossed F1 heterozygous (+/−) mutants
to generate an F2 generation for subsequent molecular
validation. To confirm efficient ablation of cachd1 transcript
in homozygous mutants (−/−), we performed qPCR on total
RNA obtained from genotype-matched 2 dpf larvae (geno-
types: cachd1+/+, cachd1+/−, cachd1−/−); we observed a
significant reduction (~70%-80%) in cachd1 RNA levels in
homozygotes compared with WT siblings (P < .0001 versus
WT; Figure 4C).

Facial dysmorphisms are morphological features in
humans bearing biallelic CACHD1 variants (Table 1,
Supplemental Table 1, Figure 1C), prompting us to evaluate
orthologous structures in zebrafish mutant larvae according
to our in vivo imaging paradigm22,23 (Figure 4D). Using F2
adult siblings, we in-crossed either WT or homozygous
mutant animals harboring the −1.4col1a1:egfp transgenic
cartilage reporter and simultaneously performed live lateral
bright field imaging and ventral imaging of fluorescent
signal in F3 larvae at 3 dpf. We observed no gross
morphological abnormalities (Figure 4E, top). However,
quantification of the mandibular area encompassed by
ceratohyal, palatoquadrate and Meckel’s cartilage showed a
significant reduction in the region of interest area in
cachd1−/− compared with cachd1+/+ larvae (P < .0001;



Figure 3 Genetic ablation of CACHD1 affects expression of key neurodevelopmental genes and signaling pathways. A. Venn di-
agram depicting the overlap of differentially expressed genes (DEGs) between the 2 CACHD1-depleted NPC lines. B, C. Volcano plots of
DEGs, comparing each CACHD1-depleted line with NT control. Open circles reflect DEGs consistent in both CACHD1-depleted lines
relative to NT control. Positive mean log2 fold change (FC) refers to genes that are upregulated in CACHD1-edited cells. Statistical sig-
nificance is defined as Benjamini-Hochberg adjusted P values < .05. Vertical dashed lines represent log2FC = 0.6 (FC ~ 1.5 fold), whereas
horizontal dashed lines represent the adjusted P value threshold of P < .05. DEGs that pass both the significance and FC thresholds are
colored in red (upregulated) or blue (downregulated). Genes in green are known Wnt pathway genes. D, E. Gene Ontology (GO) term
analysis of 382 DEGs; (D) downregulated and (E) upregulated genes in CACHD1-depleted lines.
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Figure 4E and F). These data suggest that dysfunction of
cachd1 leads to cartilage patterning defects.
Discussion

Defects in calcium channels have been implicated in several
syndromic neurodevelopmental conditions.24 VGCCs play
crucial roles during neurodevelopment, including neural cell
survival, neurite extension, and radial migration.24 Patho-
genic variants in genes encoding the α1 subunits of VGCCs
result in heterogeneous neurodevelopmental features with or
without other syndromic conditions.25 Here, we identified 6
individuals harboring 7 putative loss-of-function variants in
CACHD1—which encodes a protein that interacts directly
with VGCCs—presenting with a rare neurodevelopmental
syndromic condition characterized by developmental delay,
learning disabilities, facial dysmorphism, and extra-
neurological manifestations featuring oculo-auricular ab-
normalities, genitourinary defects, and congenital malfor-
mations. In vitro human neural models of CACHD1
depletion displayed dysregulated Wnt signaling, which is in
alignment with a recent report that nominates CACHD1 as a
Wnt regulator in the developing brain (Powell GT, Faro A,
Zhao Y, Stickney H. Novellasdemunt, L., Henriques, P.,
Gestri, G., White, E.R., Ren, J., Lu, W., et al. (2022).
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Figure 4 Ablation of zebrafish cachd1 by CRISPR-Cas9 results in craniofacial abnormalities. A. Schematic of zebrafish cachd1
transcript (GRCz11, Ensembl transcript ID: ENSDART00000087964.7) generated by Exon-Intron Graphic Maker (http://wormweb.org/
exonintron). The sgRNA target site on exon 9 is indicated by a red triangle. Scale bar, 10 kb. B. Representative sequence chromato-
grams of cachd1 +/+ (wild type), cachd1+/− (heterozygous mutant), and cachd1−/− (homozygous mutant) are shown. Protospacer adjacent
motif (PAM) is indicated by a red box for each chromatogram. Mutants harbor a 16 bp deletion (19 bp deletion and 3 bp insertion) that results
in a frameshift and putative protein truncation (p.Phe452LeufsTer3). C. Bar graph showing relative mRNA expression of cachd1 in
genotype-matched 2 day post-fertilization (dpf) larvae generated from F1 in-crosses. n = 20 per batch, 3 technical replicates per experiment, 8
biological replicates (One way ANOVA; Tukey’s multiple comparisons test). Tails were used for genotyping, whereas RNA was extracted
from the matched heads for quantitative PCR analysis. Relative expression was normalized to gapdh, and statistical differences were
calculated using One way ANOVA (F [5, 42] = 50.39; P value < .0001]; Tukey’s multiple comparisons test’s P values for mutants versus
+/+ are indicated above each bar. Error bars represent standard error of the mean. D. Schematic of 3 dpf zebrafish larva showing a ventral
view of craniofacial cartilage structures. Abbreviations: Meckel’s cartilage (mk, blue), palatoquadrate (pq, yellow), ceratohyal (ch, orange),
hyosymplectic (hs, gray), and ceratobranchial (cb, green). E. Representative images of −1.4col1a1:egfp;cachd1 larvae imaged live at 3 dpf.
Top: bright field lateral images of wild-type and homozygous mutants. Scale bar, 200 μm. Bottom: fluorescent ventral images of wild-type
and homozygous mutants. Region of interest (ROI) area, as outlined in red and bordered by ch, pq, and mk, was measured to detect statistical
differences. Scale bar, 100 μm. F. Quantification of ROI indicated in (E); AU, arbitrary units. Statistical differences were calculated using an
unpaired t test (n = 50-70 larvae per condition, repeated). Biological replicates (1 and 2 as indicated in x axis labels) were obtained from
different parental pairs with the investigator masked to the experimental conditions. Regardless of their parental genotype, all embryos
obtained were morphologically similar,and no animal was excluded from imaging and quantification. Error bars represent standard deviation
of the mean.
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Cachd1 is a novel Frizzled- and LRP6-interacting protein
required for neurons to acquire left-right asymmetric char-
acter. bioRxiv. 10.1101/2022.05.16.492129); it remains to
be determined if Wnt dysfunction directly contributes to the
altered NPC proliferation and differentiation we observed.
Zebrafish cachd1 mutants displayed cartilage patterning
defects, which is a proxy for human facial dysmorphic
features. Collectively, our in vitro and in vivo findings
reflect the developmental defects observed in human pa-
tients, nominating CACHD1 as a contributor to human brain
and craniofacial development.

The CACHD1-associated cellular defects we observed
align with the established role of VGCCs in neuro-
genesis,26,27 and the clinical manifestations of CACHD1
variants—such as psychomotor development delay (2 of 4
cases), cognitive disability (3 of 4 cases), and neuropsychi-
atric features (2 of 4 cases)—are shared with calcium chan-
nelopathies and hint at potential converging disease
biology.28,29 For example, Timothy Syndrome is caused by
pathogenic variants in CACNA1C, which encodes the α1C
subunit of Cav1.2. This rare condition is characterized by
neurodevelopmental delay, autism, and epilepsy, as well as
syndactyly, prolonged QT interval, variable congenital heart
defects, and facial dysmorphisms.29,30 Similar neuro-
developmental and psychiatric features have also been
associated with CACNA1G (Cav3.1) variants, as have vari-
able craniofacial anomalies and skeletal defects.31-33

Abnormal CACHD1-mediated regulation of these channels
could potentially contribute to the neuropsychiatric symp-
toms observed in our patients.

Historically, investigations of VGCCs and their effectors
have focused on their physiological relevance to excitable
cells that can fire action potentials; their contribution to the
development and function of non-excitable cells has received
limited attention.34,35 CACNA1C and CACNA1G variants
play causal roles in craniofacial defects, exemplifying a
developmental role for VGCCs in non-excitable tissues.29-31

Deleterious variants in ion channel genes contribute to the
morphological development and function of non-excitable
cells in various animal models and can result in congenital
structural abnormalities.36 For example, altered Cav1.2
channel activity leads to defects in jaw development in mice
and zebrafish.37 Accordingly, our cachd1 zebrafish mutants
displayed cartilage patterning defects, and our RNA-seq
analysis of in vitro human NPCs found dysregulation of
transcripts involved in head and skeletal system development.
Thus, the CACHD1 human and animal models we describe
could serve as important systems for further elucidation of the
roles of VGCCs in non-excitable cell morphogenesis. Future
studies are required to elucidate the impact of CACHD1
dysfunction on critical craniofacial processes, such as neural
crest cell formation and migration.

Some of the extra-neurological features observed in our
patients overlap with oculo-auriculo-vertebral spectrum
(OAVS; also known as Goldenhar syndrome), a rare condition
characterized by malformations of the ears, eyes, and spine
(Supplemental Figure 3).38 Copy-number variants in different
genetic loci have been identified in some patients, but the
etiology of OAVS remains elusive.38,39 CACHD1 has not
been linked to this disorder, but it should be noted that OAVS
minimal diagnostic criteria include features observed in our
cohort such as microtia (small external ear), facial asymmetry
due to hemifacial microsomia (ie, one half of the face does not
develop fully), and epibulbar dermoids/lipodermoids (benign
growths in the eye). In mice, the loss of Cachd1 disturbs Ca2+

homeostasis in the endolymph of the inner ear, leading to
secondary membranous labyrinth dilation and audio-vestibular
dysfunction.40 Although hearing loss and balance impairment
were not observed in our patients, it is possible that mild
defects could be detected through specific tests, such as video
head impulse test, Computerized Dynamic Visual Activity,
high-resolution computed tomography, and magnetic reso-
nance imaging. Subsequent studies could investigate the po-
tential involvement of CACHD1 variants in the genetic
susceptibility of OAVS and inner ear dysfunction.

CACHD1 may regulate key aspects of neurodevelopment
independent of the modulation of VGCC activity,41 as
CACHD1-like α2δ isoforms are known to regulate synaptic
function, GABAA receptor abundance, and axonal wiring in
a non-VGCC-dependent manner.7,42,43 Furthermore, protein
products formed after CACHD1 cleavage by γ-secretase and
the beta-site APP cleaving enzyme 1 (BACE1)—which is
an essential catalyzer of the first step of pathogenic amyloid
beta (Aβ) peptide generation in Alzheimer’s dis-
ease—modulate signal transduction and gene expression.44

CACHD1 has also been suggested in the pathogenesis of
complex human conditions not observed in our patient
cohort. Specifically, CACHD1 may contribute to the sus-
ceptibility to diabetes mellitus (DM) type 1 and has been
implicated in the hepatocarcinogenesis associated with DM
and non-alcoholic steatohepatitis (NASH).45,46 It is
tempting to speculate that an abnormal transcriptional reg-
ulatory function may contribute to at least some of the extra-
neurological developmental defects observed in our patients.

We used ES to investigate the etiology of neuro-
developmental symptoms observed in our cohort and iden-
tified biallelic variants in CACHD1 as the potential cause.
Although some LoF CACHD1 variants may be observed in
healthy controls in gnomAD, these changes never occur in
trans in the same individual. CACHD1 has a low LOEUF
score (0.31) and high Z score for predicted loss-of-function
variants (4.279), suggesting intolerance to loss of function.
Together with the results obtained from our functional
studies, these data support the biallelic loss of CACHD1 as
the cause of the novel neurodevelopmental syndrome
observed in our patients. We acknowledge that the co-
occurrence of variants with milder functional impact in
modifier genes or non-coding regions may influence the
phenotype expressivity of monogenic neurodevelopmental
disorders and that thorough genomic analysis may be helpful
to detect these co-occurring variants. Although we were
unable to investigate the whole genomes of our study’s
participants, future broader genomic approaches could further
dissect the genetic aspects of CACHD1-related disease.
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In summary, our data expand the spectrum of human
disorders related to VGCC function and suggest that
CACHD1 participates in the refinement of cognitive func-
tion and morphogenetic processes in several organ systems.
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