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Abstract—Deployment of robots in practical domains poses
key knowledge representation and reasoning challenges. Robots
need to represent and reason with incomplete domain knowl-
edge, acquiring and using sensor inputs based on need and
availability. This paper presents an architecture that exploits
the complementary strengths of declarative programming and
probabilistic graphical models as a step towards addressing these
challenges. Answer Set Prolog (ASP), a declarative language, is
used to represent, and perform inference with, incomplete domain
knowledge, including default information that holds in all but a
few exceptional situations. A hierarchy of partially observable
Markov decision processes (POMDPs) probabilistically models
the uncertainty in sensor input processing and navigation. Non-
monotonic logical inference in ASP is used to generate a multi-
nomial prior for probabilistic state estimation with the hierarchy
of POMDPs. It is also used with historical data to construct a
Beta (meta) density model of priors for metareasoning and early
termination of trials when appropriate. Robots equipped with
this architecture automatically tailor sensor input processing and
navigation to tasks at hand, revising existing knowledge using
information extracted from sensor inputs. The architecture is
empirically evaluated in simulation and on a mobile robot visually
localizing objects in indoor domains.

I. INTRODUCTION

Mobile robots are increasingly being deployed in practical

application domains such as healthcare, disaster rescue and

navigation. These robots receive far more raw data from

sensors than is possible to process in real-time, and it is

difficult to equip the robots with accurate and complete domain

knowledge. Human participants, if any, may not have the

time and expertise to provide elaborate and accurate feedback.

Furthermore, the descriptions of knowledge and uncertainty

obtained from different sources may complement or contradict

each other. Widespread deployment of robots thus poses the

fundamental challenge of enabling them to represent and rea-

son with qualitative and quantitative descriptions of incomplete

domain knowledge and the associated uncertainty, acquiring

and using sensor inputs based on need and availability.

Although probabilistic graphical models such as partially

observable Markov decision processes (POMDPs) have been

used to plan sensing and navigation on robots by proba-

bilistically modeling the associated uncertainty, it is difficult

to represent and reason with commonsense knowledge in

such formulations. Declarative languages such as Answer Set

Prolog (ASP) are well-suited for knowledge representation

and non-monotonic logical reasoning, but they do not support

probabilistic modeling of uncertainty [9]. Prior work integrat-

ing ASP with hierarchical POMDPs [32] did not support key

capabilities such as default reasoning, incremental bidirec-

tional flow of information between the commonsense inference

and probabilistic reasoning components, and metareasoning

with observations and historical data. The architecture de-

scribed in this paper addresses these limitations by making

the following novel contributions:

• Richer representation and inference in ASP with incom-

plete domain knowledge, which includes default informa-

tion that holds in all but a few exceptional situations, to

effectively reduce the task completion time.

• Use of ASP-based inference to heuristically generate

a multinomial prior for the POMDP state estimation

that is used to plan sensing and navigation, with the

subsequent observations adding relevant statements to the

ASP knowledge base.

• Metareasoning with observations and a Beta density

model of priors based on historical data, supporting early

termination of tasks that cannot be accomplished with the

existing models.

The architecture thus establishes a continuous loop of non-

monotonic logical inference, probabilistic planning and incre-

mental knowledge revision. The architecture is grounded and

evaluated in simulation and on mobile robots localizing (i.e.,

determining the location of) objects in indoor domains.

II. RELATED WORK

Researchers have used probabilistic graphical models such

as POMDPs to formulate planning, sensing, navigation and

interaction on robots [11], [16], [24]. However, these formu-

lations, by themselves, are not well-suited for commonsense

reasoning. In parallel, research in classical planning has pro-

vided sophisticated algorithms for knowledge representation

(KR) and logical reasoning [10], which have been used on

mobile robots [8]. However, these algorithms typically require

a significant amount of prior knowledge regarding the do-

main, and the preconditions and effects of the actions. Many
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algorithms also do not support merging of new, unreliable

information (e.g., from sensors) with the current beliefs in a

knowledge base. Answer Set Prolog (ASP), a non-monotonic

logic programming paradigm, is well-suited for representing

and reasoning with commonsense knowledge [2], [9]. It has

been used in cognitive robotics [7], e.g., for reasoning by

simulated robot housekeepers [6] and for representing domain

knowledge learned through natural language processing [4].

However, ASP does not support quantitative models of un-

certainty, whereas a lot of information available to robots is

represented probabilistically so as to quantitatively model the

uncertainty in sensing and acting.

Robotics researchers have developed algorithms that sup-

port logical and probabilistic reasoning for task, motion, or

behavior planning [11], [17]. Semantic maps and common-

sense knowledge have been used with probabilistic algorithms

to locate targets, and for open world planning [14], [15].

Declarative programming and continuous-time planners have

been used for path planning in mobile robot teams [29],

and a probabilistic extension of ASP has been combined

with POMDPs for commonsense inference and probabilistic

planning in human-robot dialog [35]. Principled algorithms

developed to combine logical and probabilistic reasoning in-

clude the Markov logic network that combines probabilistic

graphical models and first order logic, assigning weights to

logic formulas [23]; and Bayesian Logic that relaxes the

unique name constraint of first-order probabilistic languages

to provide a compact representation of distributions over

varying sets of objects [20]. Other examples include indepen-

dent choice logic [21], PRISM [12], probabilistic first-order

logic [13], first-order relational POMDPs [25], and probabilis-

tic extensions to ASP [3], [18]. However, these algorithms

are limited in their ability to support the desired knowl-

edge representation and reasoning capabilities for human-robot

collaboration. Algorithms based on first-order logic do not

provide the desired expressiveness for capabilities such as

default reasoning, e.g., it is not always possible to express

degrees of belief quantitatively. Other algorithms based on

logic programming do not support one or more of the capabil-

ities such as: reasoning about relations as in causal Bayesian

networks; incremental addition of probabilistic information;

reasoning with large probabilistic components; or dynamic

addition of variables with different ranges [3]. The architecture

described in this paper is a step towards achieving these

capabilities. Key limitations of prior work on integrating ASP

and POMDPs [32] are addressed by supporting default reason-

ing, generating priors based on ASP inference for POMDP

state estimation, and metareasoning with observations and

historical data from comparable domains. Preliminary versions

of some of these contributions are documented in workshop

papers [30], [31]. This paper provides a detailed description of

the novel contributions, supported by extensive experimental

evaluation in simulation and on a mobile robot.

III. PROBLEM FORMULATION

Figure 1 depicts the control architecture, whose components

are illustrated and evaluated in this paper for visual target lo-

calization. A mobile robot determines the locations of desired

ASP knowledge base

POMDP policy

Domain changes

Relevant observations

 Terminate? 

Multinomial prior

Belief state

Action selection

Yes

BetaBeta PDF

Active (visual) observations

Object existence
posterior Stop

No

Commitments

Passive
observations

Fig. 1: Architecture integrates knowledge representation, non-

monotonic logical inference and probabilistic planning.

objects in an indoor domain using (primarily) visual data. It is

assumed that the robot revises the domain map and estimates

its own location using laser range data, and has learned object

models and semantic labels for rooms.

The ASP Knowledge Base (KB) contains statements de-

scribing domain objects and relations between them, including

default information that holds in all but a few exceptional

situations. Currently, some statements are hand-coded (e.g.,

axioms), while others are learned from sensor inputs and

historical data. For any given task, inference in the KB

provides an Answer Set, a set of ground literals representing

the current beliefs based on non-monotonic logical inference

in the KB (Section III-A). In parallel, the given task (e.g.,

to localize a specific object) is formulated as a POMDP

that probabilistically captures the uncertainty in sensing and

navigation (Section III-B). The answer set heuristically gen-

erates a multinomial prior for the POMDP state estimation,

and action selection is based on the posterior distribution

(Section III-C). The answer set and historical data from

comparable domains also populate a Beta density that defines

a prior for metareasoning with observations in the current do-

main, supporting early termination of tasks when appropriate

(Section III-D). A robot equipped with this architecture obtains

observations from algorithms activated when needed (e.g.,

for visual object recognition) and algorithms that are always

in use (e.g., obstacle avoidance using range data). Relevant

observations (e.g., of the target object) update the POMDP

belief distribution, and a belief with high certainty commits

an appropriate statement to the ASP KB. Some observations

may also identify domain changes, e.g., using range data to

identify changes in the map of the domain, which are also used

to revise the KB. If the revised KB provides a new multinomial

prior, it is combined with the likelihood of the observation

sequence to obtain the revised posterior for action selection.

The following sections focus on the new contributions of this

paper; other components are summarized for completeness.

For target localization, inference in the ASP KB is at the

coarser resolution of rooms or places, while the POMDP solver

works at the finer resolution of grid cells in rooms.

CONFIDENTIAL. Limited circulation. For review only
IEEE T-RO Submission no.: 14-0548.1

Preprint submitted to IEEE Transactions on Robotics. Received: April 4, 2015 20:30:20 PST



3

A. Knowledge Representation with ASP

Answer Set Prolog (ASP) is a declarative language that

can represent recursive definitions, defaults, causal relations,

special forms of self-reference, and language constructs that

occur frequently in non-mathematical domains, and are dif-

ficult to express in classical logic formalisms [2]. ASP is

based on the stable model (answer set) semantics of logic

programs and research in non-monotonic logics [9]. ASP can

draw conclusions due to lack of evidence to the contrary,

using concepts such as default negation (negation by failure)

and epistemic disjunction. For instance, unlike “¬a”, which

implies that “a is believed to be false”, “not a” only implies

that “a is not believed to be true”; and unlike “p ∨ ¬p” in

propositional logic, “p or ¬p” is not a tautology. ASP also

supports non-monotonic reasoning—adding a statement can

reduce the set of inferred consequences—reasoning in large

KBs, and reasoning with quantifiers. These capabilities have

led to the use of ASP by an international research community.

The following basic definitions will be used in this paper [9].

Variable and object constants are terms, and a function of

terms is a term; terms with no symbols and no variables are

ground. A predicate of terms is an atom; it is ground if all

its terms are ground. An atom or its negation is a literal:

ground atoms and their negations are ground literals. Statics

are domain properties whose truth values cannot be changed

by actions, and fluents are properties that can be changed by

actions. A basic fluent, also called an inertial fluent in the

knowledge representation literature, is subject to inertial laws

and can be directly changed by actions, while a defined fluent

cannot be directly changed by an action, is defined in terms

of other fluents, and is not subject to laws of inertia.

An ASP program (Π) has a sorted signature Σ and axioms

of the form: l0 or · · · or li← li+1, · · · , lm,not lm+1, · · · , not ln.

Each l in the axiom is a literal of Σ. The sorts in the illus-

trative example are: ob ject, class, and room; sorts can have

subsorts, e.g., f ridge, printer, and book are subsorts of ob ject.

Σ = 〈O,F ,P,V 〉 defines the names of objects1, functions,

predicates and variables available for use. Each function or

predicate is defined in terms of the sorts of its arguments,

e.g., predicate in(object, room) can represent the relation

in(fridge1, kitchen). Program Π is thus a collection of

statements describing domain objects and relations between

them. The ground literals in an answer set obtained by solving

Π represent beliefs of an agent associated with Π. Since

program consequences are statements that are true in all such

belief sets, the following discussion assumes that inference in

the ASP KB produces only one answer set.

Unlike prior work that combined ASP and POMDPs [32],

the KB in this paper includes default knowledge and rela-

tionships in a complex domain, e.g., the simulated domain in

Figure 2, and the effects of incremental knowledge revision

are analyzed thoroughly. The KB includes a hierarchy of

object classes; leaf nodes are object instances, and parents

of leaf nodes are primary classes. Information extracted from

historical data helps identify some relations between object

classes, creating some nodes and links between the root node

1Unlike the sort ob ject, elements of O are object constants (or symbols).

BedroomBedroom StudyStudy KitchenKitchen

Fig. 2: Illustrative simulated domain used for experimental

evaluation, with a bedroom, study and kitchen. The computer,

fax machine, and printer are usually in the study; books are

on the bookshelf; and kitchenware is in the kitchen. However,

there are some exceptions, e.g., cookbooks are in the kitchen.

and primary classes. Robots use information extracted from

sensor inputs to add object instances and revise the KB.

Predicates in the KB are applied recursively when ap-

propriate. The statics of the domain include: is(object,

class), which describes class membership of an object, and

subclass(class, class), which describes class hierar-

chy. The basic fluents of the domain include: in(object,

room), which describes the room location of an object,

accessible(room), which states if a room is accessible,

and on(object, object), which states if an object is on

another object. The defined fluent exists(class, room)

implies that an instance of a specific class exists in a specific

room. The sort step is included for temporal reasoning and

the relation holds(fluent, step) implies that a particular

fluent holds true at a particular timestep. The KB includes

reasoning rules such as:

(1) holds(exists(C,R),I) ← holds(in(O,R),I), is(O,C).

(2) holds(exists(C1,R),I) ← holds(exists(C2,R),I),

subclass(C2,C1).

(3) ¬holds(in(O,R2),I) ← holds(in(O,R1),I), R1! = R2.

The first rule states that if an object O of class C is in room

R, an object of class C is inferred to exist in R; the second

rule applies the existence predicate recursively in the class

hierarchy; and the third rule states that an object’s location

is unique. The KB also includes the closed world assumption

for defined fluents, and inertial axioms that state that the value

of a basic fluent F remains unchanged unless there is explicit

evidence to the contrary:

holds(F,I+1) ← holds(F,I), not ¬holds(F,I+1).

¬holds(F,I+1) ← ¬holds(F,I), not holds(F,I+1).

As an example of non-monotonic reasoning in ASP, con-

sider an ASP program that includes statements: step(1..2),

is(prml, book)2, and holds(in(prml, study), 1).

Inference produces the answer set3 with statements (exclud-

ing existing statements): holds(in(prml, study), 2) and

holds(exists(book, study), 2). However, adding the

statement: holds(in(prml, bedroom), 2) results in an

2The “prml” is a specific book: Pattern Recognition and Machine Learning.
3We use SPARC [1] to solve ASP programs, as described later.
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answer set that revises the outcomes of the previous infer-

ence step by adding: ¬ holds(in(prml, study), 2) and

holds(exists(book, bedroom), 2).

Robots collaborating with humans frequently receive do-

main knowledge that is true in all but a few exceptional

situations. An example of such default domain knowledge in

the simulated domain of Figure 2 would be “the microwave is

usually in the kitchen”. Although such (qualitative) common-

sense knowledge can be very useful, meaningful representation

of, and reasoning with, such knowledge is challenging. For

instance, if the logical statement corresponding to a default is

assigned a high probability, the robot’s performance (based

on this knowledge) may be sensitive to the choice of this

probability, and it will be difficult to represent exceptions

to such defaults. ASP provides an elegant representation for

defaults and exceptions (if any). One significant addition to

the ASP component of the architecture is the inclusion of

such default knowledge about object locations. Consider the

statement: “books are typically in the study” which can be

represented in ASP as follows:

in(X,study)← book(X), not ab(din(X)),

not ¬in(X,study).

where ab(d(X)) implies “X is abnormal with respect to d”

and supports the encoding of exceptions to defaults. For in-

stance, while textbooks are likely to be in the study, cookbooks

are more likely to be in the kitchen. We can first encode the

class hierarchy of books in the KB:

book(X)← textbook(X).

book(X)← cookbook(X).

We can then encode weak exceptions and a strong exception

to the default as follows:

ab(din(X))← cookbook(X). %weak exception

ab(din(X))← not ¬cookbook(X), book(X). %weak exception

¬in(X,study)← cookbook(X). %strong exception

where, the two forms of the weak exception render the default

inapplicable, while the strong exception directly falsifies the

default. Assume that the weak exception has been included in

the KB and consider the following statements:

textbook(prml).

cookbook(spices).

Inference produces: in(prml, study) but does not make

any claim about the location of spices, i.e., it is unknown

if this cookbook is in the study or not. For visual target

localization, the KB includes information about the default

locations of objects—see Section IV.

Inconsistencies caused by the addition of incorrect infor-

mation to the ASP KB can be corrected by subsequent sensor

inputs. ASP also provides planning and diagnosis capabili-

ties [9] not used in this paper but included in other work [33].

Although ASP has been used in the development of agent

architectures, ASP does not support probabilistic modeling

of uncertainty, and architectures that combine ASP with

probabilistic reasoning lack key representation and reasoning

capabilities (see Section II). The contributions of this paper

are a significant step towards addressing these limitations.

B. Planning under Uncertainty with POMDPs

A robot that can localize itself has to account for the

uncertainty in navigation and sensing as it moves and analyzes

images of specific scenes to accurately localize an object.

The robot must also pick a sequence of places to search;

within the Bayesian framework, the active sensing, information

processing and navigation are formulated as a probabilistic

sequential decision making task, and more specifically as a

POMDP. Since it is computationally intractable to solve (and

plan with) practical-sized POMDPs in real-time, our prior

work introduced a hierarchical decomposition of the POMDP

formulation [34]—Figure 3 summarizes this decomposition.

For a specific target, the 3D area is represented as a discrete 2D

grid, each grid cell storing the probability of target existence.

The visual search (VS)-POMDP plans an action sequence to

analyze a sequence of scenes, with the objective of maximizing

the information gain. For each scene, the scene processing

(SP)-POMDP plans the processing of regions of images of

the scene using available algorithms. This hierarchical de-

composition supports automatic belief propagation between

the levels of the hierarchy and automatic model creation at

each level [26], [34]. Thus, ASP-based inference operates at

the (abstract) level of rooms, and POMDPs plan at the higher

resolution of cells. The salient features of the hierarchy of

POMDPs are described briefly for completeness.

For locating a specific object in a grid with N cells, the

VS-POMDP is the tuple 〈S,A,Z,T,O,R〉. Each entry in the

set of states S corresponds to the event that the target is

in a specific grid cell, and executing one of the actions in

A causes the robot to move and analyze a specific cell4;

Z : {present, absent} is the observation set that indicates if

the target is detected. T : S × A× S′ → [0,1] is the state

transition function, and O : S×A×Z→ [0,1] is the observation

function. Since the state is not directly observable, the robot

maintains a probability distribution b over the states; each

entry bi, i ∈ [1,N] of this belief state is the probability of

the corresponding state si. Uncertainty in the belief distri-

bution is measured by computing its entropy. To maximize

information gain, the reward for action at is defined as the

actual reduction in entropy between belief state bt and the

resultant belief state bt+1. Thus R : B×B′→ R is the reward

specification, where B is the space of belief states. The

observation function is learned by the robot as a function of

its position, the target’s position, the camera’s field of view,

and the observation functions of the hierarchy’s lower levels.

Given the tuple, a POMDP solver can be used to compute

a policy that maps belief states to actions by minimizing

entropy over a planning horizon. This formulation can become

computationally intractable for real-time operation because the

number of grid cells can increase significantly in complex

domains. Our previous work [34] addressed this challenge by

enabling robots to learn a convolutional policy kernel from

the policy for a small region, exploiting the rotation and shift

invariance properties of visual search. This kernel is convolved

with larger maps to efficiently generate appropriate policies.

Furthermore, movement between grid cells is assigned a cost

4The set A also includes terminal actions to terminate plan execution
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Visual Feature
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Where to look?

What and how to process?

Fig. 3: Overview of the hierarchy of POMDPs for acquiring

and processing visual inputs for target localization.

proportional to the distance to be traveled.

For any chosen scene, the SP-POMDP plans the sequence

of visual input processing algorithms to be executed on a

sequence of salient regions of interest (ROIs) in images of the

scene. The SP-POMDP may have one or two layers depending

on scene complexity, i.e., the number of ROIs and types of

features extracted from images of the scene. For instance,

each ROI extracted from an image of the scene is modeled

as a lower-level (LL) POMDP. Each LL policy provides the

sequence of algorithms to apply on a specific ROI to detect

the desired object, e.g., algorithms to determine the dominant

color or shape in the ROI. LL policies of all image ROIs

are used to automatically create a high-level (HL) POMDP.

Executing an action in the HL policy directs attention to a

specific ROI. Executing the corresponding LL policy (until

termination) provides an observation that causes an HL belief

update and an action choice. These steps are repeated until a

decision is made about the presence or absence of the target

in the image. This decision provides an observation in the

VS-POMDP, resulting in a belief update and an action choice

in the form of a scene for subsequent analysis. This process

continues until the belief of the target’s presence in a grid cell

exceeds a preset threshold (i.e., robot claims that the target

has been found and localized), or a time limit is exceeded

(i.e., target is not found). The entire hierarchy is tailored

automatically to tasks at hand—see [26], [34] for details.

C. Integrating Logical and Probabilistic Beliefs

The answer set obtained by inference in the ASP KB

represents the current, logically-expressed beliefs of the robot

(Section III-A), which can be used to guide the probabilistic

planning of sensor input processing and navigation. How-

ever, these beliefs are not compatible with the probabilistic

belief distributions used by the hierarchy of POMDPs (Sec-

tion III-B). Previous work heuristically generated an ASP-

based belief distribution from a predominantly static KB,

and used a generalized form of linear and logarithmic aver-

aging methods (r-norm) [5] for weighted averaging of this

belief distribution and the belief distribution modeled by the

POMDPs [32]. In this paper, we present an approach that

supports an incremental, bidirectional flow of information be-

tween the commonsense inference and probabilistic reasoning

components—the approach consists of two steps: (1) the count

of relevant literals in the answer set is used to (heuristically)

create a multinomial prior over rooms the target may be

in (Section III-C1); and (2) the prior and an incrementally

populated observation likelihood (at the level of cells) are

used for POMDP state estimation, resulting in a posterior

belief distribution that is used for subsequent action selection

(Section III-C2).

1) Generating a Multinomial Prior from an Answer

Set: The conversion of relevant literals in an answer set to

a multinomial (probabilistic) prior over rooms is based on: (a)

knowledge of object classes and of specific object instances

in the domain; and (b) postulates that capture object co-

occurrence relationships. This paper illustrates this approach

for visual target localization—some postulates (and their repre-

sentation) may need to be revised for other sensors or domains.

Postulate 1: Existence of objects of a primary class (in

a room) provides support for the existence of other objects of

this class (in the room). The level of support is proportional to

the logarithm of the number of objects, inspired by Fechner’s

law5, which states that subjective sensation is proportional to

the logarithm of stimulus intensity:

perception = ln(stimulus)+ const (1)

This law has been applied to visual processing [28] and

explored in our previous work; here, we adapt it for the

primary source of information (visual cues). The support for

the existence of a specific target object in a room is given by:

ψn =

{

0 i f an = 0

ln(an)+ξ otherwise
(2)

where an is the number of (known) objects of the primary

class (of the target object) in the room, and ξ = 1 corresponds

to const in Equation 1. If there is only one instance of certain

objects in the domain (e.g., a fridge), this can be modeled

using relevant predicates to ensure appropriate counts.

Postulate 2: As the number of known subclasses of

a class increases, the influence exerted by the subclasses

on each other (proportionately) decreases. This computation

is performed recursively in the object hierarchy from each

primary class to the lowest common ancestor (LCA) of the

primary class and target object. Equation 2 is modified as:

ψn =











0 i f an = 0

ln(an)+ξ

∏
Hn

h=1 Wh

otherwise
(3)

where Hn is the height of the LCA of the target object and

the primary class under consideration. For a class node on the

path from the primary class to the LCA, Wh is the number of

children of the node at height h; W1 = 1 for primary classes

because the first postulate considers object instances.

Postulate 3: Each primary class with instances (in a

room) independently provides support for the target’s existence

5Fechner’s law (1860) serves as the basis of modern psychophysics.
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(in the room). The evidence for the target’s existence in room k

is thus the summation of the evidence from N primary classes:

αk =
Nk

∑
n=1

ψn,k =
Nk

∑
n=1

ln(ak,n)+ξ

∏
Hk,n

h=1 Wk,n,h

(4)

where Nk is the number of primary classes that have specific

object instances in room k. Equation 4 thus extends the

definition of ψn from Equation 3. The values of αk are

computed using the cardinality of the set of relevant answer

set statements obtained through inference in the KB. For

target localization, these three postulates (together) consider

knowledge about the occurrence of specific object classes in

specific types of rooms; future work may explore probabilistic

models of these relationships learned from historical data.

To convert the relevant statements in the answer set into a

multinomial prior that can be combined with the probabilistic

POMDP beliefs, let event Ek represent the target object’s

existence in room k, and let E represent the target’s existence

in one of the rooms. Let pKB(Ek|E) be the probability that the

target is in room k given its existence in the domain. Based

on the current answer set, the entries of bKB, the multinomial

prior distribution over the rooms, are given by:

bKB
k = pKB(Ek|E) = αk/α0 (5)

where α0 = ∑k αk. As an example, in the simulated domain

in Figure 2, let the target object be a printer that (unknown to

the robot) is on the floor of the study. Consider a subset of

the domain objects:

1 pillow:bedding:object, in bedroom

1 mattress:bedding:object, in bedroom

1 computer:computer-access:object, in study

1 fax:computer-access:object, in study

3 book:books-magazine:object, in study

2 magazine:book-magazine:object, in study

1 coffee_machine:kitchenware:object, in kitchen

1 fridge:kitchenware:object, in kitchen

1 book:book-magazine:object, in kitchen

1 printer:computer-access:object, unknown

Integers at the beginning of each line represent the number

of instances of the corresponding objects. Each line also

contains the relevant subset of the object hierarchy, e.g., the

class pillow is a child of the class bedding, which is a

child of class object. Let rooms in Figure 2 be indexed in

ascending order from left to right. Consider α1, the support

for the target object (printer) being in bedroom (i = 1).

There are instances of pillow and mattress in this room,

so N1 = 2. Since there is only one pillow known to be

in the bedroom, a1,1 = 1. The LCA of the target object

and class pillow is the root node (object), so H1,1 = 3.

The evidence provided by sibling classes is considered in a

bottom-up manner, and the extent of support is diluted as we

proceed up the hierarchy, with W1,1,1 = 1. Since bedding and

object have two and four children respectively, W1,1,2 = 2

and W1,1,3 = 4. The second object class with an instance in the

bedroom is mattress, and a1,2 = 1 because there is only one

mattress—W1,2,1 = 1, W1,2,2 = 2, and W1,2,3 = 4. The support

for the printer’s existence in room 1 is then computed as

α1 = 0.250 using Equation 4. Following the same procedure,

the support vector for the target object’s existence in the

rooms is: α = [0.250,1.141,0.375]. The multinomial prior of

the target’s existence in the rooms is then computed (using

Equation 5) as: bKB = [0.142,0.646,0.212].

2) Computing Posterior Belief using Bayes Rule: It

is challenging to provide a Bayesian treatment for using

the multinomial prior and the POMDP belief distribution

to compute the posterior belief of the target’s location in

the domain. The KB may contain incomplete or outdated

information, sensor observations are imprecise, and actions

are non-deterministic. In addition, the answer set that informs

the multinomial prior is subject to non-monotonic logical

inference, making it difficult to use a new prior to revise

the posterior computed using the previous prior. To address

these challenges, the fact that actions in our domain do not

change object locations is exploited to maintain the likelihood

of the sequence of observations received by the robot over

time. The ith entry of this likelihood vector is the likelihood

of the sequence of observations conditioned on si being the

true location of the target object:

bOb
i,t = pi(o1:t |a1:t ,bi,0:t) =

t

∏
j=1

O(si,a j,o j) (6)

Now, when an update to the KB causes a change in the answer

set, Bayes rule is used to compute the revised posterior belief

b′ based on the multinomial prior and the likelihood of the

observation sequence:

b′i,t ∝ bOb
i,t ·b

KB
i (7)

This update considers the current beliefs encoded in the KB

and all the observations used with the previous multinomial

prior. The update is performed at the level of cells by distribut-

ing the multinomial prior for each room over the cells in the

room. The revised posterior belief of the target’s location is

input to the VS-POMDP policy to choose an action, causing

the robot to move and/or analyze an appropriate scene.

This belief update brings up an interesting, subtle and

important issue about (re)use of observational information in

our architecture. Each statement added to the KB corresponds

to a hypothesis, based on one or more observations over a time

period (0 : t), which has been elevated from being associated

with a high probability to being associated with complete

certainty. Such a commitment made at time t is used for

inference in the ASP KB. The corresponding multinomial is

then pushed back to the POMDP as the prior in Equation 7 for

the Bayes rule update (say, at time t + 1). Strictly speaking,

the previous observation sequence should be discarded at this

point, which can be accomplished by resetting the observation

sequence likelihood to 1 when the new multinomial prior

is obtained. This observation discard strategy, however, also

discards many observations with useful information that may

not have yet had a chance to support a commitment to the

KB—the observation sequence typically contains far more

information than was used to submit a single commitment.

In addition, information about events not directly relevant to
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the task may have revised the KB. Thus an observation re-

use strategy, which does not reset the observation likelihood,

allows additional inferences to be drawn later on. While this

re-use is strictly incorrect in Bayesian terms, we verified

experimentally that it significantly increases target localization

accuracy and decreases the localization time. Thus we retain it

as a feature of our architecture that separates logical inference

from probabilistic inference. This separation is at the heart of

the inferential efficiency in our architecture that avoids exact

but inefficient probabilistic reasoning over the ASP KB.

D. Reasoning about Target Existence

It is possible that the object the robot is searching for

does not exist in the entire domain. The robot may also have

access to historical data from comparable domains that, if

combined correctly with the robot’s unreliable observations,

can be used to estimate the probability of the target’s existence

in the current (search) domain. Furthermore, the robot cannot

search indefinitely, but must choose when to give up the

search if it cannot find the object. Intuitively, the more certain

the robot is that the target exists in the domain, the longer

it should persist before giving up. However, this reasoning

is not captured by standard POMDP models; introducing

such reasoning also negates the invariance properties used to

efficiently compute the convolutional policies in our hierarchy

of POMDPs. One significant contribution of this paper is a

metareasoning approach to combine the historical data with

domain knowledge and the current observations to terminate

search appropriately. Our approach models the confidence in

the historical data using a meta density over the probability

that the target exists in the domain. In the derivation below,

we assume that the robot has to find one instance of the target;

we do not model the probability distribution over the number

of instances of the target object type in the domain.

Our metareasoning approach comprises three steps: (1)

using a Beta density (a meta density) to model prior knowledge

from historical data and the KB about the target’s existence in

the domain; (2) maintaining the likelihood of the observation

sequence given the existence or non-existence of the target;

and (3) using the prior and the likelihood to obtain the

posterior probability of target’s existence in the domain. For

localizing a specific object, steps 2 and 3 are repeated until

the robot makes a decision about the presence or absence of

the object in the domain (more details below).

The prior probability that the target exists in the current

domain is θ = P(E), the parameter of a Bernoulli distribution.

We therefore use a Beta probability density function (PDF) as

a meta density over θ , i.e., as the conjugate prior:

B(θ |α ′,β ′) =
Γ(α ′+β ′)

Γ(α ′)Γ(β ′)
θ α ′−1(1−θ β ′−1) (8)

where the Gamma (Γ) function is used for normalization.

The parameters α ′ and β ′ are (respectively) the support for

existence and non-existence of the target in the domain; these

parameters include the evidence from the answer set and

counts of the number of times the desired object was found to

exist or not exist during previous searches in other domains of

the same type, e.g., other offices. The Beta PDF thus models

the confidence in the combination of the knowledge of the

current domain and historical data from comparable domains.

In addition to the Beta PDF, the robot computes the likeli-

hood of the observation sequence at each time step given that

the desired target object exists or does not exist in the domain:

p(ot |E,at ,bt) =∑∀i∈FoV O(ot ,at ,si)bt(i) if ot = o+ (9)

+ p(FP) ·∑∀i/∈FoV bt(i)

=∑∀i∈FoV O(ot ,at ,si)bt(i) otherwise

+ p(T N) ·∑∀i/∈FoV bt(i)

p(ot |¬E,at ,bt) =p(FP) if ot = o+

=p(T N) otherwise

where p(FP) and p(T N) are the false positive and true nega-

tive rates (respectively), obtained experimentally and encoded

in the POMDP models, and FoV is the event that the target is

in the robot’s field of view. Since the current action (at ) and

belief (bt ) are known at each time step, they are occasionally

omitted in the equations below.

Given the prior and the observation likelihood, the posterior

probability of target’s existence in the domain is given by:

p(E|o1:t) =
∫

θ
pθ (E|o1:t) p(θ)dθ (10)

where p(θ) is modeled by the Beta PDF. For a given θ , Bayes

rule can be used to iteratively compute:

pθ (E|o1:t) =
p(ot |E) pθ (E|o1:t−1)

p(ot |E) pθ (E|o1:t−1)+ p(ot |¬E) pθ (¬E|o1:t−1)
(11)

where p(ot |E) and p(ot |¬E), shorthand for p(ot |E,at ,bt) and

p(ot |¬E,at ,bt) respectively, are computed using Equation 9,

and bt is the result of state estimation in the VS-POMDP

assuming that the object exists. The posterior can be used

for early termination of the search for the target object if

the probability of non-existence of the target in the domain,

p(¬E|o1:t), exceeds a threshold (τ−), just as the existence of

the object in a specific room or cell can be confirmed when

the mode of the belief (bt ) exceeds a threshold (τ+). However,

it is difficult to compute the integral in Equation 10 in closed

form, and so we consider three approximations.

Expectation-based approach: The first approximation

strategy computes the posterior by considering the expectation

of the Beta PDF as the prior probability of existence of the

target, i.e., p(E) = α ′

α ′+β ′ . The task of computing the posterior

collapses to a Bayesian update, as described in Equation 11.

Although it simplifies the computation of the posterior, this

strategy does not use the Beta PDF’s variance, which provides

important information about the degree of belief associated

with any specific p(E). In other words, the meta density is

effectively discarded and the estimated likelihood of existence

is assumed to be correct, no matter how little or much data or

knowledge the estimate is based on.

Upper-bound approach: The second strategy also con-

siders a single value of θ from the Beta PDF as the prior

probability of existence of the target object in the domain.

However, this prior θ = p(E) is chosen such that
∫ θ

0 f (x)dx =
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valueub, where f (x) is the Beta PDF. The motivation for this

strategy is to obtain a kind of upper bound on the value

of the prior. For instance, we use valueub = 0.9, i.e., if the

robot decides to terminate the trial for a specific target object,

it would have arrived at the same decision if it had started

with any of the 90% of the values of the prior θ sampled

from the Beta PDF. Similar to the expectation-based approach,

computing the posterior probability of existence of the target

object collapses to a Bayesian update (Equation 11). However,

unlike the expectation-based strategy, the Beta PDF’s variance

contributes to the selection of the prior probability of the target

object’s existence in the current domain.

Monte-Carlo sampling: The third strategy uses Monte-

Carlo (MC) sampling to estimate the integral in Equation 10.

In this approach, the number of samples required to ap-

proximate the integral may need to be revised during run-

time to obtain a good estimate of the expected value of the

posterior. To perform a belief update with the new samples,

the likelihood of the observation sequence is maintained for

metareasoning, similar to the approach used in Section III-C2:

p(o1:t |E,a1:t ,b0) = p(o1:t−1|E,a1:t−1,b0) · p(ot |E,at ,bt)
(12)

p(o1:t |¬E,a1:t ,b0) = p(o1:t−1|¬E,a1:t−1,b0) · p(ot |¬E,at ,bt)

where p(ot |E,at ,bt) and p(ot |¬E,at ,bt) are given by Equa-

tion 9. Note the dependence of this calculation on the sequence

of actions a1:t and the initial VS-POMDP belief b0. In the MC

sampling strategy, the robot first draws an initial number (Nmc
0 )

of samples θi = p(E) from the Beta PDF, and then follows the

following iterative sequence:

1. Compute observation likelihood after the standard

POMDP belief update—Equation 12.

2. For each sample θ j, compute the posterior belief, where

η is a normalization term:

p j(E|o1:t) = η · p(o1:t |E,a1:t ,b0) · p j(E) (13)

p j(¬E|o1:t) = η · p(o1:t |¬E,a1:t ,b0) · (1− p j(E))

3. Compute the MC approximation of the posterior in Equa-

tion 10 as: p(E|o1:t) =
1

Nmc
t

∑∀ j p j(E|o1:t).
4. Re-compute the number of samples needed:

Nmc
t = {

zσ · stdev(pi(¬E|o1:t))

mean(pi(¬E|o1:t))− τ−
}2 (14)

where the objective is to have enough samples to make

a decision about early termination with a desired level of

confidence (zσ = 1.645 for 90% level of confidence).

5. If additional samples are required, draw these samples

and repeat steps 2-3 above.

This strategy requires more computational effort than the other

two strategies, but fully uses the variance of the Beta PDF

to compute the desired posterior probability. We compare the

three strategies experimentally in Section IV.

Algorithm 1 summarizes the overall control loop for belief

update and metareasoning. The pre-processing step in line 1

includes, for instance, the creation of the initial VS-POMDP

belief using information from the answer set, and drawing

of the initial set of samples from the Beta PDF for the MC

Algorithm 1: Control Loop

Input: POMDP: set of states (S), set of observations (Ω), set of
actions (A), transition function (T ), observation function
(O), initial belief distribution (b0), policy (π).

Input: Domain map (M), target object, robot’s initial position,
belief thresholds for existence (τ+) and non-existence
(τ−) of target object.

Input: Beta PDF (B) of prior probability of target existence in
the domain.

Output: Target object Found (1) or Notfound (0).

1 Pre-processing step to initialize desired data structures.
2 Initialize time step t = 1.
3 while true do
4 Select an action, at , based on π and bt−1.
5 Execute action and make an observation, ot .
6 Perform POMDP belief update to obtain bt .
7 if KB changed then
8 Compute new multinomial prior (Equation 5)
9 Update bt with revised posterior belief (Equation 7).

10 end
11 Compute observation likelihoods for metareasoning

(Equation 9).
12 Compute posterior probability of object existence in the

domain (Equations 10-11).
13 Complete post-processing steps, if any.

14 if p(¬E|o1:t)> τ− then
15 return Notfound.

16 else if max(bt)> τ+ then
17 return Found.
18 else
19 t← t +1.
20 end
21 end

sampling strategy. In each iteration, the robot performs a

POMDP belief update after executing an action and generating

an observation (lines 4-6). If the KB is revised, the new

answer set is used to compute a multinomial prior and thus

the corresponding posterior belief distribution (lines 7-10).

Next, the robot reasons about the target object’s existence in

the domain (lines 11-12); the optional post-processing step

in line 12 includes, for instance, the creation and update of

new samples for the MC sampling strategy. The search for

the desired object is terminated when it is localized with

high probability or the probability of its non-existence in the

domain is high (lines 14-18). Although it is not shown in

Algorithm 1, it is also possible to terminate the search after a

fixed amount of time.

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments were conducted in simulated domains and on

wheeled robots visually localizing target objects. The objec-

tive was to evaluate three hypotheses: (H1) representing and

reasoning with default knowledge in ASP can significantly

reduce the search space (and thus the time needed) to localize

objects at the level of rooms; (H2) using the proposed archi-

tecture significantly increases target localization accuracy (at

the level of cells in rooms) and reduces the localization time in

comparison with using ASP or POMDPs individually, or using

the previous approach to generate and merge ASP and POMDP

beliefs [32]; and (H3) metareasoning with domain-specific
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observations and historical data enables robots to reliably and

efficiently determine when a trial should be terminated, and

strategies that use the variance of the Beta PDF provide a good

trade-off between accuracy and time. During the evaluation

of hypotheses H1 and H2, metareasoning is not included.

Furthermore, the experimental trials thoroughly analyze the

effects of incrementally revising the KB.

Since experimental trials predominantly include the same

set of axioms, and separate experiments are conducted with

and without default knowledge (details below), the term

“domain knowledge” is used below to primarily refer to

the % of objects whose room locations are known to the

robot. In each experimental trial, the ASP KB includes the

hierarchy of relevant object classes and a subset of specific

object instances. The robot’s initial cell-level location, target

object(s), and the cell-level location(s) of the target object(s),

are chosen randomly; the robot does not know the location

of any target object. Although this random choice makes

it difficult to compute a meaningful estimate of variance in

the experimental results, statistical significance is established

through paired trials. In each paired trial, for each approach

being compared (e.g., ASP+POMDP vs. POMDP), the initial

cell-level location of the robot, the target(s), and the cell-level

location(s) of the target(s), are fixed, and the robot has the

same amount of domain knowledge. The robot confirms the

location of an object in a grid cell when the corresponding

belief exceeds a threshold (τ+ = 0.80); the threshold for

claiming non-existence of the target in the entire domain (τ−)

varies between different sets of trials (details below). Unless

otherwise stated, there is no time limit for an experimental

trial. Target localization accuracy is considered to be maximum

when the reported location and the ground truth location of an

object are identical (e.g., same grid cell). The accuracy falls

off as a Gaussian function of the distance between the reported

location and the ground truth location.

A. Experiments in Simulated Domains

The domain used for simulation experiments extends the

illustrative domain in Figure 2 (with a bedroom, study, and

kitchen) by including one more room: livingroom. We use

learned object models [19] and observation models to simulate

motion and perception. Fifty objects in 10 different categories

were simulated in these rooms, with each room comprising

25 cells. Each data point in the results described below is

the average of 5000 simulated trials, and time is measured in

simulation time units.

(H1) Using ASP: Figure 4 summarizes experimental results

in which only the ASP KB is used to infer the target objects’

locations. ASP-based inference can only determine the room-

level location of the target object, and cannot provide the

cell-level location of the object in a room. First, consider the

experiments in which default knowledge is not included in the

KB. In these trials, if the robot is given the room locations of

all other objects (i.e., all domain knowledge), it can correctly

infer the room location of the target. The accuracy decreases

when the amount of domain knowledge decreases, e.g., with

40% of domain knowledge, the robot can correctly identify
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Fig. 4: Target localization accuracy using only ASP-based

inference, with and without default knowledge. The correct

room locations of target objects are in the top two choices in

≈ 90% of the trials with as little as 40% domain knowledge;

using default knowledge further improves the performance.

the target’s room location with ≈ 0.7 accuracy. However, even

when the locations of only 40% of the objects are known, the

correct room location of any specific target object is in the top

two choices in ≈ 90% of the trials.

The experimental trials were repeated after including default

knowledge about room locations of objects in the KB, e.g.,

“books are usually in the study”. Although such knowledge

can be useful, observations in the current domain may contra-

dict it, e.g., someone may have left a book in the bedroom by

mistake. As described in Section III-A, ASP provides good

expressiveness for defaults and exceptions to defaults, and

supports non-monotonic logical inference. Figure 4 shows that

using default knowledge improves accuracy in comparison

with the trials in which default knowledge is not used, es-

pecially when the amount of domain knowledge considered is

small(er). A key outcome of ASP-based inference, especially

with default knowledge, is thus the significant reduction in the

search space; an indirect outcome is the reduction in the target

localization time. However, ASP (by itself) is not well-suited

to represent or use the probabilistic information extracted by

processing sensor inputs.

(H2) Using ASP and POMDPs: The next set of experiments

used both the logical inference (ASP) and probabilistic plan-

ning (POMDPs) components to localize target objects. For any

given target, ASP-based inference provides a multinomial prior

for POMDP state estimation, with the posterior beliefs used

to determine the robot’s sensing and navigation actions for

localizing the target. Figure 5 summarizes the experimental

results as a function of the amount of domain knowledge

used to generate ASP-based beliefs; the blue-colored plot

with triangular markers depicts the target localization time,

and the red-colored plot with star-shaped markers depicts

the target localization accuracy (measured at the cell-level).

Trials corresponding to each sample point on the localization

time plot were terminated when the belief in a specific cell
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Fig. 5: Target localization accuracy and localization time

as a function of the % of domain knowledge in the KB.

Proposed architecture increases target localization accuracy

and reduces target localization time in comparison with using

only POMDPs. Paired trials establish statistical significance.

exceeded the threshold (τ+ = 0.8); trials corresponding to the

localization accuracy plot were terminated after 100 time units.

Trials corresponding to 0 on the x-axis represent the use of

only the hierarchy of POMDPs—see Section III-B and [34].

The results indicate that using our proposed approach to

compute the posterior belief significantly increases the target

localization accuracy. Some of the localization errors are due

to the room-level support for target existence provided by

related objects. This problem is more pronounced when the

amount of domain knowledge included in the KB is small,

causing the robot to explore irrelevant locations and provide

an incorrect result when the time limit is exceeded and/or

some observations are incorrect; given more time, the robot

is able to recover from these errors. As the robot obtains

more domain knowledge, the localization accuracy steadily

improves. For instance, over trials in which the robot knows

the room location of all objects except the target, accuracy

is 0.96 and errors are due to the target object being close

to the edge of two or more cells. To establish statistical

significance, we conducted paired trials; in each set of trials

using just POMDPs or ASP and POMDPs, the initial cell-

level locations of the robot and the target(s) were fixed, and

the robot started with the same amount of domain knowledge,

e.g., room locations of 40% of the domain objects. The

improvement in localization time over 1000 trials (each) is

significant at the 95% significance level with the p-value

< 10−24. Our architecture thus exploits the complementary

strengths of logical inference and probabilistic planning to

significantly reduce the localization time while also increasing

the localization accuracy.

Posterior belief generation: Next, we evaluated our proposed

approach for obtaining the posterior belief of the target’s

cell-level location using the ASP-based multinomial prior

for POMDP state estimation, and analyzed the effects of

incrementally revising the KB. The KB was initialized with

20% domain knowledge in each trial, and information about

a few randomly chosen objects was added periodically to

simulate learning from sensor inputs. Inference in the revised

ASP program provides new multinomial priors for POMDP

state estimation and subsequent action selection. Each trial

terminates when the belief in a cell exceeds 0.8 or the time
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Fig. 6: Analysis of approaches for generating posterior belief,

and the effects of revising the KB; using ASP inference-based

multinomial priors for POMDP state estimation significantly

reduces localization errors, and incrementally revising the KB

further improves the accuracy.

limit of 100 units is exceeded. To make the trials more

challenging, some extra (Gaussian) noise was added to the

observations received by the robot.

Our proposed approach for generating the posterior belief

of the target’s (cell) location (“dynamic KB”; Section III-C2)

was compared with two approaches: (1) not revising the

KB that is populated with 20% domain knowledge at the

beginning of each trial (“static KB”); and (2) using relative

trust factors to merge a heuristically generated ASP-based

belief distribution with the POMDP belief distribution (“trust

factor”) [32]. The trust factor approach did not encode default

knowledge, used heuristics to convert answer sets from a static

KB to a belief distribution, and performed weighted averaging

of this distribution and the POMDP belief distribution using

the r-norm measure. To enable comparison with such an

approach, trials were conducted without default knowledge

in the KB, and Figure 6 summarizes the results in the form

of cumulative distribution function (CDF) plots. The x-axis

represents the localization error in units of grid cells, and

the y-axis represents the % of trials with errors below a

specific value. For instance, with our approach, ≈ 80% of the

trials have a localization error of ≤ 4 units, while only 66%

of the trials provide similar accuracy when trust factors are

used—even with a static KB, our approach results in better

performance than using trust factors. Although not shown

in Figure 6, using trust factors may also result in lower

localization accuracy than not using ASP-based inference—

based on the choice of the relative weights, it is possible

for an incorrect ASP-based belief to overwhelm the POMDP

belief distribution that is revised based on actual observations.

Similar results were obtained in trials conducted after changing

the amount of initial domain knowledge. Including default

knowledge further increases the target localization accuracy

and decreases the target localization time of our proposed

approach. Furthermore, paired trials established the statistical

significance of the performance of the proposed approach

(with or without a static KB) in comparison with the trust

factor approach; p-values of 3.9× 10−69, 1.3× 10−9 and

2.4×10−30 for dynamic KB vs. trust factor, dynamic vs. static

KB and static KB vs. trust factor respectively.

(H3) Metareasoning strategies: Experiments were then con-
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Fig. 7: Metareasoning with historical data reduces target local-

ization time (by early termination) and (indirectly) increases

the localization accuracy. The three approximation strategies

trade-off between accuracy and time. Paired trials establish

statistical significance of the results.

ducted to evaluate the benefits of metareasoning with historical

data in conjunction with observations in the current domain. To

isolate the effect of using observations, the KB is static in each

trial, and the target is randomly selected to be present or absent

(unknown to the robot). The “baseline” strategy terminates the

trial when the probability of one of the grid cells exceeds the

preset threshold (τ+ = 0.8) or the trial takes longer than a

given time limit. This strategy is compared with the action

selection policies corresponding to the three approximation

strategies (“expectation”, “upper bound” and “sampling”) de-

scribed in Section III-D. Each of these three policies terminate

a trial early if the probability of the target’s non-existence in

the domain exceeds a preset threshold (τ−)—we experimented

with different values of this threshold, as described below. All

four policies include our proposed approach of using ASP-

based multinomial prior for POMDP state estimation.

Figure 7 summarizes the results (τ− = 0.7), with the local-

ization time and accuracy on the x-axis and y-axis respectively.

The black plot with plus-shaped markers depicts the average

results with the baseline strategy and specific time limits; the

robot can localize the target more accurately if given more

time. However, in trials in which the target object does not

exist in the domain, the baseline strategy cannot terminate

trials early. The action selection policies based on the three

proposed approximation strategies enable early termination by

updating the belief of the target’s existence in the domain

using historical data and observations. The results indicate

that all three approximation strategies provide significantly

lower target localization time in comparison with the baseline

strategy; an indirect consequence is the increase in localization

accuracy. For instance, to obtain a target localization accuracy

of 0.85, the sampling-based strategy takes ≈ 67 time units

while the baseline strategy needs ≈ 85 units. The three

proposed strategies also result in different trade-offs between

computational efficiency and target localization accuracy (and

time). For instance, the expectation-based strategy provides

the lowest localization time, but the localization accuracy

is also the lowest among the approximation strategies. The

upper bound strategy, on the other hand, has the highest

localization time but provides the highest localization accu-

racy. The sampling-based strategy provides a trade-off between

accuracy and time. Overall, the sampling-based and upper
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Fig. 8: Localization time as a function of prior knowledge

of the target’s existence in the domain. Prior knowledge is

encoded as a Beta PDF—parameters (a,b) of the PDF denote

the support for the existence and nonexistence of the target

based on historical data from comparable domains.

bound strategies result in better performance because they

better exploit the variance of the Beta PDF.

To evaluate the effect of the variance of the Beta PDF, i.e.,

the degree of belief associated with the Bernoulli variable

for the likelihood of the target’s existence in the domain,

the target localization time was computed using the three

approximation strategies for different values of the Beta PDF’s

parameters. In these trials, τ− was set to a (higher) value of

0.85 to encourage the robot to be more certain of the target’s

non-existence before abandoning search. As a representative

example, Figure 8 summarizes the target localization time for

three different sets of values of the Beta PDF’s parameters.

Each parameter set, e.g., (6,2) and (30,10), corresponds to

the same expected value of the prior probability of target’s

existence in the domain; the variance is, however, different.

Unknown to the robot, the target exists (does not exist) in

the domain for 50% of the trials. The results do not differ

for the expectation-based strategy that does not use the Beta

PDF’s variance. For each of the other two strategies, the

localization time is lower within each parameter set, e.g., (6,2)
and (30,10), if the variance associated with the prior is lower.

Higher variance represents a lower degree of belief in the cor-

responding Bernoulli variable for the likelihood of the target’s

existence, and results in the robot being more conservative

about terminating the trials early—the upper bound strategy

has a parameter (valueub) to control the extent to which the

robot is conservative in its decisions. Furthermore, the upper

bound and sampling strategies approach the expectation-based

strategy in the limit of infinite historical data.

B. Experiments on a Physical Robot

Experiments were also conducted on a physical robot de-

ployed on two floors of an office building. Figure 9(a) shows

part of the map of the third floor with semantic labels assigned

to specific rooms. Figure 9(b) shows the test platform—a

wheeled robot equipped with cameras, laser range finder (30m,

±135o), microphones, and an on-board computer with 4G

RAM and 2GHz Dual Core processor.

Algorithms were implemented on the robot using the Robot

Operating System (ROS) [22]. Figure 10 shows ROS nodes
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(a) Domain map learned and revised by physical robot. (b) Wheeled robot platform.

Fig. 9: (a) The map of the domain, which is learned and revised by the robot using laser range data—obstacles are inflated to

a distance that is based on the robot’s inscribed radius. (b) The wheeled robot platform (Erratic) used for experimental trials.

corresponding to modules for path planning, localization, map-

ping, and acquisition of sensor data. Visual object recognition

is based on learned object models that consist of appearance-

based and contextual visual cues [19]. Laser range data is

used by the robot to localize itself in the domain map, detect

obstacles, and to determine room accessibility, e.g., if doors

are open or closed. While moving between locations, the robot

also periodically processes low-resolution images.

For any given task, our architecture enables the robot to

perform non-monotonic logical inference in the ASP KB to

provide a prior for POMDP state estimation, while POMDP

planning provides a sequence of actions for visual information

processing and navigation. Action execution requires the robot

to move to specific locations and/or visually analyze specific

scenes. The execution of each such action invokes an imple-

mentation of the corresponding algorithm in ROS, e.g., use of

an existing algorithm for visual object recognition, or use of

existing ROS algorithms for path planning and controlling the

robot’s movement. The observations obtained by executing the

sensor input processing algorithms are sent to our architecture.

However, not all motion goals can be achieved, e.g., a room

may be inaccessible. In such situations, failure and relevant

information (e.g., inaccessibility of rooms) will be reported

to the ASP KB. For local path planning between two specific

grid cells, we used an existing ROS path planner that builds on

the A* algorithm, and uses existing algorithms in ROS such as

trajectory rollout and dynamic window for obstacle avoidance.

These algorithms related to path planning have been integrated

in the ROS node, move base. The communication between our

architecture and the path planner is achieved through the ROS

actionlib module that provides goal, f eedback, and result

messages. Specific motion commands are sent to the platform

driver by publishing to ROS topic cmd vel. Figure 11 shows

examples of target objects in this domain.

Experimental results: We describe a representative subset of

the experiment trials in which the target objects were: (1)

a microwave oven; and (b) a humanoid. We compared our

architecture with two baseline policies for action selection:

(1) a heuristic policy that makes greedy action choices based

on the current probabilistic belief; (2) a policy based on

just the hierarchy of POMDPs [34]. Trials using each of the

  

Sensor readings

ASP+POMDP plannerASP+POMDP planner

VisionVision LaserLaser

LocalizationLocalization

Platform driverPlatform driver

Path plannerPath planner

Map serviceMap service

Observations

Motion goals

Motion 
commands

Feedback

Sensing commands

Fig. 10: Pictorial representation of a subset of nodes in the

ROS implementation of our architecture.

three strategies were paired, i.e., a set of trials with the three

strategies used the same (randomly chosen) initial location for

the robot and the same locations for the target objects. In some

trials, the targets were placed in default locations, e.g., kitchen

for the microwave, and lab or office for the humanoid robot.

In other trials, the targets were placed in random locations.

The robot does not know the ground truth locations of the

target objects in any trial, but it has the learned visual models

for a set of objects, a learned domain map and some domain

knowledge (including default knowledge in some trials).

Table I summarizes the results of a set of 50 trials for two

representative target objects (microwave and humanoid)—the

results show a trend similar to that observed in the trials in sim-

ulated domains (Section IV-A). The actual target localization

time can vary substantially depending on the location of the

target and the initial position of the robot. We therefore report

the target localization time of the two baseline strategies as

a factor of the target localization time using our architecture.

The results for these (and other target objects) indicate that

our architecture significantly reduces the target localization
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Fig. 11: Some target objects used in the experimental trials on

the wheeled robot platform.

TABLE I: Target localization time of a heuristic policy, and

a policy based on only POMDPs, expressed as a factor

of the target localization time using our architecture. Our

architecture significantly reduces the target localization time

while successfully localizing the targets in all the trials.

Search strategies Localization time for specific targets

Microwave Humanoid

Heuristic 2.96 1.78

POMDP only 1.96 1.32

ASP+POMDP 1 1

time while successfully localizing the target objects in all

the trials. For instance, the target localization time using

just the POMDPs is ≈ 1.6 times, averaged across targets in

addition to those considered in Table I, the target localization

time using our architecture, while the factor is ≈ 2.4 for the

heuristic/greedy policy. The results corresponding to the paired

trials indicate that the improvement is statistically significant,

e.g., p-value ∈ [0.008,0.03] when the target localization time

obtained using our architecture is compared with that using

only the hierarchy of POMDPs for localizing objects.

Representative trials: Consider two experimental trials on the

mobile robot deployed in an indoor office domain. Figure 12

shows screenshots at various stages of the first experimental

trial. The robot uses a learned map with known semantic

labels and the target object to be localized is the humanoid

observed in the last row. The screenshots capture specific steps

in the sequence of actions executed by the robot as it analyzes

different images of a specific subset of scenes. The robot

dynamically revises the map and periodically processes images

(at low resolution) as it moves between desired locations. The

corresponding video is available online:

http://youtu.be/CvKJyCI_YNE

Consider another experimental trial to illustrate the early

termination of unachievable tasks. The target object was a

humanoid that (unknown to the robot) actually did not exist in

the domain. Prior domain knowledge indicated that the target

was likely to be in one of the two labs in the learned domain

map. The robot first explored the lab that was closest: the

robot lab. When the robot did not find the desired target after

a careful visual analysis of the lab, the robot investigated the

other lab. When it could not find the target object in this

lab either, sufficient belief had been accumulated in favor

of the target’s non-existence in the domain; as described in

Section III-D, the robot then terminated the trial without in-

vestigating other rooms. The corresponding video is available

online: http://youtu.be/2U6oOTuEd-Q

V. CONCLUSIONS

This paper described an architecture that integrates the

complementary strengths of declarative programming and

probabilistic graphical models for knowledge representation

and reasoning in robotics. Answer Set Prolog (ASP), a

declarative language, is used to represent incomplete domain

knowledge, including default knowledge that holds in all but

a few exceptional situations. A hierarchy of POMDPs, an

instance of probabilistic sequential decision making, is used

to automatically tailor sensor input processing and navigation

to tasks at hand, probabilistically modeling the associated

uncertainty. An answer set obtained through non-monotonic

logical inference in the ASP KB generates a multinomial prior

for POMDP state estimation, using the corresponding posterior

belief distribution for action selection. Inference in the KB

and historical data from comparable domains are also used to

generate a Beta PDF. Metareasoning with this PDF and obser-

vations enables the robot to identify eventualities not modeled

by the hierarchy of POMDPs, resulting in early termination of

unachievable tasks. Experimental results on a robot visually

localizing objects in an office domain show that the archi-

tecture supports qualitative and quantitative representations of

knowledge and uncertainty, and creates a continuous loop of

non-monotonic logical inference, probabilistic planning and

knowledge revision.

The architecture opens many directions for future research.

First, the KB is currently not very large and uses hand-coded

rules. However, ASP is capable of efficient inference in large

KBs [27]—future work will scale the current approach to

larger KBs, and investigate the learning of rules. We will also

evaluate the architecture’s capabilities for other tasks such

as surveillance and reconnaissance. Second, the architecture

currently only uses the inference capabilities of ASP—future

work will explore the planning and diagnosis capabilities

of ASP in conjunction with the probabilistic reasoning ca-

pabilities of POMDPs [33]. Third, we are investigating the

integration of learning algorithms with our architecture. The

long-term objective is to explore a tighter coupling between

declarative programming and probabilistic graphical models

for knowledge representation, reasoning, and learning, en-

abling the deployment of robots that can collaborate with

humans in complex application domains.
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