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Hydration and swelling in initially dry protein-based samples represent the first stage in their cleaning
from hard surfaces. These phenomena have been studied in technical egg yolk stains via scanning Fluid
Dynamic Gauge (sFDG) and gravimetric tests. Temperature (30 �C to 55 �C) and pH (9.5 to 11.5) were
investigated as factors influencing the process. The kinetics did not appear to be significantly different as
95% of the equilibrium swelling was reached at approximately 90 min in all tests. No removal of the egg
yolk layer was observed in most cases, except at high alkaline conditions (pH 11.5), where a lift-up
followed by a partial removal of the protein network was seen when an external shear stress was
applied. The process mimicked creep behaviour of plastic materials. Gravimetric data on the hydration of
the sample suggested a Fickian diffusion transport (Case I), where solvent diffusion is the rate limiting
stage. The initial hydration was proved to be linear. Two diffusion theories of increasing complexity were
applied to estimate effective diffusion coefficients: Fick's second law (with moving boundaries) and a
non-linear poroelasticity theory. The temperature dependence of different diffusion coefficients
assuming an Arrhenius equation gave an activation energy in the range of 16.4 (±6.7) KJ/mol to 18.4
(±9.0) KJ/mol.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Foods are complex examples of soft condensed matter
(Mezzenga et al., 2005; van der Sman and van der Goot, 2009; Van
Der Sman, 2012). Their physical and chemical properties show a
strong dependence onmoisture content (Labuza and Hyman,1998).
If low hydrated food samples are exposed to highmoisture or liquid
environments, the absorption of water into the food matrix can
occur. This process leads, in certain occasions, to a change in the
volume of the sample (swelling) and takes place until thermody-
namic equilibrium is reached.

The reader must differentiate between degree of swelling and
kinetic of swelling when a hydration phenomenon with an associ-
ated change in thickness occurs. Degree of swelling indicates the
net increase in volume occurring in the sample over time. A
swelling-ratio coefficient, typically defined as the ratio between the
Engineering, Department of
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ohedano).
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volume at equilibrium and the volume at dry state of the sample, is
used to characterise this process. Kinetic of swelling relates to the
speed at which the equilibrium is reached. It is typically charac-
terised by a diffusion coefficient (Ganji, 2010).

Numerous approaches have been followed to model swelling/
hydration phenomena in different foods. Some aim to fit experi-
mental data by using empirical models. For example, this was done
by Chen et al. (2007) for the modelling of swelling on cross-linked
corn starch granules; by Davey et al. (2002) for the hydration of rice
grains of different sizes and at different temperatures; by Kruif et al.
(2015) on the swelling study of casein hydrogels; or by Malumba
et al. (2013) on the behaviour of wheat starch granules subjected
to different thermal treatments. Also, the estimation of intrinsic
parameters is of interest. Bakalis et al. (2009), Bello et al. (2010) or
Oztop and McCarthy (2011) estimated diffusion coefficients on rice,
cereals and protein-based gels respectively. Increasing the
complexity of the analysis leads to develop theoretical models on
the mass transport and swelling behaviour of different foodstuff as
done by Briffaz et al. (2014) or Chapwanya and Misra (2015). The
most complex models developed required the use of advanced
computational systems to numerically solve the equations given.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

A cross sectional area
C mass concentration expressed as dry basis moisture

content (water mass uptake/dry solid sample mass)
C0 initial moisture content (water mass at time ‘t ¼ 0’/dry

solid mass sample)
C∞ moisture content at equilibrium ‘t ¼ ∞’

D effective diffusion coefficient
D0 maximum effective diffusion coefficient
DF effective diffusion coefficient for Fick's equation
DNL effective diffusion coefficient for non-linear

poroelasticity theory
EA activation energy
h0 initial thickness. Thickness at time ‘t ¼ 0’
hdry sample thickness at dry state
h(t) thickness at time ‘t’

hðtÞ normalised thickness at time ‘t’
h∞ thickness at equilibrium
k, k0 constants incorporating characteristics of

macromolecule and penetrant system
M0 initial sample mass. Sample mass at time ‘t ¼ 0’
Mdry dry sample mass
M(t) total sample mass at time ‘t’
MðtÞ normalised sample mass at time ‘t’

M∞ total sample mass at equilibrium (t ¼ ∞)
n, n0 diffusional exponents
N effective number of polymer chains per unit volume of

the polymer (n� chains/m3 polymer)
R gas constant
t time
T temperature
x,y,z Cartersian coordinates
Z field of markers

Greek symbols
U volume per solvent molecule (m3/solvent molecule)
l stretch in uniaxial direction (thickness at time ‘t’/dry

state thickness)
l0 initial stretch in uniaxial direction (initial thickness/

dry state thickness)
rf density of the wash solution
c FloryeHuggins parameter (interaction between the

solvent and the polymer)

Abbreviations
sFDG scanning fluid dynamic gauge
HDL high-density lipoproteins
LDL low-density lipoproteins
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Examples of this latter case can be found in Mitchell and O'Brien
(2012) or Van Der Sman (2014).

Swelling is essential in the cleaning of initially dried protein
soils in alkali conditions (Fryer et al., 2006). The phenomena in-
volves three stages (Bird and Fryer, 1991). Initially, the sample
swells as the wash solution diffuses into the soil network. Once the
sample reaches a certain degree of hydration, an erosion process
occurs as a consequence of the application of an external me-
chanical action (shear stress) and/or the hydrolysis reactions due to
the presence of chemicals such as enzymes or high alkalinity. When
the removal is nearly finished, the importance of the adhesion
forces arises and the process slows down until complete cleaning is
achieved.

Extensive research has been already performed to study
swelling and dissolution phenomena in simple protein-based sys-
tems (b-lactoglobulin). A dissolution threshold was reported as a
function of pH and the volume fraction available in the protein
network. Below this threshold, swelling-ratio increased with the
increase of alkalinity (Mercad�e-Prieto et al., 2007a). Dissolution
was possible at certain alkalinity (above pH threshold) and above a
certain swelling-ratio (volume-fraction threshold) (Mercad�e-Prieto
et al., 2009, 2007b, 2007c). Non-covalent intermolecular bonds
were hydrolysed due to alkali denaturation and disengaged mole-
cules were transported to the bulk solution. Dissolution rates were
found to vary as a function of alkalinity, ionic strength and protein
structure (Mercad�e-Prieto and Chen, 2006). These studies were
expanded by Saikhwan et al. (2010) where different swelling be-
haviours were observed for different protein systems.

With the introduction of novel techniques to measure swelling,
such as the scanning fluid dynamic gauge esFDGe (Gordon et al.,
2010), new possibilities arise to study different soils, substrates or
testing conditions (temperature, chemistry and mechanical forces).
Swelling phenomenon and its link to cleaning is yet a field that can
be further explored. The purpose of this study is to describe
swelling and hydration in egg yolk (protein-based) samples. Egg
yolk deposits are highly difficult to remove from a hard surface
when dried and are one of the typical consumer complaints within
the automatic dishwasher industry (DuPont, 2012). Modelling of
swelling is a key step in order to fully describe the removal of the
egg soil. With this aim, swelling and water uptake in dried egg yolk
samples have been studied as a function of temperature and pH.
Scanning Fluid Dynamic Gauge (thickness measurements) and
gravimetric data have been analysed and compared. Different
diffusional theories have been used to describe the type of mass
transport occurring and to evaluate the accuracy to predict swelling
in detail. These theories are presented in the section below.

2. Diffusional theories

Alfrey et al. (1966) proposed a classification on the diffusional
transport occurring based on the rate limiting stage. According to
this classification, Fickian diffusion or Case I occurs when the solvent
diffusion rate is clearly slower than the network relaxation rate.
Relaxation time describes the time required for the sample network
to accommodate to the increase in liquid content. It is related to the
transition from glass to rubber state of the sample. A Non-Fickian
transport process or Case II takes place when liquid mobility is
much higher than the structure relaxation time (Thomas and
Windle, 1982, 1980). In between these two extreme cases, an
anomalous transport can also be defined. Liquid movement and
relaxation time are in the same order of magnitude.

2.1. Power-law model

Peppas & J.L.Sinclair (1983) presented a semi-empirical equa-
tion (Eq. (1)) to assess the type of transport occurring in one-
dimensional (thin slabs) isothermal processes. The equation is

valid for the first 60% of the mass uptake
�
MðtÞ
M∞

<60%
�

under per-

fect sink conditions (i.e. infinite supply of solvent).
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MðtÞ
M∞

¼ ktn (1)

where:

� M(t): Total sample mass at time ‘t’. [¼] kg.
� M∞: Total sample mass at equilibrium (t ¼ ∞). [¼] kg.
� k: Constant incorporating the characteristics of the macromol-
ecule and the penetrant system.

� t: Time. [¼] s.
� n: Diffusional exponent.

Depending on the value of the diffusional exponent ‘n’, any
transport mechanism can be identified. Table 1 illustrates the
different cases.

Different geometries (other than the slab) or in particular, the
increase of thickness of the sample when hydrating, can lead to a
variation in the estimated values of ‘n’ (Peppas and Brannon-
Peppas, 1994). The increase of thickness over time implies longer
distances for a solvent molecule to travel but also higher holding
capacity of the sample, as the volume achieved at equilibrium is
higher. The presence of a higher number of solvent molecules im-
plies an extra resistance for the network to adapt to the changes. In
consequence, its relaxation time increases with the increase of
swelling-ratio. Other factors affecting the diffusional exponent ‘n’
are the use of monodisperse or polydisperse solvent systems. In the
presence of a particle size distribution in the solvent, small mole-
cules are able to diffuse faster through the sample network at early
stages, but the equilibrium might be delayed as larger molecules
move slower in the final stages. A change in the assumption of
boundary perfect sink conditions can lead to variations in the
diffusional exponent ‘n’ as well. This assumes an instantaneous
equilibrium between the solvent and the top layer of the sample
once they come into contact. However, even though the equilib-
rium might be reached fast, it cannot be instant.

Eq. (1) was adapted in this work to fit the sFDG data by replacing
mass by height. The analogue expression is shown in Eq. (2).

hðtÞ
h∞

¼ k
0
tn

0
(2)

where:

� h(t): Thickness at time ‘t’. [¼] m.
� h∞: Thickness at equilibrium (t ¼ ∞). [¼] m.
� k0: Constant (for sFDG data).
� t: Time. [¼] s.
� n0: Diffusional exponent (for sFDG data).
2.2. Fick's second law

If Fickian diffusion is the predominant type of transport, Fick's
second law (Eq. (3)) can be used to fit experimental data (Bird et al.,
Table 1
Types of mass transport as a function of the diffusional exponent ‘n’. Coefficients are
valid for one-dimensional (slab) isothermal processes.

Type of transport Diffusional exponent (n) Time dependence

Fickian Diffusion (Case I) 0.5 t1/2

Anomalous transport 0.5 < n < 1 tn�1

Non-Fickian transport (Case II) 1 Time independent
2007). Eq. (3) describes the uniaxial concentration change over
time occurring for a thin slab geometry.

vC
vt

¼ DF
v2C
vz2

(3)

where:

� C ¼ MðtÞ
Mdry

: Mass concentration (expressed relative to the initial
dry weight of the soil). [¼] kg. Water content/kg. Dry sample
mass.

� M(t): Total sample mass at time ‘t’. [¼] kg.
� Mdry: Dry sample mass. [¼] kg.
� t: Time. [¼] s.
� DF: Effective diffusion coefficient for Fick's equation. [¼] m2/s.
� z: Uniaxial diffusion direction. [¼] m.

A series of assumptions are typically madewhen this equation is
used (Sam Saguy et al., 2005). The most common ones involve:

� No other transport mechanisms are considered (e.g. capillarity).
� The effective diffusion coefficient is constant and independent
of the moisture content in the network.

� Only the diffusion of unreacted liquid is modelled.
� The initial moisture content in the network is uniform (i.e.
isotropic state).

� No resistances to the flux are found at the top layer and there-
fore the equilibrium occurs instantly.

� Swelling or shrinkage phenomena are typically not considered.
� The geometry is simplified to slab, spheres or cylindrical shapes.
� Heat transfer equations are commonly ignored.

In a diffusion process with a change in volume (thickness) of the
sample, boundary conditions are constantly varying. If the degree
of swelling reaches a significant level (e.g. doubles up), and this is
not considered by themodel, wrong conclusions can bemadewhen
analysing the results. The assumption of molecular incompressi-
bility (additive volumes) can relate the thickness change with the
mass gained for a uniaxial swelling case via a density relationship.
This is expressed in Eq. (4).

Mf ¼ MðtÞ �M0 ¼ rf $A$ðhðtÞ � h0Þ (4)

where:

� M(t): Total sample mass at time ‘t’. [¼] kg.
� M0: Initial sample mass. Sample mass at time ‘t ¼ 0’. [¼] kg.
� rf: Density of the wash solution. [¼] kg/m3.
� A: Cross sectional area. [¼] m2.
� h(t): Thickness at time ‘t’. [¼] m.
� h0: Initial thickness. Thickness at time ‘t ¼ 0’. [¼] m.

The incorporation of Eq. (4) into Eq. (3) allows the calculation of
diffusion profiles considering moving boundaries.
2.3. Non-linear poroelasticity theory

Classical Biot's theory of poroelasticity (Biot, 1941), adapted
from Gibbs (1906), in combinationwith statistical mechanics (Flory
and Rehner Jr., 1943) has been used extensively to analyse solvent
migration in polymer systems. Hong et al. (2008) developed a non-
linear approach that combines a non-equilibrium thermodynamic
theory with a Fickian kinetic law to analyse the diffusion of small
molecules into a neutral polymer gel. Mass transport was analysed
together with the deformation of the polymer. The theory expands
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Fick's second law by introducing intrinsic properties of the solvent
and polymer.

� N: Effective number of polymer chains per unit volume of the
polymer. It is defined as a constant value and refers to a refer-
ence condition at dry state. [¼] n� chains/m3 polymer.

� U: Volume per solvent molecule [¼] m3/solvent molecule.
� c: FloryeHuggins parameter (interaction between the solvent
and the polymer).

The kinetics of the solvent molecules is considered to follow a
Fickian diffusionmodel. It is characterised by a diffusion coefficient,
DNL, which is isotropic and independent of the concentration and
deformation gradients. By considering a uniaxial swelling
(constraint in 2 directions) and an isotropical initial swollen state,
the stretch of the network as a function of time and position is
given by Eq. (5).

l20
vl

vt
¼ DNL

v

vZ

�
xðlÞ vl

vZ

�
(5)

where:

xðlÞ ¼ 1
l20l

4 �
2c
�
l20l� 1

�
l40l

5 þ NU

�
l20l� 1

��
l2 þ 1

�
l20l

4 (6)

where:

� l0: Initial stretch in uniaxial direction (initial thickness/dry state
thickness).

� l: Stretch in uniaxial direction (thickness at time ‘t’/dry state
thickness).

� DNL: Effective diffusion coefficient for Non-Linear theory. [¼]
m2/s.

� t: Time [¼] s.
� Z: field of markers along z-axis (define network stretch refer-
ence points).

The total thickness of the sample can be calculated as:

hðtÞ ¼
Zhdry

0

lðz; tÞdz (7)

where:

� h(t): Thickness at time ‘t’. [¼] m.
� hdry: Layer thickness in the dry state. [¼] m.
� l: Stretch in uniaxial direction (thickness at time ‘t’/dry state
thickness).

� z: Uniaxial diffusion direction. [¼] m.

Also, an algebraic equation (Eq. (8)) relates the equilibrium
swelling ratio, l∞, with l0, N, U and c as follows:

ln

 
l20l∞ � 1

l20l∞

!
þ 1
l20l∞

þ c

l20ðl∞Þ2
þ NU

l20

�
l∞ � 1

l∞

�
¼ 0 (8)
2.4. Temperature dependence

For the case of the diffusion of a fluid into a solid, the effective
diffusion coefficient at different temperatures typically follows an
Arrhenius equation (Mehrer, 2007) (Eq. 9).

D ¼ D0$e
�EA=RT (9)

where:

� D: Effective diffusion coefficient. [¼] m2/s.
� D0: Maximum effective diffusion coefficient. [¼] m2/s.
� EA: Activation energy. [¼] J/mol
� R: Gas constant [¼] J/mol K.
� T: Temperature. [¼] K.

3. Materials & methods

3.1. Egg yolk samples

Egg yolk was chosen as the foodmaterial studied. It is a complex
mixture of proteins and lipids. Its typical dry composition com-
prises 33% of proteins, 62.5% of fats, less than 3.5% of minerals and
1% of carbohydrates approximately (Mine and Zhang, 2013). Two
phases can be separated: plasma and granules. Despite the larger
proportion of fats, samples are considered protein-based as their
physico-chemical properties depend on the protein network that
forms the main structure. Egg yolk is formed by high (HDL) and
low-density lipoproteins (LDL) consisting on spherical particles
that surround a lipid core. LDLs are the essential components that
allow the emulsification of egg yolk due to their amphiphilic
properties. Also, preheated samples above 70 �C have been re-
ported to form a gel system due to the aggregation of protein
networks occurring at high temperatures (Denmat et al., 1999;
Tsutsui, 1988). At alkaline conditions, the network hydrates and
swells.

Samples were obtained from Centre for Testmaterials (product
DS-22, C.F.T. BV, Vlaardingen, the Netherlands). The samples,
widely used for detergent tests, weremade of a sprayed layer of egg
yolk over a stainless steel base. Size of the tiles was 12 cm � 10 cm
with 1.75 g (±0.04 g) of egg yolk deposited on and an estimated
initial thickness of 68 mm (±14 mm). The initial thickness was
calculated by extrapolating the data collected from sFDG experi-
ments, which led to a relatively high standard deviation.

The initial moisture content was obtained by weighing 3 sam-
ples before and after theywere deposited in a vacuum oven at 60 �C
during 8 h (Booth, 2003). 0.11 g (±0.03 g) were lost as an average
during this process. Therefore, the initial moisture content (C0) was
estimated as 0.067 g water/g. dry sample. The amount of water
initially present in the samples corresponds to a layer thickness of
9 mm. This value was estimated as the thickness of a water layer of
0.11 g homogeneously distributed across the area of the tile.

3.2. Scanning fluid dynamic gauge

Fig. 1 shows a schematic of the scanning fluid dynamic gauge
(sFDG).

The technique allows the real time measurement of the thick-
ness of immobile soft soil samples submerged in a liquid environ-
ment (Gordon et al., 2012). Samples are placed in the upper tank
and thickness is measured thanks to a proximity nozzle through
which a gravity-maintained flow is created. The variation in the soil
thickness (swelling or removal) over time is a consequence of its
contact with the liquid solution and the surface shear stress
generated by the gauging flow through the nozzle. The scanning



Fig. 1. Schematic of the scanning fluid dynamic gauge.
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mode enables the analysis of multiple locations. The following
parameters can be studied: soil type, temperature, chemistry level
(pH, enzymes, ionic strength), net shear stress applied over the
sample and frequency of application of shear stress per location.
The frequency factor is defined as the ratio of time the gauging fluid
is imposing a surface shear stress on a particular location over the
total experimental time. For more detailed information the reader
is referred to Tuladhar et al. (2000, 2002); Gordon et al. (2010).

sFDG raw data consist of thickness values at different times per
location. For a particular location, the frequency at which shear
stress is applied determines the separation between groups of data
points. In order to compare thickness values from different loca-
tions, a polynomial fitting was performed for each individual
location. The degree of the polynomial was set at the lowest
possible (6th degree or lower) to produce an acceptable fit
(R2 > 0.98). Thickness values were then calculated at fixed times
(i.e. every minute) and compared against the other locations and
triplicates. An average trend line with its associate error was finally
estimated for each experimental condition considered.
3.3. Design of experiments and experimental procedure

Temperature and pH were selected as the factors to study for
both sFDG and gravimetric tests. Preliminary studies showed that
the effect of pH on swelling was higher than temperature. There-
fore, for the design of experiments 3 levels were selected for pH
(9.5, 10.5 and 11.5) and 2 levels for temperature (30 �C and 55 �C), in
agreement to the values typically found in commercial automatic
Table 2
Design of experiments.

Experiment Temperature pH

1 30 �C 9.5
2 55 �C 9.5
3 30 �C 10.5
4 55 �C 10.5
5 30 �C 11.5
6 55 �C 11.5
dishwashing. This resulted in a combination of 6 different set-ups
as shown in Table 2. Triplicates were measured for each case and
the order of the experiments randomized. Tests were run for
180 min.

Deionised water was used and the hardness set at 8.5 US gpg
(4.4 mM) with 0.236 g/l CaCl2$6H20 and 0.076 g/l MgCl2$6H20
(molar ratio between CaCl2$6H20 and MgCl2$6H20 was 3:1). To
provide the necessary pH, buffer solutions were prepared and pH
measured with a pH meter (product Orion 4 Star™, Thermo Sci-
entific Orion).

� For pH 9.5, 0.112 g/l of Na2CO3 and 0.150 g/l of NaHCO3 were
used ([Na2CO3] ¼ 1.10 mM and [NaHCO3] ¼ 1.80 mM).

� For pH 10.5, 0.106 g/l of Na2CO3 were added
([Na2CO3] ¼ 1.00 mM).

� For pH 11.5, 0.13 g/l of NaOH were added ([NaOH] ¼ 3.25 mM).

Before running the experiments, all chemicals were added to the
lower tank and stirred and recirculated through the system for
10 min. Temperatures in both tanks were monitored constantly
with the aid of waterproof digital thermometers.

For the sFDG runs, 4 points were analysed per sample to asses
the variability within a tile. The position of the nozzle changed
everyminute and shear stress over a particular locationwas applied
for approximately 30 s in intervals of 4 min. Therefore, the fre-
quency factor was set about 12e13% of the total experimental time.
Shear stress applied over the samples was kept constant at 18 Pa.
Underneath the nozzle a pressure change and a tensile force are
generated as a consequence of the fluid moving upwards through
the nozzle. The pressure change and pull-force were estimated by
applying Bernoulli's equation (Gordon, 2012). With the set-up
considered these values were established at 500 Pa and 1.6 mN
approximately. Fig. 2 illustrates the locations studied over the
samples.

Gravimetric tests were conducted in the upper tank of the sFDG
apparatus. Samples were placed on the soil platform without any
gauging action occurring. They were taken out at specific times for
their weight measurement: 3, 6, 10, 15, 20, 25, 30, 40, 50, 60, 80,
100, 120, 150 and 180 min. Prior to the measurement, the base was



Fig. 2. Schematic of points analysed while using sFDG.
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dried and the excess surface water was removed by soft-shaking
the tiles 10 times. They were weighed on a digital scale (product
EP201, Ohaus) with a readability of ±0.01 g. Once an experiment
was completed, the tile was cleaned, dried and weighed again so
the net sample mass could be estimated.
3.4. Comparison of sFDG and gravimetric data

The kinetics (time to equilibrium) of both sFDG and gravimetric
data were initially studied using a dimensionless approach. Data
were normalised by applying Eq. (10) and Eq. (11):

For sFDG data : hðtÞ ¼ hðtÞ � h0
h∞ � h0

(10)

For Gravimetric data : MðtÞ ¼ MðtÞ �M0

M∞ �M0
(11)

where:

� hðtÞ ¼ Normalised thickness at time ‘t’.
� MðtÞ ¼ Normalised sample mass at time ‘t’.

The relative values (0e1 scale) indicated the equilibrium degree
achieved at any experimental time. This approach made all exper-
iments comparable independently of the degree of swelling or
hydration. The comparison was also done in absolute values by
transforming thickness data into mass data using Eq. (4).
3.5. Solution of equations from diffusional theories

Equations from Fick's second law (Eq. (3) and Eq. (4)) were
solved via an algorithm developed in MATLAB® using a forward
finite difference method. It was assumed that the bottom of the
sample (z ¼ 0) was attached to a rigid surface with no diffusion
occurring at this position. Also, the top face (z ¼ h(t)) was consid-
ered to be freely exposed to the solvent. Thus, liquid penetration
occurred from top to bottom. The sample was considered to swell
uniformly in one direction (z), with a constrained or negligible
lateral stretch. At each time step, swelling of the sample (Eq. (4))
was incorporated and the total thickness was discretised again to
compute for this change. The assumption of an instantaneous
equilibrium at the boundary layer between the network and the
fluid together with a zero flux at the bottom layer were considered
as boundary conditions. Additionally, the diffusional coefficient was
assumed to be constant and independent of the moisture gradient.
The initial condition assumed a homogeneous distribution of the
initial moisture content within the sample. The boundary and
initial conditions are expressed as follows:

� Initial Condition: t ¼ 0/C ¼ C0
� Boundary Condition 1: C(z ¼ h(t)) ¼ C∞
� Boundary Condition 2: z ¼ 0/vC
vz ¼ 0

The effective diffusion coefficient values (DF) were calculated by
minimising the error between experimental and numerical results.

The same assumptions used for Fick's second law were consid-
ered to solve the equations from non-linear theory (Eq. (5) and Eq.
(8)). A forward finite difference method was used to determine a
solution for Eq. (5). The initial condition assumed an isotropical
swollen state with an initial swelling ratio of l0. Boundary condi-
tions established the instantaneous equilibrium at the top surface
(BC1:l (z ¼ h(t)) ¼ l∞) and the condition of zero flux at the bottom
surface (BC2: vl

vz ðz ¼ 0Þ ¼ 0
�
. After a long time (t/∞) the system

evolved to an equilibrium state (l ¼ l∞). Stretch profiles obtained
(l) were integrated over the layer thickness in the dry state (hdry) by
applying Eq. (7) to calculate net thickness values over time. Eq. (8)
was used to relate the equilibrium stretch (l∞) with l0 and other
intrinsic parameters: N, U and c.

The initial swelling ratio (l0) and the equilibrium stretch (l∞)
needed for the calculations were obtained from experimental
data.l0 was estimated by dividing the initial experimental thick-
ness (h0 ¼ 68 mm) over the dry thickness (hdry ¼ 68 mm�9 mm),
giving l0(t ¼ 0) ¼ 1.1. The different l∞ were estimated for each case
by dividing the thickness at equilibrium over the dry thickness
(hdry). The volume of a solvent (water) molecule (U) was
3$10�29 m3/molecule. As three variables were unknown (c, N and
DNL) and there were two available equations (Eq. (5) and Eq. (8)) an
iterative process was established.

Finally, D0 an EA values were estimated for data points at the
same pH and different temperatures by using Eq. (9). Despite the
lack of rheological information, the soil sample was assumed to
behave as a solid as it did not flow in any experimental condition
and it was partly detached from its surface when a sufficiently high
external force was applied. This analysis was carried out with the
intention of evaluating the suitability of the techniques used in the
estimation of D0 and EA. The use of only two temperatures in the
study did not allow any deeper insight to be made.
4. Results & discussion

4.1. sFDG and gravimetric results

Data collected experimentally was processed according to the
methodology explained in the previous section. Thickness and
mass values were initially represented over time. Fig. 3 shows the
results for gravimetric (A) and sFDG experiments (B & C).

The plots show the rapid increase of thickness or mass that
occurred during the initial minutes of any experimental run (i.e.
40 min). The rate decreased over time as the samples approached
the equilibrium. The end point was different depending on the
experimental conditions. Data demonstrated that by increasing
temperature and pH, swelling and water uptake increased. The
effect of pH on the hydration process was more important than



R. P�erez-Mohedano et al. / Journal of Food Engineering 169 (2016) 101e113 107
temperature within the levels studied. This is clearly seen in Fig. 3A
for gravimetric tests. Equilibrium was reached by the end of the
experimental time for all the conditions studied. The system was
considered equilibrated when the swelling or mass-uptake rate
was less than 5% of the swelling rate in the first 3 min of the
experiment.

For sFDG measurements, the variability between the 4 locations
analysedwithin a samplewas found to be about 4% of themeasured
thickness. The variability increased up to about 10% when different
samples were compared. This indicated higher differences between
samples than at different locations on a single tile. For gravimetric
tests, the variability was lower at around 3% of the measured
weight. The higher error seen for sFDG measurements was due to
an accumulation of errors from different factors such as the
Fig. 3. Experimental results. A e Gravimetric tests. B e Polynomial fit and averaged
sFDG data. C e sFDG data for the first 40 min.
application of a shear stress over the sample, the error related to the
movement of the nozzle around different positions, the inner error
of the flowmeter, the accuracy of the z-motor and the possible in-
homogeneity of the sample at the different locations considered.

At 55 �C and pH 11.5, localised blisters appeared on the surface
after 2 h as shown in Fig. 4. We believe that these blisters related to
hydrolysis reactions occurring at high alkalinity. Peptide bonds
broke (cohesive failure) as a consequence of the high concentration
of OH� ions and the network strength weakened (Saikhwan et al.,
2010). A distortion of the data was thus observed as the presence
of big blisters allowed the solvent to penetrate more easily into the
network. This would explain the higher weight and variability seen
after 150 min for the gravimetric tests (Fig. 3A). This weakness in
the soil called for extra care when handling the tiles in order to
prevent the loss of any soil when measuring their weight.

Similar issues were found for sFDG tests at the same experi-
mental conditions. A lift-up effect or removal of the soil was
observed in some of the locations studied. The lift-up effect consists
of the stretch of the network due to the pull force produced by the
liquid suction through the nozzle of the sFDG. The measured
thickness increases in consequence. The removal of the sample
occurs when the action of the sFDG over the soil surface is high
enough to detach some of the top layers. The consequence is that a
lower thickness is measured. Fig. 5 shows the raw data collected for
the three experiments done at 55 �C and pH 11.5 for each of the 4
locations analysed. The graphs illustrate the different behaviours
commented. Overall, among the 12 different locations studied, a
lift-up effect was observed 5 times followed by a removal of the soil
in 3 occasions. These cases were disregarded when estimating the
average thickness profile for that sample. For the locations showing
an apparent equilibrium we assumed none of these effects
occurred.

Fig. 6 summarises the possible scenarios observed for the
measurement of thickness using the sFDG.

The difference in thickness between lift-up and equilibrium
cases within a single replicate represents the stretch occurring in a
specific location. Fig. 7 represents that difference for the location 3
in the test shown in Fig. 5A. The curve mimics creep profiles
observed in plastic or polymeric materials (McKeen, 2015). Creep is
defined as the change over time that occurs to a material when
subjected to a constant or regular stress. Those locations with a lift-
up effect deformed plastically, not elastically, as they did not return
to the original shape every time the tensile force was applied. Creep
Fig. 4. Egg yolk tile showing blisters at the edges after being submerged in a solution
at 55 �C and pH 11.5 for 180 min.



Fig. 5. sFDG raw experimental data at 55 �C and pH 11.5. A e First test; B e Second
test; C e Third test; Blue diamonds, red squares, green triangles and purple circles
represent locations from 1 to 4 respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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curves typically show three stages: primary, secondary and tertiary.
The primary stage is an initial and non-steady deformation on the
sample. This is followed by a constant strain rate, which charac-
terises the secondary stage. Finally, when the stretch is high
enough, the material starts to fail and the strain accelerates. This
last stage precedes the fracture point, where the sample finally
breaks. This phenomenon could be identified at a different extent in
each of the cases not following an equilibrium trend. These
observations arise the suitability of the sFDG in the analysis of creep
behaviour of different materials and at different conditions (i.e.
temperature, degree of swelling or tensile force applied).

4.2. Comparison of sFDG and gravimetric data

In Fig. 8 normalised gravimetric,MðtÞ (x-axis), and sFDG, hðtÞ (y-
axis), data are shown. Results compare the kinetics of the process.
They were separated for every pH level considered. The colour scale
indicates the time the measurements were undertaken. Samples
started at the beginning of the axis and dimensionless height and
mass increased with time as samples reached equilibrium.

Good agreement between the techniques was observed at pH
9.5 (Fig. 8A), 10.5 (Fig. 8B) and at 30 �C and pH 11.5 (Fig. 8C e cir-
cles). 95% of the equilibrium values were reached within 90 min
and the kinetics were not significantly affected within the range of
temperatures considered (30 �C and 55 �C). At 55 �C and pH 11.5,
the maximum value was reached faster in the sFDG than in the
gravimetric case. Whilst around 90 min were required in the
gravimetric experiments to get to 95% of the maximum hydration,
this time was significantly reduced to 50 min for the sFDG case. As
for the analysis shown in Fig. 5, it is likely that the weakest top
layers were detachedwhen shear stress was applied from the sFDG,
resulting in an underestimation of the swelling time required.

The comparison was extended by transforming sFDG data into
mass using Eq. (4). Fig. 9 shows sFDG and gravimetric data repre-
sented together and expressed in mass units. In Fig. 9A the absolute
mass values from the two experimental techniques are shown,
while Fig. 9B represents the difference over time between gravi-
metric and sFDG data.

Experiments in themilder conditions (30 �C for pH 9.5 and 10.5)
showed good agreement as the convergence seen in Fig. 9A was
high and the difference showed in Fig. 9B remained flat at values
closer to 0.

Experiments at high temperature (55 �C for pH 9.5 and 10.5)
showed similar trends for both techniques but the estimated water
uptake from sFDG data was systematically higher (1 g) when
compared to the measured mass uptake given by gravimetric ex-
periments. Two hypotheses were considered to explain this
behaviour:

1. A lift-up effect from sFDG measurements that was favoured at
higher temperatures. This would indicate higher elasticity of the
soil network with the increase of temperature. As the experi-
mental conditions did not result in any removal of material, the
lift-up effect occurred and the thickness values measured were
higher. A look at the raw data did not allow assuring this hy-
pothesis. Equilibrium trends were similar to those reported in
Fig. 5.

2. Higher amount of water could be lost when removing the excess
of water in the gravimetric method. At 55 �C, a lower water
viscosity and a consequent higher water mobility could have led
to the removal of larger amounts of liquid. The hypothesis was
tested and disproved by quantifying the amount of water
transferred to the drying paper. The difference in weight be-
tween the ‘wetted’ and ‘dried’ sample was measured and results
showed a loss of approximately 0.2 g and 0.16 g for 55 �C and
30 �C respectively. This effect would only explain 4% of the dif-
ference seen between sFDG and gravimetric data.

Differences between sFDG and gravimetric data at high pH (i.e.
pH 11.5) became obvious after 20e30 min. The measured mass
uptake from the gravimetric tests was higher than the estimated
mass uptake from sFDG experiments. If the assumption of molec-
ular incompressibility is still valid, this would indicate a lower



Fig. 6. Schematic of the different scenarios when using the sFDG to measure the thickness of a sample.

Fig. 7. Strain profile for location 3 in example shown in Fig. 6A.

Fig. 8. Normalised height and weight data to compare sFDG and gravimetric tes
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volume occupied by the solvent molecules within the soil. Two
hypothesis were again considered:

1. The presence of electrostatic screening effects between the Naþ

cations in the water and soil network. This would lead to a
decrease in the volume of the network. These effects were
studied in a similar work by Mercad�e-Prieto et al. (2007c) with
protein-based systems. Results reported a significant reduction
volume as a consequence of the electrostatic effects. However,
these interactions occurred at pH higher than 13.3 when only
NaOH was added to the solution.

2. The removal of soil layers in those locations with an equilibrium
trend (no lift-up and no removal observed). Highly swelled
layers could be detached early in the process thus leading to a
lower equilibrium thickness value.
4.3. Modelling swelling/hydration

Power law equations (Eq. (1) and Eq. (2)) were applied to the
experimental data obtained via gravimetric and sFDG tests. Fig. 10
represents the estimated diffusional exponents, n and n0, as a
ts. A e pH 9.5; B e pH 10.5; C e pH 11.5. Circles e 30 �C; Squares e 55 �C.



Fig. 9. Comparison of gravimetric and sFDG data in mass units. A e Total mass over time. Lines and dots with same colour represent sFDG and gravimetric data respectively at the
same experimental conditions; B e Difference between gravimetric and sFDG data over time. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Diffusional exponent values. A e From gravimetric data (n). B e From sFDG
data (n’).
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function of temperature and pH. The size of the bubbles is related to
the value of the exponent.

Results for gravimetric data (Fig. 10A) indicated that pH is the
main factor affecting the diffusional exponent (n). Results for sFDG
data (Fig. 10B) reported slightly higher values of n0 for the same
experimental conditions and a similar effect of pH. The effect of
temperature was more pronounced in this case.

Overall, data suggested a Fickian diffusion (Case I) type of
transport in all cases (n < 0.5). However, as pH increased, there was
an increase of ‘n’ indicating more anomalous or Non-Fickian
diffusion (Case II) mechanism. During hydration, as the soil
network expanded, the rearrangement becamemore difficult. Thus,
for those cases with higher equilibrium swelling, averaged relaxa-
tion times increased and became closer to diffusional times.

Fick's second law (Eq. (3) and Eq. (4)) was used to fit gravimetric
data. Fig. 11A illustrates experimental and numerical results for
each of the conditions studied. Overall, Fick's second law over-
predicted (numerical values above experimental data) results at
initial times and under-predicted (numerical values below experi-
mental data) them at longer times. The complexity of the system
studied combined with the simplicity of the equation, with only
one intrinsic parameters considered (DF), restricted the quality of
the fitting. The incorporation of moving boundaries into the anal-
ysis did not provide sufficient flexibility to enhance the results. The
initial over prediction can be observed in more detail in Fig. 11B.
Fig. 11C represents a linear fit on the data for the first 20 min of the
experimental time. The good fit suggests a linear swelling behav-
iour at this stage. This behaviour was also previously reported for
other protein-based gels such as whey protein concentrate
(Saikhwan et al., 2010).

Table 3 shows the effective diffusion coefficients (DF) estimated
with Fick's second law together with the slopes of the different
linear fits for each case.

Values were in the order of 10�11 m2/s. For the range of pH
investigated, the increase from 30 �C to 55 �C showed an increase in
the effective diffusion coefficient calculated. This was also observed
for increasing pH at the same temperature. Coefficients of deter-
mination (R2) ranged from 0.88 to 0.95.

Non-linear theory (Eq. (5) and Eq. (8)) was used to fit sFDG data.
Fig.12 illustrates experimental and numerical results for each of the
conditions studied. The introduction of a higher number of intrinsic
parameters increased the goodness of fit to the range of 0.93e0.99.

Table 4 summarises the results estimated by applying the non-
linear theory.

Non-linear diffusion coefficients (DNL) were reported at around
10�10 m2/s. The increase from 30 �C to 55 �C showed slightly higher
diffusion coefficients at any pH given. The same correlation was
observed for increasing pH at a fixed temperature. FloryeHuggins
parameter (c) showed a slight decrease with the increase of tem-
perature and pH. Both, DNL and c, were likely to change for each
experiment as DNL is related to the kinetics of the swelling/diffusion
process (temperature dependent) and c to the interaction between



Fig. 11. Comparative results from experimental and numerical data using Fick's second
law (dotted lines). A e Data for 180 min; B e Data from the first 20 min; C e Linear fit
for data from the first 20 min.

Table 3
Fick's second law effective diffusion coefficients and goodness of fit for gravimetric
experiments.

Experiment Fick’s law Linear fit

Temperature pH DF (m2/s) R2 Slope (g/min) R2

30 �C 9.5 5.5$10�12 0.948 0.07 0.914
55 �C 9.5 1.0$10�11 0.950 0.10 0.941
30 �C 10.5 8.6$10�12 0.911 0.10 0.935
55 �C 10.5 1.9$10�11 0.950 0.18 0.968
30 �C 11.5 4.1$10�11 0.881 0.27 0.979
55 �C 11.5 5.4$10�11 0.920 0.35 0.952

Fig. 12. Comparative results from experimental and numerical data using Non-Linear
theory (dotted lines).
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the solvent and the polymer (pH dependent). A decrease in the
FloryeHuggins parameter indicates a stronger affinity between the
solvent and the polymer (Kuhn et al., 2006). Therefore, results
showed that the affinity increased with the increase of pH. How-
ever, the iteration of c showed low sensitivity (less accuracy) thus
the conclusionmademight not be truly reliable. N values estimated
remained within a range from 4$1026 to 9.5$1026 m�3 with an
average value of 5.5$1026 (±2.1$1026) m�3. The variability seen is
caused by the iterative process in the calculations.

Independently of the theory used, diffusion coefficients were
lower than the self-diffusion coefficient of water, estimated to be
2.3$10�9 m2/s (M�etais and Mariette, 2003). This suggests an
obstruction effect of the soil network on the diffusion of water
molecules. The phenomenon was previously reported (Fukuoka
et al., 1994). The differences between water self-diffusion coeffi-
cient and the ones calculated from these experiments offer an in-
direct estimation of the resistance offered by the network. The soil
network offered the least resistance at high pH and high
temperature.

The temperature dependence of the different effective diffusion
coefficients estimated was also explored. Eq. (9) was applied to the
results shown in Tables 3 and 4. Maximum effective diffusion co-
efficients (D0) and activation energies (EA) were estimated for pairs
of data at the same pH and different temperatures. As only two
values were used in the calculations, results only represent an
indication of the order of magnitude expected. Table 5 summarises
the different values obtained.

Activation energies (EA) estimated showed an average value of
18.4 (±9.0) kJ/mol and 16.4 (±6.7) kJ/mol for Fick's second law and
non-linear theory respectively. This compares favourably with
what was reported previously in literature (Bello et al., 2010).
Maximum effective diffusion coefficient (D0) showed a wide range
of values, being equally (pH 11.5) or higher (pH 9.5 and 10.5) than
the one previously reported for the self-diffusion of water.

5. Conclusions

The study showed the importance of temperature and mainly
pH as key factors driving the swelling/hydration process on dry egg
yolk samples. At high alkalinity (pH 11.5), some of the material was
removed when an external surface shear stress was applied. The
formation of blisters was also observed in these conditions. The soil
network was weaker due to the increase of moisture content and
hydrolysis reactions that occurred. The kinetics of the diffusion



Table 4
Non-linear poroelasticity theory results.

Experiment Non-linear diffusion coefficient DNL (m2/s) FloryeHuggings parameter (c) Polymer chains per unit volume N (m�3) R2

T pH

30 �C 9.5 1.5$10�10 1.00 9.5$1026 0.9935
55 �C 9.5 2.5$10�10 0.80 6.0$1026 0.9910
30 �C 10.5 3.0$10�10 0.90 5.0$1026 0.9429
55 �C 10.5 4.0$10�10 0.80 4.0$1026 0.9828
30 �C 11.5 4.5$10�10 0.65 4.5$1026 0.9697
55 �C 11.5 9.0$10�10 0.00 4.0$1026 0.9355

Table 5
Activation energies and maximum effective diffusion coefficients estimated.

Theory T pH Diffusion coefficient (m2/s) EA (kJ/mol) D0 (m2/s)

Fick's second law 30 �C 9.5 5.5$10�12 19.8 1.40$10�8

55 �C 9.5 1.0$10�11

30 �C 10.5 8.6$10�12 26.2 2.83$10�7

55 �C 10.5 1.9$10�11

30 �C 11.5 4.1$10�11 9.1 1.52$10�9

55 �C 11.5 5.4$10�11

Mean 18.4 (±9.0) 9.9$10�8 (±1.6$10�7)
Non-linear poroelasticity theory 30 �C 9.5 1.5$10�10 16.9 1.2$10�7

55 �C 9.5 2.5$10�10

30 �C 10.5 3.0$10�10 9.5 1.3$10�8

55 �C 10.5 4.0$10�10

30 �C 11.5 4.5$10�10 22.9 4.0$10�6

55 �C 11.5 9.0$10�10

Mean 16.4 (±6.7) 1.4$10�6 (±2.3$10�6)

R. P�erez-Mohedano et al. / Journal of Food Engineering 169 (2016) 101e113112
process did not show significant differences within the range of
conditions studied. 95% of the maximum swelling was reached
approximately after 90 min.

The use of the power-law model suggested a Fickian diffusion
transport model. The adaptation of the equation to fit sFDG data
produced comparable results. The increase of temperature and pH
led the mass transfer process towards an anomalous scenario. The
sample network needed to accommodate higher volumes of liquid
over the same time period as the maximum swelling was reached
at the same time. Therefore, the network rearrangement became
more difficult.

Two theoretical approaches were used to estimate effective
diffusion coefficients. Fick's second law (with moving boundaries)
showed lower accuracy in predictions than the non-linear theory.
The estimation of activation energies in the analysis of the tem-
perature dependence of the diffusion coefficient was also possible.
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