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Abstract 24 

Fourteen tri-deca polybrominated diphenyl ethers (PBDEs) were investigated in 35 human 25 

milk samples from Birmingham, UK. While none of the hepta-nona BDEs (the main 26 

components of the OctaBDE technical mixture) were above the limit of quantitation (LOQ); 27 

BDE-47 (average concentration = 3.3 ng g-1 lipid weight (lw)) was quantified in all samples 28 

contributing 34-74% to Σtri-hexa BDEs (the principal constituents of the PentaBDE 29 

commercial formulation). BDE-209 (the main congener in the DecaBDE formulation) was 30 

present above the LOQ in 69% of samples (average concentration = 0.31 ng g-1 lw). 31 

Concentrations of Σtri-hexa BDEs ranged from 0.2-26 ng g-1 lw with concentrations of BDE-32 

47 > BDE-153> BDE-99. While concentrations of Σtri-hexa BDEs in this study (average = 33 

5.95 ng g-1 lw) were at the high end of those reported from other European countries, 34 

concentrations of BDE-209 were lower than those reported in human milk from other 35 

countries. The average exposure of a UK nursing infant to Σtri-hexa BDEs (35 ng (kg bw)-1  36 

day-1) via breast milk exceeded the upper-bound dietary intakes of both UK adults and 37 

toddlers. Using a simple one compartment pharmacokinetic model, PBDE intakes of UK 38 

adults via inhalation, diet and dust ingestion were converted to predicted body burdens. 39 

Predictions compared well with those observed for Σtri-hexa BDEs and BDE-209 in breast 40 

milk.  41 

Keywords: PBDEs, human milk, infant exposure, BDE 209. 42 
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Introduction 50 

Polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants for 51 

a wide range of consumer products including furniture, carpets, mattresses and casings for 52 

electronic equipment (BSEF 2013). Three technical PBDE formulations were commercially 53 

available: Penta (consisting primarily of BDE-47 and BDE-99 – 38-49% each, alongside 54 

smaller amounts of other tri- to hepta-BDEs), Octa (a mixture of hexa- to deca-BDEs – the 55 

exact congener composition varying substantially between the two principal formulations 56 

marketed) and Deca (92-97% decabromodiphenyl ether – BDE 209 – plus nona- (principally) 57 

and octa-BDEs) (La Guardia, et al. 2006). DecaBDE has dominated worldwide production 58 

with a global market demand of 56,100 tons in 2001, compared to 7,500 and 3,790 tons for 59 

PentaBDE and OctaBDE formulations respectively (BSEF 2013). Despite their utility, the 60 

persistence and bioaccumulative characters of these compounds have resulted in increasing 61 

concern over their potential adverse effects to human health (Frederiksen, et al. 2009; Harrad, 62 

et al. 2010). Animal studies have shown PBDEs to pose potential health risks including: 63 

endocrine disruption, neurodevelopmental and behavioural outcomes, hepatic abnormality 64 

and possibly cancer (Birnbaum and Staskal 2004; Darnerud 2008; Hakk 2010; Wikoff and 65 

Birnbaum 2011). The few data available from human epidemiological studies imply effects 66 

on: male reproductive hormones (Johnson, et al. 2013; Palace, et al. 2010), semen quality 67 

(Akutsu, et al. 2008), thyroid hormone homeostasis (Turyk, et al. 2008), cryptorchidism 68 

(Crump, et al. 2010), behavioral factors in pregnant women (Buttke, et al. 2013), as well as 69 

lower birth weight and length (Chao, et al. 2007; Lignell, et al. 2013). Such evidence has 70 

contributed to complete EU bans for Penta and OctaBDE, and restrictions on the use of 71 

DecaBDE in addition to other restrictions within several jurisdictions on the manufacture and 72 

new use of the three commercial PBDE formulations across the world (Harrad, et al. 2010). 73 

Moreover, PBDEs associated with Penta and OctaBDE have been listed under the UNEP 74 



Stockholm Convention on POPs, while DecaBDE is currently under consideration for listing 75 

under Annexes A, B and/or C to the convention (Stockholm convention on POPs 2009). 76 

Despite such restrictions, human exposure to PBDEs is likely to continue for the foreseeable 77 

future, given their persistence and ubiquity of flame-retarded consumer materials (Harrad and 78 

Diamond 2006). 79 

Several studies have reported different levels of PBDEs in various human tissues including 80 

serum, placenta, liver, adipose tissue and breast milk from different European, Asian and 81 

North American countries in the last few years (Cui, et al. 2012; Frederiksen, et al. 2009). 82 

These biomonitoring data provide a direct measurement of the human body burden of BFRs 83 

resulting from various external exposure pathways (e.g. inhalation, ingestion of dust, diet and 84 

water) and contribute to the risk assessment of such compounds. However, the only available 85 

information on BFRs in UK human samples is for tri- to hexa-BDEs (major components of 86 

the PentaBDE commercial product) where the median concentrations for Σtri-to hexa-BDEs 87 

in human milk and serum samples collected in 2003 were 6.3 and 4.18 ng g-1 lipid weight 88 

(lw) respectively (Kalantzi, et al. 2004). In addition, BDE-209 was detected in 11 out of 153 89 

serum samples at concentrations from 0.015-0.240 ng g-1 lw) (Thomas, et al. 2006). 90 

Current understanding is that non-occupational human exposure to PBDEs occurs mainly via 91 

a combination of diet, air and indoor dust (either via ingestion or dermal contact) 92 

(Frederiksen, et al. 2009; Lorber 2008; Trudel, et al. 2011). However, the extent to which the 93 

known contamination of indoor environments with PBDEs influences human body burdens 94 

remains unclear. While some studies have managed to establish significant positive 95 

correlations between the levels of PBDEs in food or indoor dust and their concentrations in 96 

human milk or serum (Dunn, et al. 2010; Thomsen, et al. 2008; Wu, et al. 2007); such 97 

correlations could not be established in other studies (Roosens, et al. 2009; Wang, et al. 98 

2013). An alternative approach involved application of a simple pharmacokinetic model to 99 



predict the body burdens of PBDEs in American adults using intake data from different 100 

exposure pathways. The predicted body burdens were then compared to the reported levels of 101 

PBDEs in human matrices and the relationship between external and internal exposure of 102 

American adults to PBDEs was discussed (Lorber 2008). 103 

To address this paucity of UK human biomonitoring data for PBDEs, this study reports 104 

concentrations of Σtri-hexa BDEs and for the first time BDE-209 in 35 human milk samples 105 

from Birmingham, UK. These data are then used to estimate the dietary exposure of UK 106 

nursing infants under different exposure scenarios. Finally, a simple, one-compartment 107 

pharmacokinetic model is applied to predict the body burdens of the studied PBDEs in UK 108 

adults (using indoor air and dust levels reported elsewhere by our research group for 109 

Birmingham, UK (Abdallah and Harrad 2010; Harrad and Abdallah 2011; Harrad, et al. 110 

2006; Harrad, et al. 2008a). The model predictions are then compared to the concentrations of 111 

target compounds measured in the analyzed human milk samples (used as indicator of adult 112 

female body burdens) for further understanding of the relationship between external and 113 

internal human exposure to PBDEs in UK adults.  114 

Materials and Methods 115 

Sample collection 116 

Breast milk samples (each comprising ~50 mL) were obtained from 35 adult healthy 117 

primiparous volunteers via Birmingham Women’s Hospital Milk Bank after the study 118 

protocol was approved by Warwickshire Research Ethics Committee and the R&D 119 

Department in Birmingham Women’s NHS foundation trust. Informed consent was obtained 120 

from all the participants before sample collection. Samples collected in 2010 were kept in 121 

clean screw-capped glass containers and transferred from the Milk Bank to the laboratory in 122 

special ice boxes then stored at -20ºC until the time of analysis. Due to ethical regulations, 123 



the samples were collected in a completely anonymous fashion with all participant 124 

information kept strictly confidential. For the purpose of this study, only 1 milk sample was 125 

collected from each mother during her first 6 month of lactation.    126 

Sample extraction 127 

Accurately weighted aliquots of the freeze-dried samples (~ 2 g) were loaded into pre-128 

cleaneds 66 mL Accelerated Solvent Extraction (ASE 300, Dionex Inc., UK) cells containing 129 

1.5 g florisil, 3 g alumina, 5 g anhydrous Na2SO4 and hydromatrix (Varian Inc., UK) to fill 130 

the void volume of the cells, spiked with 25 ng of each of 13C-labelled BDE-47, BDE-99, 131 

BDE-153, BDE-183, BDE-209 as internal (surrogate) standards. The ASE cells were 132 

extracted with hexane:dichloromethane (1:9, v/v) at 90 ˚C and 1500 psi. The heating time was 133 

5 minutes, static time 4 min, purge time 90 s, flush volume 50%, with three static cycles. The 134 

lipid weight of the studied samples was determined gravimetrically on separate aliquots using 135 

a standard procedure (The European Standard EN 1528-2, 1996; see supplementary data for 136 

more details). 137 

 138 

Sample Clean-up 139 

The crude extracts were concentrated to 0.5 mL using a Zymark Turbovap® II (Hopkinton, 140 

MA, USA) then washed with 3 mL of 98% sulfuric acid. After phase separation, the hexane 141 

layer was transferred onto a florisil column topped with sodium sulfate and eluted with 25 142 

mL of hexane:dichloromethane (1:1, v/v). The eluate was evaporated to dryness under a 143 

gentle stream of N2 and the dried extract reconstituted in 200 µL of 13C-BDE-100 (25 pg µL-1 144 

in methanol) used as recovery determination (or syringe) standard to determine the recoveries 145 

of internal standards for QA/QC purposes. 146 



 147 

LC-APPI-MS/MS analysis 148 

Sample analysis was carried out using an LC-MS/MS system composed of a dual pump 149 

Shimadzu LC-20AB Prominence liquid chromatograph equipped with SIL-20A autosampler, 150 

a DGU-20A3 vacuum degasser coupled to a Sciex API 2000 triple quadrupole mass 151 

spectrometer. Details of the multi-residue analytical methodology used for separation and 152 

quantification of the studied PBDEs can be found elsewhere (Abdallah, et al. 2009). (A brief 153 

description is given in the supplementary data section). 154 

 155 

Comparison of PBDE intake to human body burdens. 156 

We have previously estimated UK adult intake of the target PBDEs via inhalation, dust 157 

ingestion and diet (Harrad and Abdallah 2011; Harrad, et al. 2006; Harrad, et al. 2008a; 158 

Harrad, et al. 2008b) (A summary of the assumptions on which these estimations are based is 159 

provided as supplementary data). To examine the relationship between these estimated 160 

intakes and the body burdens indicated via human milk samples, a simple one-compartment, 161 

first order pharmacokinetic (PK) model was used. The studied PBDEs were hypothesized to 162 

accumulate in lipids (the single compartment in the model). Therefore, the change in PBDE 163 

lipid concentration over time can be expressed by equation 1 (Lorber 2008). 164 
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Where CPBDE is the compound specific concentration in lipids (ng g-1 lw); IPBDE is the daily 166 

intake of the target BFR (ng day-1); AFPBDE is the absorption fraction (unitless); BL is body 167 

lipid mass (g) and KPBDE is the compound specific first order dissipation rate (day-1).  168 



If KPBDE is assumed to be constant over time then equation 1 can be solved into: 169 
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Where CPBDE (0) is the studied PBDE body lipid concentration at time 0 (initial concentration 171 

before intake).  172 

Assuming a constant dose over time at constant body lipid mass, the steady state PBDE lipid 173 

concentration can be calculated from equation 3. It is stressed that the assumption of steady 174 

state conditions is an inherent uncertainty with this approach. 175 
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Quality assurance/Quality control 177 

Good recoveries (68-106%) of the 13C-labelled internal standards were obtained for all the 178 

studied compounds (table SI-4). Further evaluation of the method extraction/clean up 179 

performance was achieved via spiking milk samples (n=6) with 13C-BDE-154 prior to freeze 180 

drying and excellent recoveries (>90%) were obtained (table SI-5).  181 

No target compounds were detected in method blanks (n=5; consisting of 2 g pre-extracted 182 

anhydrous sodium sulfate treated exactly as a sample) or field blanks (n=5; consisting of ~2 g 183 

of broken pieces of the glass milk containers treated exactly as a sample). Therefore, there 184 

was no need for blank correction of concentrations and method limits of detection (LOD) and 185 

quantification (LOQ) were estimated based on 3:1 and 10:1 S:N ratios respectively.  186 



The accuracy and precision of the analytical method applied for PBDE determination was 187 

assessed via replicate analysis (n=10) of NIST SRM 2585. The results obtained compared 188 

favourably with the reported reference values (table SI-6a).  189 

Results and discussion 190 

Concentrations of Σtri-hexa BDEs in UK human milk 191 

While none of the investigated hepta- to nona-BDE congeners were above LOQ, BDE-47 192 

was quantified in all the analysed samples contributing 34-74% to Σtri-hexa BDEs (Table 1). 193 

The predominant BDE congeners in the studied human milk were in the order BDE-47 > 194 

BDE-153> BDE-99. These 3 congeners constituted an average of 85% of the quantified Σtri-195 

hexa BDEs in the studied samples. This is in agreement with previous reports of PBDEs in 196 

human milk from various countries (Frederiksen, et al. 2009). Interestingly, a higher average 197 

level of BDE-153 (1100 pg g-1 lw) than that of BDE-99 (710 pg g-1 lw) was observed (Table 198 

1). While this differs from the relative contribution of these 2 PBDE congeners in the 199 

commercial PentaBDE formulations (La Guardia, et al. 2006), several authors have reported 200 

higher levels of BDE-153 than BDE-99 in human milk (Ben Hassine, et al. 2012; Dunn, et al. 201 

2010; Frederiksen, et al. 2009). In addition, a recent study has reported BDE-153 as the 202 

dominant congener in 5 human breast milk samples from California (Park, et al. 2011). 203 

Furthermore, a study of PBDEs in human milk from the Faroe islands also reported 204 

predominance of BDE-153 (Fangstrom, et al. 2005). However, such high levels of BDE-153 205 

could not be associated with high consumption of seafood diet in the studied population, 206 

indicating that dietary exposure was not the reason for the elevated BDE-153 concentrations 207 

in breast milk. Therefore, we hypothesize that the relatively higher contribution of BDE-153 208 

to Σtri-hexa BDEs in human milk samples than expected from the PentaBDE technical 209 

mixture may be attributed to 2 main factors:  210 



First, the high bioaccumulation potential of BDE-153 in lipids (as evidenced by a half-life of 211 

6.5 years compared to 1.8 and 2.9 years for BDE-47 and BDE-99 respectively (Geyer, et al. 212 

2004)) which indicates that over time, BDE-153 will become the predominant congener in 213 

the body. 214 

Second, the possible production of BDE-153 as a result of BDE-209 metabolic stepwise 215 

meta-meta debromination (Roberts, et al. 2011). This stepwise debromination was previously 216 

observed in peregrine falcon eggs from California, where BDE-153 was the dominant 217 

congener only in eggs with high levels of BDE-209 (Holden, et al. 2009). Interestingly, while 218 

concentrations of BDE-153 in this study were significantly (r = 0.443; p<0.01) correlated 219 

with those of BDE-209, no other statistically significant (p<0.05) correlation was observed 220 

between BDE-209 levels and any of the PBDE congeners or Σtri-hexa BDEs in the analyzed 221 

samples. This further supports the hypothesis that metabolic degradation of BDE-209 yields 222 

the highly bioaccumulative BDE-153 resulting in elevated concentrations of the latter in 223 

human milk. 224 

 While the levels of Σtri-hexa BDEs in this study (Table 1) are slightly lower than those 225 

reported in UK human milk samples collected in 2003 (n=54, average = 6.3 ng g-1 lw), these 226 

concentrations are still at the high end of those reported from other European, Asian, African 227 

and Australasian countries (Table 2). On the other hand, Σtri-hexa BDEs in UK human milk 228 

are substantially lower than those reported from USA and Canada (Table 2) which is in 229 

agreement with the far more extensive production and use of the PentaBDE technical 230 

formulation in North America than elsewhere (BSEF 2013). 231 

 232 

Concentrations of BDE-209 in UK human milk 233 

BDE-209 was above LOQ in 69% of the studied milk samples ranging from <0.06-0.92 ng g-234 

1 lw (Table 1). To the authors’ knowledge, this paper is the first to report concentrations of 235 



BDE-209 in UK human milk. Interestingly, these levels are at the lower end of BDE-209 236 

concentrations reported in human milk from other European countries (Table 2) despite the 237 

substantially higher levels of this BFR reported in UK indoor dust compared to the rest of 238 

Europe (Harrad, et al. 2010) and the reported higher usage of BDE 209 in the UK than other 239 

EU countries (EU Risk Assessment Report 2002). This may indicate that while indoor dust 240 

ingestion is the major pathway of external human exposure to BDE-209 (Harrad, et al. 2008a; 241 

Lorber 2008), the high levels of this compound in indoor dust do not significantly contribute 242 

to human body burdens. Our research group have recently reported on the very low 243 

bioaccessibility (~14%) of BDE-209 in indoor dust across the human gastrointestinal tract 244 

(GIT) following oral ingestion (Abdallah, et al. 2012), consistent with animal studies 245 

reporting low bioavailability (4-26%) of BDE-209 (Huwe and Smith 2007; Sandholm, et al. 246 

2003). Such poor uptake of BDE-209 from the GIT, combined with its very short human 247 

half-life (t0.5 = 7 days, (Geyer, et al. 2004) and its preferential partitioning to serum rather 248 

than milk fat (Mannetje, et al. 2012) may result in the apparently low influence of BDE-209 249 

concentrations in indoor dust on UK adult body burdens. 250 

 251 

Nursing infants’ dietary intake of PBDEs via breast milk: 252 

Breast milk is a recognized medium for direct transfer of POPs to nursing infants. To 253 

estimate the nursing infants’ dietary intake of the studied BFRs via breast milk, equation 4 254 

was used. 255 

)4.(..........
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Where Di is the estimated dietary intake (ng kg-1 bw day-1); CPBDE is the concentration of 257 

target PBDE in milk (ng g-1 lw); Flipid is the daily lipid intake via breast milk (g day-1) and Bw 258 

is the body weight (4.14 kg) (U.S. EPA 2002.). The infant’s daily lipid intake via breast milk 259 



(Flipid) was calculated based using U.S. EPA guidelines (U.S. EPA 2002.) which suggest an 260 

average intake of 702 mL milk per day for a 1 month old infant weighing 4.14 kg. The 261 

median lipid content of the analyzed milk samples was 3.47 g lipid per 100 mL of breast milk 262 

resulting in a daily lipid intake of 24.4 g lipid day-1. 263 

Table 3 shows the estimated dietary intake of target PBDEs via breast milk using different 264 

exposure scenarios (in which exposure factors (e.g. dust ingestion rate) were held constant 265 

but using different PBDE concentrations (e.g. 25th percentile) derived from our breast milk 266 

data). While the estimated average UK infant exposure to Σtri-hexa BDEs is much lower than 267 

that in North America (Park, et al. 2011), a 1 month-old infant in the UK is still more 268 

exposed to Σtri-hexa BDEs than in several other European countries via breast milk 269 

(Roosens, et al. 2010). Interestingly, the average exposure of a nursing infant to Σtri-hexa 270 

BDEs via breast milk exceeded upper-bound dietary intakes of UK adults and toddlers (UK 271 

Food Standards Agency 2006) (Figure 1), while for BDE-209, dietary exposure was the most 272 

significant exposure pathway for toddlers.  273 

The low concentrations of BDE-209 in the studied milk samples resulted in much lower 274 

exposure of UK nursing infants to this contaminant than the USEPA reference daily dose 275 

(RfD) of 7 µg kg bw-1 day-1.  Similarly, our estimated UK infant daily intakes (Table 3) are 276 

lower than the USEPA reference doses for BDE-47 (100 ng kg bw-1 day-1 for 277 

neurodevelopmental toxicity) and Σtri-hexa BDEs (2000 ng kg bw-1 day-1 for liver toxicity) 278 

(U.S.EPA 2008). However, the median level of Σtri-hexa BDEs in this study (4.98 ng kg-1 279 

lw) is slightly higher than that associated with congenital cryptorchidism (4.16 ng kg-1 lw; 280 

p<0.01) in Danish-Finnish newborn boys (Crump, et al. 2010) and generally in line with 281 

levels associated with irregular menstruation periods in a Taiwanese population (Chao, et al. 282 

2010). While this does not provide solid evidence on the potential health effects associated 283 

with the reported levels of PBDEs in human milk due to the lack of relevant studies in the 284 



UK, our results certainly raise concerns about potential adverse effects resulting from 285 

exposure of infants and mothers to PBDEs. Although breastfeeding mothers should be 286 

encouraged and supported due to the well-documented beneficial effects of breast feeding, 287 

scientific studies ought to characterize and measure the contaminants in breast milk so that 288 

protective measures may be provided, if necessary, to avoid any potential harmful effects on 289 

the mother or the newborn. 290 

 291 

Comparison of PBDEs intake to human body burdens 292 

To convert daily adult intakes of BFRs via different exposure pathways to expected body 293 

burdens, the bioaccessible fractions of each target compound  (Abdallah, et al. 2012) were 294 

used in equation 3 to substitute for AFPBDE in case of exposure via dust ingestion or diet, 295 

while the inhalable fraction was assumed to be 100% bioavailable. The body lipid mass was 296 

estimated based on a 25% body fat for an average adult weighing 70 kg (U.S. EPA 1997). 297 

Finally, KPBDE was calculated as 0.693/t0.5; where t0.5 is the half-life of the studied BFR in the 298 

body lipid compartment (Geyer, et al. 2004).  299 

In general, good agreement was observed between the predicted and the observed body 300 

burdens of main target PBDEs (table 4) given the simplicity of the model used (e.g. only one 301 

body compartment was studied), the dearth of information regarding the half-lives of 302 

different PBDE congeners in various compartments of the human body, and the uncertainty 303 

about the bioavailability of the studied compounds from different exposure routes.  304 

In addition, the PK model used here does not estimate human exposure via routes such as 305 

dermal contact and water intake. This is due to the high uncertainty and complete absence of 306 

experimental data on the extent of BFR absorption via dermal contact by humans coupled 307 

with the expected minimal contribution of water intake to the overall daily exposure to BFRs 308 

based on the very low aqueous solubility of PBDEs.  309 



Nevertheless, the good agreement between the predicted and observed results indicates that 310 

the studied exposure routes are the main pathways driving UK adult body burdens of PBDEs. 311 

This is in line with the findings of Lorber (Lorber 2008) who studied the exposure of 312 

Americans to PBDEs and reported indoor dust ingestion as the main route of exposure 313 

followed by diet and inhalation. However, more research is required for assessment of the 314 

bioavailability of various PBDEs via different exposure routes and determination of t0.5 of 315 

PBDEs in various human tissues. 316 
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Tables 539 

Table1: Statistical summary of PBDE concentrations (ng g-1 lw) in human milk samples 540 

(n=35) from Birmingham, UK. 541 

 BDE-

47 

BDE-

49 

BDE-

85 

BDE-

99 

BDE-

100 

BDE-

153 

BDE-

154 

∑tri-

hexa 

BDE-

209 

Average 3.30 <0.05 0.08 0.71 0.45 1.10 0.30 5.95 0.31 

SD* 3.25 0.08 0.15 0.67 0.39 1.05 0.30 5.35 0.30 

Median 2.80 <0.05 <0.05 0.69 0.38 0.91 0.21 5.00 0.25 

DF** (%) 100 20 46 94 89 97 77 100 69 

LOQ 0.043 0.045 0.051 0.055 0.053 0.058 0.059 N/A# 0.062 

Minimum 0.17 <0.05 <0.05 <0.06 <0.05 <0.06 <0.06 0.2 <0.06 

25th %ile 0.78 <0.05 <0.05 0.20 0.12 0.35 0.07 1.70 <0.06 

75th  %ile 5.15 <0.05 0.09 0.85 0.70 1.43 0.55 9.55 0.58 

Maximum 14.65 0.45 0.83 3.43 1.86 4.57 11.10 26.10 0.92 

* Standard deviation. 542 

** Detection frequency. 543 

# Not applicable. 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 



Table 2: Average concentrations of PBDEs (ng g-1 lw) in human milk samples from 552 
different countries. 553 

Location year number ∑tri-hexa 
BDEs 

BDE-
209 

Reference 

UK  2009-10 35 5.9 0.3 (this study) 

UK 2001-03 54 6.3 N/A* (Kalantzi, et al. 2004) 

Norway 2003-09 393 2.7 0.6 (Thomsen, et al. 2010) 

Sweden 1996-2006 276 3.4 N/A (Lignell, et al. 2011) 

France 2004-06 93 2.5 1.6 (Antignac, et al. 2009) 

Spain 2005 9 2.1 2.5 (Gomara, et al. 2011) 

Belgium 2006 22 3.0 5.9 (Roosens, et al. 2010) 

Italy 2005-07 13 1.3 N/A (Alivernini, et al. 2011) 

USA 2002 47 34.0 0.9 (Schecter, et al. 2003) 

Canada 2003 10 50.4 0.4 (She, et al. 2007) 

Australia 2007 10 7.6 0.3 (Toms, et al. 2009) 

China 2004 19 2.5 3.0 (Sudaryanto, et al. 2008) 

India 2009 45 1.1 0.4 (Devanathan, et al. 2012) 

Korea 2008-09 21 2.7 N/A (Kim, et al. 2011) 

Tunisia 2010 36 8.3 N/A (Ben Hassine, et al. 2012) 

* N/A not analyzed 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 



Table 3: Estimated exposure* (ng (kg bw)-1 day-1) of a 1 month old infant to the target 562 
BFRs via breast milk under different scenarios**. 563 

 
25th %ile Average Median 75th %ile 

BDE-47 4.6 19.3 16.3 30.3 

BDE-99 1.2 4.2 4.0 5.1 

BDE-100 0.7 2.7 2.2 4.2 

BDE-153 2.1 6.5 5.3 8.4 

BDE-154 0.4 1.7 1.3 3.2 

Σtri-hexa BDEs 10.0 34.9 29.4 56.4 

BDE-209 <0.1 1.8 1.2 3.4 

 564 

* Values below LOQ were assumed to be 1/2 LOQ. 565 

** Based on an average body weight of 4.14 kg and a daily lipid intake of 24.4 g lipid day-1 566 

(U.S. EPA 2002.). 567 

 568 
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 570 
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 573 

 574 



Table 4: Comparison of predicted adult body burdens arising from average and median 575 
daily exposures# to major target PBDEs with observed levels in human milk samples. 576 

 BDE-47 BDE-99 BDE-100 BDE-153 BDE-154 Σ5BDEs BDE-209 
Average intake* (ng day-1) 
Dusta 1.10 1.80 0.24 0.31 0.17 3.70 4270 
Dietb 35 30 5.60 7.00 2.80 80 310 
Airc 0.90 0.60 0.14 0.05 0.03 1.70 9.40 

Median intake* (ng day-1) 
Dusta 0.29 0.67 0.08 0.12 0.01 1.20 2975 
Dietb 35 30 5.60 7.00 2.80 80 310 
Airc 0.20 0.30 0.04 0.01 0.01 0.55 7.40 

Average predicted body burdens (ng g-1 lw) 
Dust 0.06 0.05 0.01 0.02 0.01 0.14 0.34 
Diet 3.33 1.39 0.38 1.15 0.16 6.40 0.03 
Air 0.11 0.05 0.01 0.01 0.01 0.20 0.01 
Sum 3.49 1.49 0.40 1.19 0.18 6.74 0.38 

Median predicted body burdens (ng g-1 lw) 
Dust 0.01 0.02 0.00 0.01 0.00 0.04 0.24 
Diet 3.33 1.44 0.38 1.15 0.16 6.45 0.03 
Air 0.03 0.03 0.00 0.00 0.00 0.06 0.00 
Sum 3.36 1.48 0.39 1.16 0.16 6.55 0.27 

Observed body burdens (ng g-1 lw) 
Average 3.28 0.71 0.45 1.09 0.28 5.92 0.31 
Median 2.77 0.68 0.38 0.9 0.21 4.98 0.24 

 577 
# Values below LOQ were assumed to be 1/2 LOQ. 578 

* Based on average adult dust ingestion rate of 20 mg day-1 (Jones-Otazo, et al. 2005), 579 

average inhalation rate of  20 m3 day-1 (Currado and Harrad 1998) and average adult weight 580 

of 70 kg.  581 
a Estimated from reference (Harrad, et al. 2008a); b Estimated from reference (UK Food 582 

Standards Agency 2006); c Estimated from references (Harrad, et al. 2006; Stapleton, et al. 583 

2009).  584 

 585 

 586 

 587 

 588 



Figure 1: Average estimates of dietary exposure (ng (kg bw)-1 day-1) of UK adults*, 589 

toddlers* and breast-fed infants** to PBDEs.  590 

 591 

* From reference (UK Food Standards Agency 2006); ** This study. 592 
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