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Abstract  23 

Polybrominated diphenyl ethers (PBDEs) are widely detected in humans with 24 

substantial exposure thought to occur in indoor environments and particularly via 25 

contact with indoor dust. Despite this, knowledge of how PBDEs migrate to indoor 26 

dust from products within which they are incorporated is scarce. This study utilises an 27 

in-house designed and built test chamber to investigate the relative significance of 28 

different mechanisms via which PBDEs transfer from source materials to dust, using a 29 

plastic TV casing treated with the Deca-BDE formulation as a model source. 30 

Experiments at both room temperature and 60 °C revealed no detectable transfer of 31 

PBDEs from the TV casing to dust via volatilisation and subsequent partitioning. In 32 

contrast, substantial transfer of PBDEs to dust was detected when the TV casing was 33 

abraded using a magnetic stirrer bar. Rapid and substantial PBDE transfer to dust was 34 

also observed in experiments in which dust was placed in direct contact with the 35 

source. Based on these experiments, we suggest that for higher molecular weight 36 

PBDEs like BDE-209; direct dust:source contact is the principal pathway via which 37 

source-to-dust transfer occurs.  38 

 39 
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Research Highlights 44 

• Transfer from a TV casing to dust of high molecular weight PBDEs examined  45 

• Direct source:dust contact effected rapid and most substantial transfer  46 

• Substantial source:dust transfer also occurred via abrasion of source47 



1.  Introduction 48 

Brominated flame retardants (BFRs) have numerous applications in indoor 49 

environments and are found ubiquitously in indoor air and dust, leading to human 50 

exposure and resultant concerns about adverse health impacts. As the majority of 51 

BFRs in current use are incorporated into the product using an additive process they 52 

are considered loosely bound to the product and are hence available for possible 53 

migration from the treated product to dust in particular, via different mechanisms. 54 

Hypothesised pathways of BFR migration to dust include: (1) volatilisation of BFRs 55 

from the treated product with subsequent partitioning to dust; (2) abrasion via 56 

physical wear and tear of the treated product, resulting in the transfer of particles or 57 

fibres of the treated product directly to dust (Wagner et. al., 2013, Webster et. al., 58 

2009); and (3) transfer via direct contact between the treated product and dust 59 

(Takigami et. al., 2008).  60 

 61 

One of the principal classes of additive BFRs are polybrominated diphenyl ethers 62 

(PBDEs), which have been in use since the 1970s (ATSDR, 2004) primarily as 63 

additives in polyurethane foam (PUF); printed circuit boards and microprocessor 64 

packaging in computers; thermoplastics, such as high impact polystyrene (HIPS) and 65 

acrylonitrile-butadiene-styrene (ABS) copolymers; and textiles (La Guardia et. al., 66 

2006, Harrad et. al., 2008). Despite their presence at elevated concentrations in indoor 67 

dust (up to 210 mg g-1 of BDE-209 (Batterman et. al., 2009)), relatively little is 68 

known about how PBDEs transfer to dust from goods within which they are 69 

incorporated. Combined with evidence about the potential adverse health impacts of 70 

PBDEs (USEPA 2008a, USEPA 2008b) this is of concern as dust has been shown to 71 

be an important exposure pathway of PBDEs for toddlers who spend extended time 72 

periods crawling over surfaces and display extensive hand-to-mouth contact ((Jones-73 

Otazo et. al., 2005); Stapleton et al., 2012). Moreover, it is estimated that US children 74 

(1-5 years) have higher PBDE intakes than adults, and that a combination of ingestion 75 

and dermal contact with indoor dust contributes 82% of overall total adult exposure of 76 

tri to deca PBDEs (Lorber, 2008). 77 

 78 

 79 

 80 



Emission chamber studies to date have focused largely on measurement of emissions 81 

to air of BFRs and other semivolatile organic compounds (SVOCs) from treated 82 

products (Rauert et. al., 2014c). The authors previous work has investigated the 83 

migration of hexabromocyclododecane (HBCD) from a textile treated with the HBCD 84 

technical formulation via migration pathways (1) and (2) (Rauert et. al., 2014a and 85 

2014b), however to their knowledge the migration of PBDEs via any migration 86 

pathway has yet to be studied. The mass transfer of phthalates, another class of semi-87 

volatile organic compound (SVOC), from wall paint and vinyl flooring to dust has 88 

been investigated in modified chambers (Clausen et. al., 2004, Schripp et. al., 2010). 89 

These studies demonstrated the migration of phthalates to dust occurred via both 90 

volatilisation with subsequent partitioning to dust, and via direct transfer as a result of 91 

contact between the source material and dust. This study for the first time investigates 92 

experimentally, the migration of higher molecular weight PBDEs (particularly BDE-93 

209) from a model source to dust via three different migration pathways, using an in-94 

house test chamber. The contribution of each pathway to total PBDE dust 95 

contamination is discussed, highlighting areas for future chamber experiments. 96 

 97 

2. Materials and Methods 98 

2.1. PBDE treated plastic TV casing and low concentration dust procurement 99 

The model source used in this study consisted of plastic TV casing, treated with 100 

PBDEs. It was received as small triangular pieces each weighing ~100 mg from the 101 

National Institute for Environmental Studies (NIES), Tsukuba, Japan. The sample was 102 

a composite of 50 cathode ray tube (CRT) back casings (high impact polystyrene) that 103 

had been melted and remoulded to form a material for interlaboratory tests. Four 104 

replicate analyses of the TV casing by NIES using methods reported previously 105 

(Takigami et al, 2008), determined the concentrations of PBDEs in the sample, listed 106 

in Table 1. The higher RSDs (> 20%) of some congeners suggest a degree of 107 

inhomogeneity in the distribution of these compounds throughout the TV casing. 108 

 109 

In order to more easily detect increments in PBDE concentrations in dust as a result of 110 

emissions from the model source, all experiments in this study used a dust sample 111 

containing low concentrations of PBDEs (ΣPBDEs = 280 ng g-1). This was derived 112 

from a vacuum cleaner bag taken from a private residence in Belgium in 2012 and 113 

stored at -18 ˚C thereafter. The dust was sieved at <500 μm before homogenisation 114 



via vortexing. Concentrations of PBDEs in this dust, determined from repeat (n=9) 115 

analyses are provided in Table 2. The low concentration dust showed a level of 116 

inhomogeneity for BDE-209 (230±180 ng g-1) and this may pose a limitation to this 117 

study, yet due to the low concentrations present, this dust was judged suitable for this 118 

study.  119 

 120 

2.2. Test Chamber Experiments 121 

Chamber experimental designs for investigating the migration of HBCDs via the first 122 

two proposed migration pathways have been reported previously (Rauert et. al., 123 

2014a, Rauert et. al., 2014b). The experimental details are summarised in the 124 

following section. 125 

 126 

2.2.1 Experimental design for investigating volatilisation with subsequent 127 

partitioning to dust. 128 

A cylindrical in-house designed and built test chamber was utilised for these 129 

investigations; constructed from stainless steel with dimensions of 10 cm diameter 130 

and 20 cm height to give a total chamber volume of 1570 cm3, and internal surface 131 

area of 785 cm2. Attachment of a Capex L2 Diaphragm Pump (Charles Austen Pumps 132 

Ltd, Surrey, UK) provided a constant air flow of 10 L min-1 through the chamber. 133 

This air flow provided an air exchange rate (400 times per hour) that would exceed 134 

that viewed in a ‘real world’ scenario (in general 4 times per hour) but was used due 135 

to equipment restrictions. The higher air flow may have resulted in removal of more 136 

volatile congeners before partitioning to dust, thereby leading to capture on the PUF 137 

plug. Polyurethane foam (PUF) plugs (140 mm diameter, 12 mm thickness, 360.6 cm2 138 

surface area, 0.07 g cm-3 density, PACS, Leicester, UK) were attached to the exit air 139 

vent to collect analyte emissions in both the gas and suspended particulate phases. 140 

The chamber was maintained at the desired temperature by immersion in a hot water 141 

bath with chamber internal temperature monitored using a LogTag TRIX-8 142 

temperature data logger (LoggerShop Technology, Dorset, UK). The chamber 143 

configuration is illustrated in Figure 1. The inclusion of an aluminium mesh shelf 144 

situated approximately 10 cm above the chamber floor, allowed physical separation of 145 

a 2 cm x 2 cm portion of the model source placed on the shelf from an aliquot of low 146 

concentration dust (200 mg) placed on a glass fibre filter (GFF, Whatman, 147 



Loughborough, UK) on the chamber floor. The chamber was sealed, with air flow, 148 

and experiments run for: (a) 24 hours at 60 °C, and (b) 1 week at room temperature 149 

(22 ± 1 °C). The 60 °C maximum temperature scenario was chosen to represent a high 150 

emission case of an electronic item heated during operation (Kemmlein et. al., 2003). 151 

Post experiment, the dust was analysed for concentrations of PBDEs. 152 

 153 

2.2.2 Experimental design for investigating abrasion. 154 

The test chamber was next utilised to investigate migration via abrasion of particles to 155 

dust. The experimental configuration employed for this purpose is illustrated in Figure 156 

2. The removable aluminium shelf was placed 3 cm above the chamber floor and a 157 

magnetic stirrer bar, 40 mm x 8 mm, (Fisher Scientific, Leicestershire, UK) placed on 158 

the shelf to act as the abrading mechanism. The model source was placed on the shelf 159 

and a known mass of low concentration dust (200 mg) placed on a glass fibre filter 160 

(GFF), situated on the chamber floor. The chamber was sealed (with air flow attached 161 

to collect emissions on polyurethane foam (PUF) plugs attached to the exit air vent) 162 

and placed on a magnetic stirrer plate, operated at 200 rotations per minute. In this 163 

way, abrasion was replicated via direct contact between the rotating stirrer bar and the 164 

treated product, with any particles thus generated, falling through the mesh shelf and 165 

incorporated into the dust sample below. This process was conducted at room 166 

temperature (22 ± 1 °C) to minimise volatilisation, and repeated for four experimental 167 

durations of 2, 3, 24, and 48 hours. This chamber abrasion process does not map 168 

directly on to real time abrasion of rigid polymeric materials like TV casing; instead it 169 

is aimed at mimicking long-term abrasion from repeated wiping/moving/bumping of 170 

the source product; all of which processes are likely accentuated by weathering (e.g. 171 

by sunlight) over time. Consequently, results from our chamber experiments were 172 

extrapolated to ‘real world’ abrasion. It was assumed that the PBDE mass transferred 173 

in 5 seconds of chamber abrasion equated to mass transfer occurring during 5 seconds 174 

of ‘real world’ abrasion. A ‘maximum transfer’ scenario of 5 seconds of abrasion per 175 

day was used in further calculations to determine the PBDE mass transferred per year 176 

from abrasion. 177 

 178 

Post experiment the dust aliquot was analysed for concentrations of BFRs. 179 

 180 



2.2.3 Experimental design for investigating transfer via direct contact between source 181 

and dust particles 182 

The chamber experimental design was modified to investigate migration pathway (3) 183 

and the experimental design is illustrated in Figure 3. The aluminium mesh shelf was 184 

now placed 10 cm above the chamber floor. The model source was placed on top of a 185 

clean GFF situated on the shelf, and a thin layer of dust (~150 mg) placed evenly on 186 

the top surface of the BFR treated product. The dust was lightly and carefully 187 

sprinkled over the surface of the product using laboratory tweezers. The chamber was 188 

sealed (with no air flow, to minimise disturbance of the dust) and left at room 189 

temperature (22 ± 1 °C) for either 24 hours or 1 week. Post experiment the dust was 190 

removed by gently agitating the source, homogenised through vortex mixing, and 191 

analysed. Each time period was repeated in duplicate with the entire dust sample 192 

analysed for BFRs. 193 

 194 

2.3. Determination of concentrations of PBDEs 195 

2.3.1. Chemicals 196 

All solvents used for extraction and analysis were of HPLC grade quality (Fisher 197 

Scientific, Loughborough, UK). Standards of PBDEs (BDE-47, 85, 99, 100, 153, 154, 198 

183, 209), labelled 13C-PBDEs (13C-BDE 47, 99, 100, 153, 209), were acquired from 199 

Wellington Laboratories (Guelph, ON, Canada). Florisil (60-100 mesh) and silica gel 200 

(60Å, 60-100 mesh) were provided from Sigma Aldrich (Dorset, UK). Concentrated 201 

sulfuric acid (95-97%) was obtained from Merck (Darmstadt, Germany). Glass fibre 202 

filters (GFF, 12.5 cm diameter, 1 μm pore size, Whatman, UK) were purchased from 203 

Agilent (UK). 204 

 205 

2.3.2. Sample analyses 206 

PUF and dust samples generated by test chamber experiments were extracted and 207 

analysed using modified in-house methods as reported previously (Rauert et. al., 208 

2014a, Rauert et. al., 2014b). Briefly, samples were spiked with 13C-PBDE analogues 209 

as internal (surrogate) standards prior to pressurised liquid extraction (ASE, Dionex 210 

Europe, UK, ASE 350) with hexane:dichloromethane (1:1 v/v). After clean-up of the 211 

crude extracts via elution through sulfuric acid-impregnated silica (44% w/w), the 212 

eluates were evaporated and made up to 100 µL using 13C-BDE 100 in methanol, as a 213 



recovery determination (or syringe) standard. Analyte separation was achieved with a 214 

Varian Pursuit XRS3 (Varian, Inc., Palo Alto, CA) C18 reversed phase analytical 215 

column (250 mm x 4.6 mm i.d., 3 µm particle size). Analysis was conducted with a 216 

dual pump Shimadzu LC-20AB Prominence liquid chromatograph (Shimadzu, Kyoto, 217 

Japan) equipped with a SIL-20A autosampler, and a DGU-20A3 vacuum degasser. 218 

Mass spectrometric analysis was performed using a Sciex API 2000 triple quadrupole 219 

mass spectrometer (Applied Biosystems, Foster City, CA) equipped with an APPI ion 220 

source, operated in negative ion mode. 221 

 222 

2.4. Quality Assurance 223 

Samples were analysed using established QA/QC procedures. Method blanks were 224 

conducted by extracting a pre-cleaned 66 mL cell filled with Hydromatrix and were 225 

run with each batch of samples, and a clean PUF was extracted for a PUF blank. 226 

Concentrations of all target PBDEs in all blanks were <LOQs. Method LOQs were 227 

calculated assuming 0.2 g of dust (calculated as ng g-1) or as ng per PUF/chamber 228 

rinse and was calculated as the concentration relating to a 10:1 signal to noise ratio. 229 

For 13C BDE-47, 99, 153 and 209, average recoveries ranged from 80 to 85%. 230 

Accuracy and precision of the analytical method was assessed via replicate analyses 231 

(n=15) of NIST SRM 2585 (organics in house dust). The results of these analyses 232 

compared with certified values as appropriate are supplied as supplementary data 233 

(Table SD-1). Experimental data is presented as mean values of replicate experiments 234 

± standard deviations.  235 

 236 

3. Results and Discussion 237 

3.1. Test chamber experiments examining source-to-dust transfer via volatilisation 238 

and subsequent partitioning to dust 239 

For the experiments conducted to examine transfer of PBDEs to dust via volatilisation 240 

from the model source and subsequent partitioning to dust, concentrations of PBDEs 241 

in the dust both pre and post experiment combined with masses detected on air exit 242 

PUFs and in chamber inner surface solvent rinses are given in Table 2. A clear 243 

increase in PBDE concentrations in dust, post experiment, was not observed in these 244 

experiments, with the exception of experiment 2 conducted over 24 h at 60 ˚C. 245 

Moreover, PBDEs were not detected above LOQs (0.8 to 4.5 ng per PUF) on the PUF, 246 



at either temperature, and only minor quantities were detected in the chamber surface 247 

rinses. These PUF and chamber rinse results further suggest that the PBDEs are not 248 

volatilising from the TV casing in this chamber configuration. We have previously 249 

reported on experiments (Rauert et. al., 2014a) using the same experimental 250 

configuration but in which the model source was a filter paper spiked with 100 ng 251 

each of BDEs 47, 99 and 100. In contrast to our observations when TV casing 252 

material was the model source, these earlier experiments revealed clear increments in 253 

post-experiment concentrations of these congeners in dust, even though lower 254 

concentrations were studied in the chamber in these filter paper experiments. 255 

Specifically, the masses of BDE-47, 99 and 100 present in the model source in the 256 

current experiments were 390, 960 and 330 ng respectively (up to ~10 times higher 257 

concentration than in the spiked filter paper experiments). A plausible explanation for 258 

these different outcomes is that PBDEs are more strongly bound to the TV casing than 259 

they are to the GFF, and are hence less available for volatilisation. Moreover, the 260 

melting and remoulding process used to produce the material tested may also have 261 

influenced the strength with which the PBDEs are bound to the polymer. In addition, 262 

the greater surface area:volume ratio of the GFF will likely contribute in more facile 263 

volatilisation of PBDEs. 264 

 265 

Although BDE-209 was detected in dust post-experiment in each experiment; in 3 out 266 

of 4 cases, concentrations were not substantially different to those present in the dust 267 

pre-experiment. This suggests that migration of BDE-209 from the TV casing to dust 268 

via this pathway was minimal. However, the second chamber experiment conducted 269 

for 24 hours at 60 oC reveal a sizeable increment in the BDE-209 concentration in the 270 

dust post-experiment (4800 ng g-1) compared to the starting concentration (230 ± 180 271 

ng g-1). A possible explanation is that the dust in this experiment was contaminated as 272 

a result of abrasion of the model source brought about by the air flow within the 273 

chamber. Although an increment was only observed for BDEs 183 and -209 in this 274 

specific experiment, this is likely because of the much lower concentrations of other 275 

target PBDEs in the TV casing, such that any casing particles transferred would make 276 

a negligible impact on dust concentrations. We have reported a similar effect in 277 

chamber experiments examining HBCD transfer from a fabric source to dust (Rauert 278 

et al., 2014b). However, we recognise that such air flow induced abrasion is less 279 

likely for the TV casing studied here. In conclusion, these chamber experiments 280 



suggest that migration from plastic TV casing to dust, of PBDEs consistent with 281 

treatment with the Deca-BDE formulation via volatilisation and subsequent 282 

partitioning to dust is minimal. We emphasise however, that our earlier work (Rauert 283 

et al., 2014b) suggests strongly that such migration will likely be substantial from 284 

source materials containing elevated concentrations of PBDEs more volatile than 285 

those present in the material tested here, in which BDE-209 predominated. 286 

 287 

3.2. Test chamber experiments for abrasion of particles to dust 288 

Table 3 shows the concentrations of target PBDEs detected in dust following the 289 

experiments described in section 2.1.2, in which source-to-dust transfer via source 290 

abrasion was examined. Post experiment there was a clear increase in concentrations 291 

of BDE-183 and BDE-209 in dust in each experiment conducted over all time 292 

intervals studied. Discernible increases in concentration were also observed for BDEs-293 

153 and 154 in 2 out of 4 experiments. Concentrations of other target PBDEs were not 294 

discernibly higher post-experiment in any instance.  295 

 296 

In contrast to the outcome of our previously reported abrasion experiments using 297 

HBCD treated curtains as the source (Rauert et. al., 2014b); there was no apparent 298 

relationship between abrasion duration and concentration of either BDE-183 or -209. 299 

This is likely attributable to the inherently inconsistent nature of the abrasion process. 300 

Specifically, it was particularly difficult in our experiments to abrade the TV casing 301 

pieces in a reproducible fashion, as they had a tendency to ‘flick’ around the chamber. 302 

Evidence that the increment observed in concentrations of some PBDEs in dust during 303 

these experiments is attributable to abrasion of the TV casing source is provided by 304 

comparison of congener patterns in the TV casing and the dust both pre- and post 305 

experiment. To facilitate this, the concentrations of PBDEs detected in each sample 306 

were log-transformed (to permit clearer visual comparison of the contributions of less 307 

abundant congeners) and expressed as percentage contributions to the sum of PBDEs 308 

Figure 4 compares the relative contributions of BDE-209 and BDE-183 in each 309 

sample in all four experiments, showing a similar pattern in the chamber generated 310 

abrasion dust samples to that in the TV casing, that differs from that in the dust pre-311 

experiment. The similarity between congener profiles in the TV casing and post-312 

experiment dust samples, that both differ from that observed in the dust pre-313 



experiment, provide strong evidence that PBDEs have entered dust as a result of 314 

abrasion of small particles of the TV casing.  315 

 316 

Our results also indicate that abrasion of the plastic material will not result in a linear 317 

relationship between abrasion time and PBDE concentration transferred to dust. The 318 

resultant PBDE mass transferred will be highly dependent on the size and PBDE 319 

concentration of the particles transferred during the abrasion process. As reported in 320 

our previous findings (Rauert et. al., 2014b) BDE-209 containing polymer particles 321 

observed in sampled indoor dust varied in measurable size from 30 to 250 µm in 322 

length. When coupled with the forensic microscopy investigation of ‘real’ dust 323 

samples reported previously (Rauert et. al., 2014b), our results suggest that abrasion 324 

of plastic fragments into dust is a feasible and important migration pathway. 325 

 326 

As highlighted earlier in 2.2.2, the abrasion induced in these test chamber experiments 327 

does not represent realistic abrasion from e.g 24 hour use of a TV, as this method is 328 

highly rigorous. However, we have interpreted these results as an acceleration test to 329 

mimic long-term abrasion. To achieve this aim an estimate of possible abrasion time 330 

of a TV casing needs to be made. Abrasion can occur from wiping/cleaning the 331 

product but it is likely that for TV casing abrasion would be further encouraged from 332 

degradation of the polymer due to high product operation temperatures (at least 60 °C 333 

(Kemmlein et. al., 2003)), or UV degradation encouraged by direct sunlight exposure, 334 

hence relating chamber results to the ‘real world’ is difficult.  335 

 336 

In the maximum PBDE mass transferred abrasion scenario, it was assumed TV 337 

abrasion occurred for about 5 seconds a day, which included cleaning (such as 338 

wiping) and enhanced polymer degradation leading to increased abrasion. The 2 hour 339 

chamber abrasion experiment may thus represent house dust concentration increment 340 

from abrasion over 1440 days (~4 years), where dust is contaminated with 22 000 μg 341 

of BDE-209 (the mass transferred during the 2 hour abrasion experiment), equating to 342 

5400 μg of BDE-209 contamination per year.  Other product uses of BFR treated 343 

plastics (such as computer keyboards) that have higher user contact time periods 344 

would be expected to suffer even more extensive abrasion. There are many 345 

uncertainties associated with these calculations, including the assumption that 346 



abrasion via contact with a rotating stir bar is representative of ‘real world’ abrasion. 347 

While acknowledging such uncertainties, the abrasion induced in these chamber 348 

experiments represents a first attempt to imitate migration via abrasion from a product 349 

treated with BFRs into dust and relate the migration to a ‘real world’ scenario. 350 

Abrasion will also depend on factors such as: the product material (e.g. plastic or 351 

fabric), how and how often the product is used, as well as its age and extent to which 352 

it is exposed directly to UV light and consequent weathering. We conclude from our 353 

studies that the ease with which abrasion can be replicated in these chamber 354 

experiments, suggests it is a feasible migration pathway. 355 

 356 

 357 

3.3. Test chamber experiments for direct contact between source:dust 358 

Table 4 presents the concentrations of PBDEs detected in dust both before and after 359 

experiments examining source-to-dust transfer as a result of direct contact (section 360 

2.1.3). The average BDE-209 concentration present in dust after the two different 361 

exposure durations examined, reveal greater mass transfer after 1 week (4,900 ng g-1), 362 

than after 24 hours (820 ng g-1). This suggests that BDE-209 has not reached 363 

source:dust equilibrium after 1 day of source:dust contact. While more detailed work 364 

is required to characterise the kinetics of such transfer, this observation has practical 365 

implications, as it implies that frequent cleaning to remove dust from source surfaces 366 

will minimise contamination of dust. Also of interest, replicate experiments for each 367 

exposure duration show large variations in concentrations of PBDEs in dust (590-368 

1000 and 1000-8700 ng g-1 for 24 hours and 1 week of exposure respectively). This 369 

may be due to an inhomogeneous distribution of PBDE concentration across the 370 

surface of the source in contact with dust; and/or as a consequence of an 371 

inhomogeneous distribution of the organic carbon content of the exposed dust. 372 

  373 

Figure 5 shows the PBDE congener pattern (expressed as percentage contributions to 374 

log-normalised ΣBDEs) in the dust post-experiment compared with that in the TV 375 

casing and in the dust pre-experiment. Due to the lower concentrations in the second 376 

24 hour duration experiment, only BDE-209 was detected, hence this experiment is 377 

not included in this comparison. A similar congener profile was seen in post-378 

experiment dust and the TV casing, that differed from that in the dust pre-experiment. 379 



These findings provide further evidence of substantial source-to-dust transfer of 380 

PBDEs in these experiments.  381 

 382 

The physical processes effecting migration of SVOCs between source and dust via 383 

direct contact are not completely understood. However, Schripp et. al. (2010) 384 

suggested SVOC transfer occurs as a result of contact between dust and gas phase 385 

contaminants present in the boundary layer directly above the source. Compounds 386 

with lower vapour pressures will be less abundant in this layer (and experience a 387 

slower release into the boundary layer to replace mass sorbed by dust) leading to 388 

lower mass transfer. Such a transfer mechanism would lead to congener ratios in post-389 

experiment dust that would be enriched in more volatile PBDEs compared to the 390 

pattern present in the source. While more evidence is required to fully evaluate the 391 

mechanisms via which source-to-dust transfer of PBDEs occurs via direct source:dust 392 

contact, inspection of Figure 5 presents it is not consistent with the hypothesis of 393 

Schripp et. al. (2010). An alternative explanation – advanced by Clausen et. al. (2004) 394 

-  is that transfer may occur as a consequence of direct contact between the source and 395 

dust particles. In this scenario, the role of the boundary layer is replaced by the dust 396 

particles, and the influence of vapour pressure is minimised. This explanation appears 397 

more consistent with our experimental observations. 398 

 399 

Only a few studies have investigated BFR concentrations in dust samples removed 400 

from putative sources in indoor microenvironment studies. Prominent amongst these, 401 

the study by Takigami et. al. (2008) reported elevated concentrations of BDE-209 in 402 

dust sampled directly from the back casings of various TVs compared to that in the 403 

surrounding floor dust. The components of the TV were also analysed for PBDEs, 404 

with BDE-209 the dominant congener in the rear plastic cabinets of the TVs and in all 405 

dust samples. As the congener profile in the dust sampled from the TV was similar to 406 

that in the TV components it was strongly suggested that extensive PBDE transfer 407 

occurred directly from the components in the TV casing to the dust, a similar finding 408 

to that seen in these chamber experiments. The rapid transfer and high PBDE masses 409 

transferred to dust further confirm that direct contact between dust and source 410 

materials is a potentially important pathway of BFR migration to dust, particularly for 411 

the low volatility BDE-209. 412 

 413 



3.4. Comparison of three migration pathways 414 

The migration of BDE-209 to dust in indoor microenvironments is strongly 415 

influenced by the abrasion and direct contact migration pathways. In contrast, 416 

volatilisation with subsequent partitioning to dust appears to exert little influence over 417 

mass transfer. This result is expected as the very low vapour pressure of BDE-209 418 

implies it will undergo minimal volatilisation. The abrasion chamber configuration 419 

was successful in abrading a plastic matrix containing PBDEs, with elevated 420 

concentrations detected in dust after as little as 2 hours of abrasion. The direct contact 421 

experiments transferred highly elevated concentrations to dust and the majority of the 422 

transfer was achieved in the first 24 hours of exposure.  423 

 424 

In conclusion, while further experiments are required, this study provides evidence 425 

that under ‘real world’ scenarios, migration of BDE-209 to dust is likely due to a 426 

combination of the three migration pathways reported here. Our study highlights areas 427 

requiring future research. We recognise that the experimental conditions examined 428 

here do not necessarily represent ‘real-world’ scenarios and hence results are 429 

presented as a preliminary indication of the relative importance of different pathways 430 

via which BDE-209 undergoes source-to-dust transfer. Future studies should also 431 

investigate a range of organic flame retardants, both those of higher volatility as well 432 

as those incorporated reactively as the relative importance of the pathways examined 433 

here will likely vary substantially from that observed here for additive, low volatility 434 

PBDEs.  435 
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Figures and Tables 511 

 512 

Figure 1: Schematic of test chamber configuration for volatilisation with subsequent 513 

partitioning to dust experiments. 514 

 515 

 516 
  517 



Figure 2: Schematic of test chamber configuration for abrasion experiments 518 

 519 

 520 
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Figure 3: Schematic of test chamber configuration for direct contact between source 522 

and dust experiments. 523 

 524 

 525 
 526 

527 



Figure 4: Relative contributions (%) of BDE-209 and 183 in the four chamber 528 

generated abrasion dust samples, the original TV casing and the low concentration 529 

dust pre-experiment, derived from log-normalised concentrations 530 
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 532 

 533 
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Figure 5: Relative contributions (%) of BDE-209 and 183 in direct contact 538 

experiment generated dust samples, the original TV casing and the low concentration 539 

dust pre-experiment, derived from log-normalised concentrations 540 
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Table 1: PBDE concentrations (μg g-1) and %RSD of 4 analyses of the Plastic TV 542 

back casing used as the model source in this study 543 

 544 

Analyte Concentration (μg g-1) %RSD 

BDE-47 1.3 15 

BDE-85 N/A N/A 

BDE-99 3.2 27 

BDE-100 1.1 39 

BDE-153 520 26 

BDE-154 59 22 

BDE-183 3 700 21 

BDE-209 90 000 19 

* N/A = not analysed 545 

 546 



Table 2: Concentrations of PBDEs (ng g-1) in dust pre (n=9) and post volatilisation experiments and mass of PBDEs (ng) collected on PUFs 547 

and in chamber solvent rinses, under two temperature scenarios 548 

  BDE-47 BDE-85 BDE-99 BDE-100 BDE-153 BDE-154 BDE-183 BDE-209 

Pre experiment (ng g-1) 10 ± 11 2 ± 2 27 ± 31 5 ± 5 6 ± 6  3 ± 3 2 ± 2 230 ± 180 

24 Hours at 60 °C 

Experiment 1 Dust (ng g-1) <4.5 <0.8 1.8 <0.7 4.1 <1.8 14 210 

 PUF (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 <1.0 <1.2 

 Chamber Rinse (ng) <4.5 <0.8 2.2 <0.7 3.8 <1.8 11 270 

Experiment 2 Dust (ng g-1) <4.5 <0.8 2.1 <0.7 <1.3 <1.8 <1.0 4800 

 PUF (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 <1.0 <1.2 

 Chamber Rinse (ng) <4.5 <0.8 <0.8 <0.7 1.8 <1.8 5.6 55 

1 week at 22 °C 

Experiment 1 Dust (ng g-1) <4.5 <0.8 1.5 <0.7 <1.3 <1.8 <1.0 230 

 PUF (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 <1.0 <1.2 

 Chamber Rinse (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 6.8 340 

Experiment 2 Dust (ng g-1) <4.5 <0.8 1.5 <0.7 <1.3 <1.8 2.0 120 

 PUF (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 <1.0 <1.2 

 Chamber Rinse (ng) <4.5 <0.8 <0.8 <0.7 <1.3 <1.8 3.7 150 

NB: LOQs calculated as the concentration relating to a 10:1 signal:noise ratio549 



Table 3: Concentrations (ng g-1) in dust pre experiment and post experiment for four 550 

different abrasion experimental durations 551 

 Pre-experiment 

(ng g-1) 

2 hours  

(ng g-1) 

3 hours  

(ng g-1) 

24 hours  

(ng g-1) 

48 hours 

(ng g-1) 

BDE-47 10 ± 11 <4.5 <4.5 <4.5 <4.5 

BDE-85 2 ± 2 <0.8 <0.8 <0.8 <0.8 

BDE-99 27 ± 31 3.2 1.9 17 2.5 

BDE-100 5 ± 5 <0.7 <0.7 <0.7 <0.7 

BDE-153 6 ± 6 120 <1.3 520 7.5 

BDE-154 3 ± 3 12 <1.8 93 <1.8 

BDE-183 2 ± 2 1100 41 3100 240 

BDE-209 230 ± 180 37 000 1300 91 000 15 000 

 552 

 553 

Table 4: Mean ± SD concentrations (ng g-1) of PBDEs in dust pre experiment and 554 

maximum and minimum concentrations (ng g-1) in dust post direct contact experiment 555 

for 24 hours and 1 week exposure (n=2) 556 

 Pre experiment (ng g-1) 24 hours (ng g-1) 1 week  (ng g-1) 

BDE-47 10 ± 11 <4.5 <4.5 

BDE-85 2 ± 2 <0.8 <0.8 

BDE-99 27 ± 31 <0.8 <0.8 

BDE-100 5 ± 5 <0.7 <0.7 

BDE-153 6 ± 6 (<1.3, 20) (29, 65) 

BDE-154 3 ± 3 <1.8 <1.8 

BDE-183 2 ± 2 (<1.0, 220) (140, 500) 

BDE-209 230 ± 180 (590, 1000) (1000, 8700) 

 557 

  558 



Table SD-1: Mean ± standard deviation of PBDEs in SRM 2585, %RSD and 559 

Certified values 560 

Analyte 
Measured mean ± Standard 

Deviation (n = 15) 
% RSD 

Certified Value 

(SRM2585, NIST) 

BDE-47 438 ± 59 13.6 498 ± 46 

BDE-85 37.7 ± 5.0 13.3 43.8 ± 1.6 

BDE-99 817 ± 61 7.4 892 ± 53 

BDE-100 140 ± 12 8.6 145 ± 11 

BDE-153 124 ± 15 12.0 119 ± 1 

BDE-154 76.7 ± 10 13.6 83.5 ± 2.0 

BDE-183 42.4 ± 5.9 14.0 43.0 ± 3.5 

BDE-209 2410 ± 300 12.3 2510 ± 190 

 561 

 562 

 563 

Reference: 564 

 565 

SRM 2585, Organic Contaminants in House Dust; National Institute of Standards and 566 

Technology, U.S. Department of Commerce: Gaithersburg, MD (2014). 567 

 568 
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