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Abstract 23 

Brominated flame retardants (BFRs) have been detected in indoor dust in many 24 

studies, at concentrations spanning several orders of magnitude. Limited information 25 

is available on the pathways via which BFRs migrate from treated products into dust, 26 

yet the different mechanisms hypothesised to date may provide an explanation for the 27 

wide range of reported concentrations. In particular, direct transfer of BFRs to dust 28 

via abrasion of particles or fibres from treated products may explain elevated 29 

concentrations (up to 210 mg g
-1

) of low volatility BFRs like decabromodiphenyl 30 

ether. In this study, an indoor dust sample containing a low concentration of 31 

hexabromocyclododecane, or HBCD, (110 ng g
-1

 ΣHBCDs) was placed on the floor 32 

of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a 33 

metal mesh shelf 3 cm above the chamber floor and abrasion induced using a stirrer 34 

bar. This induced abrasion generated fibres of the curtain, which contaminated the 35 

dust on the chamber floor, and ΣHBCD concentrations in the dust increased to 36 

between 4 020 and 52 500 ng g
-1

 for four different abrasion experiment times. The 37 

highly contaminated dust (ΣHBCD at 52 500 ng g
-1

) together with three archived dust 38 

samples from various UK microenvironments, also known to contain high 39 

concentrations of BFRs, were investigated with forensic microscopy techniques. 40 

These techniques included Micro X-Ray Fluorescent Spectroscopy, Scanning 41 

Emission Microscopy coupled with an Energy Dispersive X-ray Spectrometer, 42 

Fourier Transform Infrared spectroscopy with further BFR analysis on LC-MS/MS. 43 

Using these techniques, fibres or particles abraded from a product treated with BFRs 44 

were identified in all dust samples, thereby accounting for the elevated concentrations 45 

detected in the original dust (3 500 to 88 800 ng g
-1

 ΣHBCD and 24 000 to 1 438 000 46 

ng g
-1 

for BDE-209). This study shows how test chamber experiments alongside 47 

forensic microscopy techniques, can provide valuable insights into the pathways via 48 

which BFRs contaminate indoor dust. 49 

 50 

Keywords 51 

Brominated flame retardants, HBCDs, PBDEs, Migration pathways to dust, Product 52 

abrasion, Forensic microscopy, Test chambers 53 

  54 
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Research Highlights 55 

 HBCD contamination of dust via source material abrasion reproduced in test 56 

chamber 57 

 Fragments of plastic with elevated BDE-209 content identified in dust samples 58 

 Results suggest high BFR concentrations in dust due to source material abrasion 59 

60 
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1.  Introduction 61 

Brominated flame retardants (BFRs) are incorporated in numerous textile, plastic and 62 

foam products with extensive indoor applications. They are incorporated into 63 

consumer products in two main ways: (a) via an “additive” process where the BFR is 64 

physically mixed with the molten polymer, and (b) via a “reactive” process where the 65 

BFR is covalently bound to the polymer. BFRs incorporated via the additive process 66 

are considered loosely bound to the product and more available for release into the 67 

environment than those incorporated into materials in a “reactive” manner. Owing to 68 

their extensive indoor application and their low vapour pressures that favour air-to-69 

dust partitioning, BFRs such as polybrominated diphenyl ethers (PBDEs) and 70 

hexabromocyclododecane (HBCD) are ubiquitous and substantial contaminants of 71 

indoor dust (Besis and Samara, 2012; Covaci et al., 2006; Harrad et al., 2010a). 72 

Contact with indoor dust has thus been identified as an important human exposure 73 

pathway, particularly for young children who spend extended time periods crawling 74 

over surfaces and display extensive hand-to-mouth contact (Jones-Otazo et al., 2005). 75 

Consequently, improved understanding of the pathways via which BFRs migrate to 76 

dust from treated products can inform strategies to reduce exposure. To date however, 77 

limited experimental evidence is available about such migration pathways. Currently 78 

hypothesised pathways include: (1) volatilisation of BFRs from the treated product 79 

with subsequent partitioning to dust; (2) abrasion via physical wear and tear of the 80 

treated product (likely enhanced by UV degradation of the polymer), resulting in the 81 

transfer of particles or fibres of the treated product directly to dust; and (3) transfer 82 

via direct contact between the treated product and dust. Pathway (1) appears 83 

particularly relevant for more volatile BFRs incorporated additively into the product, 84 

and is expected to result in a homogeneous bromine distribution within the dust. In 85 

contrast, pathway (2) appears more applicable to the product-to-dust migration of less 86 

volatile BFRs, and/or those BFRs incorporated reactively into products. A non-87 

uniform, or heterogeneous, bromine distribution is anticipated to result from this 88 

migration pathway. Finally, pathway (3) also appears more relevant for additive BFRs 89 

for which migration from the product matrix to the surface and uptake by surface dust 90 

occurs via sorption or other physical processes such as capillary forces. A 91 

homogeneous bromine distribution is hypothesised for this pathway. 92 

 93 
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Emission chamber studies to date have focused largely on measurement of emissions 94 

to air of BFRs and related semivolatile organic compounds (SVOCs) from treated 95 

products (Rauert et al., 2014). In contrast, very few studies have investigated the 96 

migration of SVOCs from products to dust, with – to the authors‟ knowledge - no 97 

such studies existing for BFRs. Specifically, the migration to dust of phthalates (a 98 

class of SVOCs) has been simulated in test chamber experiments that investigated 99 

migration pathways (1) and (3) (Clausen et al., 2004; Schripp et al., 2010). Moreover, 100 

while we reported recently (Rauert et al., submitted) on test chamber experiments 101 

examining volatilisation with subsequent partitioning to dust of HBCDs (pathway 102 

(1)); controlled test chamber experimental studies of the migration of BFRs from 103 

products to dust via pathway (2), or abrasion, have yet to be reported in the literature 104 

for any SVOC.  105 

 106 

Forensic microscopy techniques such as energy dispersive Micro X-ray fluorescence 107 

spectroscopy (Micro XRFS) and scanning electron microscopy with energy dispersive 108 

spectroscopy (SEM/EDS) have been utilised previously to provide information on the 109 

origins of dust contamination with BFRs. Suzuki et al, (2009) used Micro XRFS to 110 

map dust samples, identifying particles of high bromine content, with isolated 111 

particles analysed by GC-HRMS to determine their PBDE content. In a parallel study, 112 

Webster et al, (2009) utilised Micro XRFS for identification of areas of high bromine 113 

content in dust samples containing high concentrations of decabromodiphenyl ether 114 

(BDE-209), followed by SEM/EDS to provide compositional and morphological 115 

information. However, the XRFS and SEM/EDS techniques used in these preliminary 116 

studies can only confirm the existence of bromine, so additional confirmation is 117 

required of the presence of BFRs. Using GC-HRMS, Suzuki et al (2009) were able to 118 

identify and quantify the content of PBDEs (pg per bromine rich fragment) contained 119 

within individual bromine (Br)-rich particles isolated from a dust sample, with BDE-120 

209 quantified in each isolated fragment. However, due to the uncertainty associated 121 

with the gravimetric determination, the mass of the particles themselves could not be 122 

measured. Subsequent studies by Ghosal and Wagner, (2013) and Wagner et al, 123 

(2013) reported the use of Raman micro-spectroscopy to study Br-rich particles, after 124 

identification with SEM/EDS, for non-destructive confirmation of the presence of 125 

PBDEs. Collectively, studies to date have all identified in dust samples the presence 126 

of particles or fibres originating from a product treated with BFRs, suspected to 127 
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migrate via abrasion or pathway (2). This pathway may provide an explanation for the 128 

high concentrations, up to 210 mg g
-1

 (Batterman et al., 2009), reported of the 129 

relatively non-volatile BDE-209 in some dust samples. 130 

 131 

This study for the first time mimics experimentally the abrasion of a BFR source 132 

material and the subsequent migration of the abraded material into dust. The dust 133 

sample generated by this experiment was analysed with a combination of forensic 134 

microscopy techniques to identify the abraded material. To further show the 135 

applicability of these selected microscopy techniques to providing information on 136 

BFR migration pathways to dust, three „real‟ dust samples, previously sampled from 137 

indoor microenvironments in the UK and containing high levels of BFRs, were 138 

analysed with the same sequence of techniques. This augmented further, the existing 139 

evidence that such highly contaminated dusts are due to the presence of a small 140 

proportion of fibres and/or particles abraded from BFR-treated materials.   141 

 142 

2. Materials and Methods 143 

2.1. Test Chamber Experiments 144 

2.1.2. Experimental design for investigating the abrasion migration pathway. 145 

A in-house designed and built test chamber was utilised to investigate migration 146 

pathway (2). The experimental design of the chamber is illustrated in Figure 1. 147 

Briefly, the chamber design consisted of a cylindrical stainless steel chamber (20 cm 148 

height, 10 cm diameter), with a removable aluminium mesh shelf. In this experiment, 149 

the shelf was placed 3 cm above the chamber floor and a magnetic stirrer bar, 40 mm 150 

x 8 mm, (Fisher Scientific, Leicestershire, UK) placed on the shelf to mimic abrasion. 151 

A piece of product treated with BFRs (the BFR source) was placed on the shelf and a 152 

known mass of dust placed on a glass fibre filter (GFF), situated on the chamber floor. 153 

The dust contained low concentrations of HBCDs and PBDEs (ΣHBCDs = 110 ng g
-1

 154 

and ΣPBDEs = 280 ng g
-1

). The chamber was sealed and placed on a magnetic stirrer 155 

plate, operated at 200 rotations per minute. In this way, abrasion was mimicked via 156 

direct contact between the rotating stirrer bar and the treated product, with the fibres 157 

and particles thus generated, falling through the mesh shelf and incorporated into the 158 

dust sample below. This process was conducted at room temperature, and repeated for 159 

four durations of 2, 3, 21, and 48 hours.  160 

 161 
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2.1.3. BFR source 162 

Fabric curtains treated with technical HBCD were obtained from the National 163 

Institute for Environmental Studies (NIES), Tsukuba, Japan. Concentrations of 164 

HBCDs in these curtains were: 18,000 mg/kg for α-HBCD, 7,500 mg/kg for β-HBCD 165 

and 17,000 mg/kg for γ-HBCD (Kajiwara et al., 2013). 166 

 167 

2.1.4. Archived dust samples 168 

Three UK dust samples were chosen for detailed analysis via forensic microscopy. 169 

These samples were previously identified as containing highly elevated 170 

concentrations of BDE-209 and HBCDs (Harrad et al., 2010b; Harrad et al., 2008) 171 

with the concentrations listed in Table 1. Each dust originated from a different 172 

microenvironment category (a residential living room, office and primary school for 173 

Dusts 1, 2, and 3 respectively) however little other information was available on 174 

microenvironment characteristics or putative sources for these samples. 175 

 176 

2.2. Forensic Microscopy 177 

2.2.2. Sample Preparation for Forensic Microscopy 178 

The bulk dust sample to be examined was mixed thoroughly before use. A small 179 

quantity of dust (1 mg) was evenly distributed in a monolayer, with tweezers, onto a 180 

25 x 25 mm square area of double sided carbon tab attached to a glass sample plate for 181 

analysis with Micro XRFS. 182 

 183 

2.2.3. Forensic Microscopy Analysis 184 

Archived and test chamber experiment-generated dust samples were mapped to locate 185 

areas of high bromine content with a Micro XRFS („μRay‟ μEDX-1200, Shimadzu 186 

Co.) equipped with a Rhodium X-ray tube and Nickel filter as the X-ray filter. The 187 

instrument was operated with a tube voltage of 50 keV, tube current of 1000 μA, and 188 

beam diameter of 50 μm as described previously, (Suzuki et al., 2009). High speed 189 

bromine mapping was performed using a 0.5 second dwell time with step sizes of 50 190 

μm in the x and y-directions. Initial total sample mapping was conducted 191 

continuously over the 25 x 25 mm sample area for 76 hours. To achieve more 192 

accurate characterisation of specific areas and possible fragments of high bromine 193 

content, areas identified as „of interest‟ were remapped over smaller regions of 4 x 3 194 

mm and 2 x 1.5 mm for 4.5 hours and 11 minutes respectively. Regions identified as 195 
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Br-rich were separated from the bulk sample and positioned on an aluminium stub for 196 

further analysis. Areas and fragments were then imaged with a LEXT OLS 4100 3D 197 

laser microscope (Olympus, Japan) using a 20 x magnification. SEM/EDS was 198 

performed on the sample areas with a JSM-7600F Field emission SEM (JEOL, Japan) 199 

equipped with a retractable backscattering electron detector and energy dispersive X-200 

ray spectrometer (EDS) analyser with silicon drift X-ray detector, with analysis 201 

performed at an accelerating voltage of 20 kV. Due to the close proximity of the 202 

bromine Lα (1.480 keV) and aluminium Kα (1.486 keV) lines, bromine was 203 

confirmed by the presence of the bromine Kα line at 11.907 keV. Because the Lα 204 

peak counts were at least 1000 times higher than the background aluminium peak 205 

count (from the aluminium stub), interference was considered negligible. Particles 206 

identified as having high bromine content with SEM/EDS were then removed with a 207 

pair of tweezers and analysed with a Nicolet Continuμm Microscope connected to a 208 

Nicolet 6700 Fourier transform infrared (FTIR) spectrometer (Thermo Scientific, 209 

Waltham, USA) using transmission infrared microscopy, and an MCT/A detector. 210 

Samples were placed in a diamond compression cell and resolution was 4 cm
-1

 over a 211 

determination range of 4000-650 cm
-1

 with a cumulative number of 128 (77 sec). 212 

Sample spectra searches were conducted with the spectral library database provided 213 

with the software package (OMNIC Software, Thermo Scientific). The spectra 214 

searches were conducted on the entire sample spectrum as well as separate peaks of 215 

interest to identify the closest library matches (represented as a % match). Particles 216 

identified as containing a close spectral match to BDE-209 were removed from the 217 

ATR objective under a microscope, with a pair of tweezers and collected. All particles 218 

from each dust (10 for dust 1 and 15 for dust 2) were combined prior to extraction and 219 

LC-MS/MS analysis to quantify BFR content.  220 

 221 

2.3. Determination of concentrations of HBCDs and PBDEs  222 

2.3.1 Chemicals 223 

All solvents used for extraction and analysis were of HPLC grade quality (Fisher 224 

Scientific, Loughborough, UK). Standards of HBCDs (α-HBCD, β-HBCD, γ-HBCD), 225 

BDE-209, labelled 
13

C HBCDs (α-, β-, γ-), d18 γ-HBCD and labelled 
13

C BDE-209 226 

and 
13

C BDE-100 were acquired from Wellington Laboratories (Guelph, ON, 227 

Canada). Florisil (60-100 mesh) and silica gel (60Å, 60-100 mesh) were provided 228 

from Sigma Aldrich (Dorset, UK) with concentrated sulfuric acid obtained from 229 
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Merck (Darmstadt, Germany). Glass fibre filters (GFF, 12.5 cm diameter, 1 μm pore 230 

size, Whatman, UK) were purchased from Agilent (UK). 231 

 232 

2.3.2 Sample analyses 233 

Dust samples generated by test chamber experiments and particles identified by FTIR 234 

as containing BFRs were extracted and analysed using modified in-house methods 235 

(Abdallah et al, 2008, 2009). A detailed description is provided as supplementary 236 

data. Briefly, samples were spiked with 
13

C-HBCD and PBDE analogues as internal 237 

(surrogate) standards prior to pressurised liquid extraction (ASE, Dionex Europe, UK, 238 

ASE 350) with hexane:dichloromethane (1:1 v/v). After clean-up of the crude extracts 239 

via elution through sulfuric acid-impregnated silica (44% w/w), the eluates were 240 

evaporated and made up to 100 µL using d18 γ-HBCD and 
13

C BDE-100 in methanol, 241 

as recovery determination (or syringe) standards. Analysis was conducted with a dual 242 

pump Shimadzu LC-20AB Prominence liquid chromatograph (Shimadzu, Kyoto, 243 

Japan) equipped with a SIL-20A autosampler, and a DGU-20A3 vacuum degasser. 244 

Mass spectrometric analysis was performed using a Sciex API 2000 triple quadrupole 245 

mass spectrometer (Applied Biosystems, Foster City, CA) equipped with an APPI 246 

(PBDEs) or ESI (HBCDs) ion source, operated in negative ion mode. 247 

 248 

3. Results 249 

3.1. Test chamber abrasion experiments 250 

Stirrer bar-induced abrasion in the test chamber was successful, with loosened fibres 251 

observed post-experiment on both the tested curtain and visible fibres in the dust on 252 

the chamber floor. The entire dust sample including all abraded fibres was extracted 253 

and analysed to determine concentrations of HBCDs. Figure 2 shows the pre- and 254 

post-experimental concentrations of HBCD diastereomers in dust for four replicates 255 

of this experiment. All four experiments were run for different time periods (2, 3, 21 256 

and 48 hours for experiments 1, 2, 3 and 4 respectively). However, although there is a 257 

two orders of magnitude increase in concentrations of HBCDs post-experiment in all 258 

cases; there is no clear relationship between the concentration in the dust and the 259 

duration of the abrasion experiment. The large concentration increase is consistent 260 

with the hypothesis that curtain fibres (of high HBCD concentration) have been 261 

incorporated into the dust. Other experiments in the same test chamber examining 262 

transfer of HBCDs via volatilisation from the same HBCD-treated curtains with 263 
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subsequent deposition to the same dust (Rauert et al., submitted) reported much lower 264 

concentrations in chamber dust post experiment (average 610 ng HBCDs/g), adding 265 

further weight to the hypothesis that different migration pathways may result in 266 

varying BFR concentrations in dust. The variable HBCD concentrations in these 267 

abrasion experiments is consistent with the abrasion of treated products in indoor 268 

microenvironments as „wear and tear‟ of a product will not be uniform and will 269 

depend on factors such as: the product material (e.g. plastic or fabric), how and how 270 

often the product is used, as well as its age and extent to which it is exposed directly 271 

to UV light and consequent weathering. The abrasion induced in these test chamber 272 

experiments is highly intensive (forced), so does not represent realistic abrasion from 273 

e.g. 48 hour use of a curtain. However, the results may be interpreted as an 274 

acceleration test to mimic long-term abrasion. For example, if we assume 10 seconds 275 

daily movement/wear and tear of the fabric from opening and closing curtains, then 276 

the 2 hour chamber abrasion experiment may represent house dust concentration 277 

increment from abrasion over 720 days. Abrasive contact with other fabrics such as 278 

sofa covers, will likely be far more frequent, and our range of experimental durations 279 

may be viewed as reflecting abrasion of a variety of domestic and commercial fabrics. 280 

The ease with which abrasion can be replicated in these chamber experiments, 281 

suggests this is a feasible migration pathway. The highest concentration (48 hour 282 

abrasion) dust sample was analysed further with forensic microscopy techniques. 283 

 284 

3.2. Microscopy analysis of the chamber generated dust sample 285 

The Micro XRFS identified fibres of high bromine content in the dust sample, and 286 

these were analysed in closer detail using the SEM for elemental confirmation. Figure 287 

3 presents the SEM backscattering image of a series of intertwined fibres and the EDS 288 

elemental profile, confirming the presence of bromine via the presence of both the Kα 289 

and Lα bromine spectral lines. The fibre was isolated and analysed on the FTIR for 290 

compositional information, with an 88% match returned for the polyester spectrum 291 

when searching the entire sample spectrum through the library. Peaks of interest in the 292 

sample spectrum were searched separately to increase the confidence of the match 293 

with the reference spectrum (in particular the strong stretch at ~1700 cm
-1

, 294 

representative of a C=O double bond stretch, and weak stretches around 3000 cm
-1

, 295 

representative of alkyl group stretches) and a 97% match for polyester was returned, 296 
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strongly suggesting the base polymer of these curtain fibres is a polyester. The HBCD 297 

spectrum was not distinguishable however, as the HBCD concentration in the curtain 298 

was below the LOD of the FTIR (5% HBCD content). Figure 4 shows the FTIR 299 

spectra of the fibre, alongside reference spectra of the polyester match, and the 300 

technical HBCD formulation for comparison. The limits of detection of the FTIR in 301 

particular, did not allow confirmation of HBCDs in identified fibres in this sample. 302 

However, the presence of Br-rich fibres were confirmed, suggesting the fibres 303 

originated from the HBCD treated curtain and demonstrating the applicability of these 304 

methods for identifying particles/fibres of high Br and high BFR content. To 305 

investigate this applicability further, three „real‟ indoor dust samples were 306 

investigated with the same combination of methods, to determine if BFR-containing 307 

particles/fibres could be identified in high concentration dust samples.  308 

 309 

3.3. Archived dust samples 310 

3.3.2. Forensic Microscopy investigation 311 

All three archived dusts were analysed with the Micro XRFS in triplicate. Areas 312 

containing high bromine content and bromine rich particles were identified in all 313 

samples with 2 to 10 bromine rich fragments per mg dust. Similarly, the study by 314 

Ghosal and Wagner, (2013) also reported ≤ 10 fragments per mg of analysed dust 315 

sample. As the incident X-ray excitation beam is a 50 μm square area, the mapping 316 

image provides an average of the bromine content in the sample rather than 317 

identification of individual bromine rich fragments. Moreover, particles smaller than 318 

50 μm may be missed, creating a selection bias with this method, and requiring 319 

further SEM/EDS analysis for bromine confirmation. The bromine rich particles 320 

identified in these samples ranged in size from 30 to 260 μm in length; however, it is 321 

possible larger fragments may have fractured during dust collection preparation 322 

techniques (vacuuming, sieving etc) or during application of the dust to the double 323 

sided carbon tab. Figure 5 presents the Micro XRFS optical images and bromine 324 

mapping images of typical sample areas containing bromine rich fragments. Again, 325 

identified areas of interest (1 x 1 mm) were removed and placed on an aluminium stub 326 

for further analysis. The areas and suspected Br-rich fragments were examined with a 327 

laser microscope to provide detailed optical and 3D laser images. All fragments were 328 

visually different from the surrounding dust particles having a white or slightly yellow 329 

colouring and sharp edges, suggesting they may be pieces of a fractured polymer 330 
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rather than typical dust organic matter. Following the imaging, SEM analysis 331 

performed in backscattering mode and followed by EDS was conducted on the 332 

suspect Br-rich fragments, confirming the presence of bromine in all identified 333 

fragments as well as the presence of antimony. The particles were not coated before 334 

SEM/EDS to prevent interference with the subsequent FTIR analysis, and as a result 335 

there was a charging effect on the images. However, in backscattering mode, clear 336 

regions of bromine and antimony (located in the imaged bright areas) were observed 337 

over the particle surface and confirmed with EDS. Due to the charging effect and the 338 

uneven topography of the sample surface, quantitative elemental analysis was not 339 

possible; rather the SEM qualitatively identified the presence of these elements. 340 

Bromine and antimony were observed in distinct pockets on each particle surface in a 341 

heterogeneous fashion, similar to the study by Wagner et al, (2013) who observed 342 

clear pockets of bromine on particle surfaces. Figure 6 shows the backscattering 343 

electron images of particles from all three dusts and the related EDS profiles, 344 

confirming the presence of bromine and antimony. The high bromine content areas 345 

originally identified with the Micro XRFS, were all shown to be associated with 346 

distinct individual particles and a homogeneous bromine distribution over dust 347 

particles was not seen, a result consistent with migration via pathway (2), rather than 348 

pathway (1). After SEM/EDS analysis, these identified individual particles were 349 

removed from the sample area with a pair of tweezers for FTIR analysis. All particles 350 

identified in dust 3 were < 50 μm long and too small for removal, thereby preventing 351 

further FTIR analysis. Hence in dust 3, it was only possible to confirm the presence of 352 

bromine in the particles.  353 

 354 

Eight particles from dust 1 and nine particles from dust 2 were analysed and all 355 

fragments from the same dust sample had very similar spectra, suggesting a common 356 

source. Library database searches of the spectra obtained from particles in dust 1 were 357 

obtained to identify closest component matches from the database. Firstly the entire 358 

spectrum was analysed for the top 3 matches in the database that combined, most 359 

closely matched the spectrum. An 88% match was found for the combination of BDE-360 

209, antimony trioxide and an acrylic based industrial coating. To improve the 361 

accuracy of the spectral matches, individual peaks and areas of interest in sample 362 

spectra were run separately through the software to find the top match in the database 363 

for each peak/area. The absorption spectrum in the range of 900 to 1400 cm
-1

 (often 364 
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due to C-O bond stretches, particularly from ethers) returned a 95% confidence match 365 

with BDE-209, while the strong absorption at ~700 cm
-1

 (possibly from a Sb-O bond 366 

stretch) combined with the broad absorption at 3100-3500 cm
-1

 (from a Sb=O stretch) 367 

returned a 91% match for antimony trioxide. To identify the product polymer, the 368 

strong absorbance at ~1750 cm
-1

 (often from a C=O, or C=N stretch) combined with 369 

the absorbance at 2800-3000 cm
-1

 (often from various C-H bond stretches) returned a 370 

98% match for a styrene acrylic. The same method was applied for spectra from 371 

particles in dust 2 with a 73% match obtained for the combination of BDE-209, 372 

antimony trioxide, and again an acrylic based industrial coating. Once more, 373 

comparison of individual peaks/areas resulted in higher confidence level matches with 374 

a 92% match for BDE-209, a 90% match for antimony trioxide, and a 94% match for 375 

an acrylic copolymer from the strong absorbance at ~1750 cm
-1

 and absorbance at 376 

2800-3000 cm
-1

. By investigating the spectral peaks/areas separately, the confidence 377 

of spectral matches with database spectra was improved greatly. The lower accuracy 378 

for the matched total spectrum from dust 2, is largely due to the presence of the extra 379 

broad peak at 1500 cm
-1

, reducing confidence in the accuracy of the matches. This 380 

peak was similar to the broad peak seen in the reference calcium carbonate spectra, 381 

suggesting calcium carbonate may have been used as a resin filler in the polymer 382 

fragments isolated from dust 2. 383 

 384 

The reference spectra for the acrylic copolymer, styrene acrylic and for an 385 

acrylonitrile-butadiene-styrene (ABS) copolymer are all similar, and hence are all 386 

possible matches for the polymer in the isolated fragments. ABS plastic was 387 

compared, as it is commonly flame-retarded with both BDE-209 and antimony 388 

trioxide, and it is thus plausible that the fragments may have originated from a source 389 

containing BDE-209 treated ABS plastic. Figure 7 presents the spectra, and software 390 

library database matches, for particles from dusts 1 and 2.  391 

 392 

The limitations with these methods, primarily the high LODs of the instruments, 393 

constrain these analyses to dust with very high concentrations of BFRs. The Micro 394 

XRFS detects bromine concentrations ≥ 0.1% in high speed mapping mode (0.5 sec 395 

dwell time) (Suzuki et al., 2009), and will identify with a high degree of confidence, 396 

high Br concentrations from fragments > 50 μm in length. Smaller fragments may not 397 

be identified, introducing a selection bias to this method, which is thus only suitable 398 
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for identifying Br-rich particles of Br content ≥ 0.1% and particle length > 50 μm (for 399 

this particular instrument). The LOD of the FTIR introduces further limitations to 400 

these methods, as the FTIR will only distinguish a BFR spectrum from the 401 

particle/fibre spectrum if present at > 5% BFR content. As seen with the analysis of 402 

the dust generated from abrasion of the HBCD curtain, where HBCDs were not 403 

identified with the FTIR in the isolated fibres, this is a restriction on successfully 404 

identifying BFRs in contaminated dust samples. Particle size is also a consideration 405 

with FTIR analysis, as particles need to be separated from the sample matrix for 406 

individual analysis with the diamond ATR objective. In this analysis, particles > 65 407 

μm were successfully removed and analysed on the FTIR, with smaller particles (e.g. 408 

from dust 3) unable to be isolated using the present methods. This again created a 409 

selection bias in particles that could be analysed for the presence of BFRs, the resin 410 

material and other additives in the particle. The SEM/EDS, although providing a more 411 

specific elemental analysis than the Micro XRFS, is only a qualitative measure of 412 

bromine (and other element) content. The uneven topography of the dust sample 413 

creates difficulties for the detector to receive an accurate signal and the charging 414 

effect (caused by an excess of electrons, normally minimised by carbon or platinum 415 

coating of the sample) also reduces accuracy of any quantitative measurement, hence 416 

this method can only be used to identify the presence of certain elements. 417 

Furthermore, the SEM spectral lines for bromine and aluminium interfere, so a high 418 

bromine content and the presence of the Kα bromine line is needed for confirmation. 419 

Similarly, the antimony Lα and calcium Kα lines interfere, providing difficulties in 420 

identifying these elements unless one (antimony) is present at a much higher 421 

concentration. 422 

 423 

3.3.3. Analysis of BFR concentration in isolated particles 424 

As many BFR containing particles as possible (10 and 15 from dust 1 and 2 425 

respectively), were collected and combined for determination of BDE-209 content. 426 

Table 1 lists the mass of BDE-209 (ng) quantified in the combined particles removed 427 

from each dust sample. On average, the particles removed in dust sample 1 were 428 

much smaller than in dust 2, and more particles were successfully removed from dust 429 

2. The combination of these factors means that the total particle mass analysed in the 430 

particles isolated from dust 2 was much greater, explaining the higher BDE-209 431 

content quantified in the isolated particles from this dust. As with previous studies 432 
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highlighted earlier, an accurate mass measurement could not be determined for the 433 

isolated particles, and hence the BDE-209 masses given can only confirm its very 434 

strong presence in these particles.  435 

 436 

4. Conclusions 437 

Abrasion of a HBCD treated curtain was successfully induced in a test chamber with 438 

forensic microscopy techniques identifying fibres of high bromine content throughout 439 

dust samples impacted by such induced abrasion. Application of these microscopic 440 

techniques to „real‟ indoor dust samples displaying highly elevated concentrations of 441 

BDE-209, identified 2 to 10 bromine rich fragments per mg dust. These fragments 442 

were also identified as polymeric in origin and to contain elevated masses of BDE-443 

209. Combined, this evidence suggests strongly that the highly elevated 444 

concentrations in these dust samples is due to the presence of such fragments that 445 

presumably arise via abrasion of friable polymeric material. Although these 446 

techniques are limited to the study of dust samples containing very high 447 

concentrations of BFRs; in this study they have shown that the abrasion migration 448 

pathway is a likely source of the elevated concentrations of BFRs detected in such 449 

indoor dust samples. This study raises questions about dust sampling and preparation 450 

techniques. Bromine rich particles, confirmed to contain BDE-209, of up to 260 μm in 451 

size were detected in this study, hence sample preparation techniques that sieve bulk 452 

dust samples to a particle size < 250 µm may potentially underestimate BFR 453 

concentrations in that dust sample. Moreover, the heterogeneity of the distribution of 454 

BFR-rich particles in the dust samples studied here, implies obtaining a representative 455 

subsample of such dusts for analysis is problematic. Consequently, analysis of 456 

replicate subsamples may be required to obtain an accurate picture of the BFR 457 

concentration in dust from such microenvironments. 458 

 459 
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Figures and Tables 545 

 546 

Figure 1: Schematic of test chamber configuration for the abrasion induction 547 

experiments. 548 
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Figure 2: Concentration (ng g
-1

) of HBCDs in dust both pre- and post-abrasion 553 

experiments (n=4) 554 
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Figure 3: a) SEM backscattering image of fibres in post-abrasion induction 558 

experiment dust sample and b) EDS elemental profile in same fibres 559 
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Figure 4: FTIR spectra of a fibre isolated from a post-abrasion induction experiment 565 

dust sample (top), with reference spectra for polyester (middle) and technical HBCD 566 

(bottom) 567 
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Figure 5: Micro XRFS images of areas/particles of high bromine content in dust 571 

samples containing elevated concentrations of BFRs:  572 

Images of areas in dusts 1,2 and 3 from top to bottom respectively. 573 

Left - Optical image of the mapped sample area and, Right - Bromine mapping image 574 

of the area, showing 50 μm square regions of high bromine in white/red/yellow 575 
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Figure 6: From top to bottom, bromine rich particles in dusts 1,2 and 3 respectively: Left – Laser microscopy optical images of particles with 581 

measured particle size. Right - SEM backscattering images of particles and related EDS elemental profiles. 582 

(120 μm)   583 

 (260 μm)   584 

 (35 μm)  585 
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Figure 7: FTIR spectra of particles isolated from: Left - Dust 1 and Right - Dust 2, 586 

featuring from top to bottom: dust sample, and reference spectra for BDE-209, 587 

Antimony trioxide, ABS copolymer and (dust 2 only) calcium carbonate  588 
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Table 1: Concentration (ng/g) of HBCDs and BDE-209 in archived dust samples 594 

(Harrad et al., 2010b; Harrad et al., 2008) and BDE-209 mass (ng) in combined 595 

isolated particles.  596 

 597 

 Concentration in bulk dust (ng g
-1

) Mass in combined isolated particles (ng) 

α-HBCD β-HBCD γ-HBCD BDE-209 BDE-209 

Dust #1 380 340 2 800 1 438 000 500 

Dust #2 280 70 140 280 000 1 300 

Dust #3 9 900 6 700 72 000 24 000 N/A 
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  599 
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Supplementary Data  600 

1.1 Sample preparation and extraction 601 

Sample extraction and purification was performed using slight modifications of in-602 

house published methods (Abdallah et al., 2009; Abdallah et al., 2008). Dust, PUFs 603 

and GFFs were extracted with pressurised liquid extraction (ASE-350, Dionex Europe, 604 

UK). PUFs and GFFs were packed into precleaned 66 mL cells using precleaned 605 

Hydromatrix (Varian Inc., UK) to fill the void. Dust samples were loaded into pre-606 

cleaned 66 mL cells containing 1.5 g of pre-cleaned florisil and Hydromatrix. Each 607 

cell was spiked with 4 ng each of 
13

C-labelled -, -, and -HBCD; 40 ng of 
13

C-608 

PBDE 47; 10 ng each of 
13

C-labelled PBDE-99 and PBDE-153; and 20 ng of 
13

C-609 

PBDE 209 as internal (surrogate) standards prior to extraction with 610 

hexane:dichloromethane (1:1 v/v) at 90
 
˚C and 1500 psi. The cell was heated for 5 611 

min, held static for 4 min and purged for 90 s, with a flush volume of 50%, for 3 612 

cycles. 613 

 614 

1.2 Clean up 615 

The ASE extracts and chamber inner surface solvent rinses were combined and 616 

concentrated to 0.5 mL using a Zymark Turbovap II (Hopkinton, MA, USA), then 617 

purified by loading onto SPE cartridges filled with 8 g of pre-cleaned acidified silica 618 

(44% concentrated sulfuric acid, w/w). The analytes were eluted with 30 mL of 619 

hexane:dichloromethane (1:1, v/v), with the eluate evaporated to dryness under a 620 

gentle stream of nitrogen. Samples were reconstituted to 100 μL with 2 ng of d18--621 

HBCD and 20 ng of 
13

C-PBDE 100 in HPLC grade methanol, used as recovery 622 

standards for internal standard recovery determination. 623 

 624 

1.3 LC-MS/MS analysis  625 

Target PBDEs and HBCDs were separated and analysed using modified, in-house 626 

published methods (Abdallah et al., 2009; Abdallah et al., 2008), using a dual pump 627 

Shimadzu LC-20AB Prominence liquid chromatograph (Shimadzu, Kyoto, Japan) 628 

equipped with a SIL-20A autosampler, and a DGU-20A3 vacuum degasser. Mass 629 

spectrometric analysis was performed using a Sciex API 2000 triple quadrupole mass 630 

spectrometer (Applied Biosystems, Foster City, CA) equipped with an APPI (PBDEs) 631 

or ESI (HBCDs) ion source, operated in negative ion mode. 632 

 633 
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1.3.1 PBDE Analysis 634 

A Varian Pursuit XRS3 (Varian, Inc., Palo Alto, CA) C18 reversed phase analytical 635 

column (250 mm x 4.6 mm i.d., 3 μm particle size) was used for separation of target 636 

PBDEs (47, 85, 99, 100, 153, 154, 183 and 209). A mobile phase programme based 637 

upon (mobile phase A) 1:1 methanol/water and (mobile phase B) 1:4 638 

toluene/methanol at a flow rate of 0.4 mL min
-1

 was applied for elution of the target 639 

compounds; starting at 85% (mobile phase B), increased linearly to 100% (mobile 640 

phase B) over 20 min, and then held for 10 min. The column was equilibrated with 641 

85% (mobile phase B) for 5 min between runs. MS/MS detection, operated in MRM 642 

mode, was used for quantitative determination of the PBDE congeners based on m/z 643 

420.878.8, m/z 500.878.8, m/z 578.878.8, m/z 658.678.8, m/z 486.678.8. 644 

13
C-labelled analogues were determined based on m/z 432.478.8, 512.478.8, 645 

590.678.8, and m/z 494.778.8. 646 

 647 

1.3.2 HBCD Analysis 648 

A Varian Pursuit XRS3 C18 reversed phase analytical column (150 mm x 4.6 mm i.d., 649 

3 μm particle size) was used for separation of target HBCDs (-, -, -). A mobile 650 

phase program based upon (mobile phase A) 1:1 methanol/water and (mobile phase 651 

B) methanol at a flow rate of 0.18 mL min
-1

 was applied for elution of the target 652 

compounds; starting at 50% (mobile phase B), then increased linearly to 100% 653 

(mobile phase B) over 4 min, held for 5 min before decreasing linearly to 88% 654 

(mobile phase B) over 1 min. The column was equilibrated with 50% (mobile phase 655 

B) for 4 min between runs. MS/MS detection, operated in MRM mode, was used for 656 

quantitative determination of the HBCD diastereomers, 
13

C-, and d18-labelled 657 

analogues based on m/z 640.479.0, m/z 652.479.0, and m/z 657.779 respectively. 658 

1.4 Quality Assurance 659 

Samples were analysed using established QA/QC procedures. Method blanks were 660 

run with each batch of samples. For 
13

C--, -, and -HBCDs, average recoveries 661 

ranged from 64 to 97% while for 
13

C-PBDE 47, 99, 153, and 209, average recoveries 662 

ranged between 69 and 80%. Accuracy and precision of the analytical method was 663 

assessed via replicate analyses (n=7) of NIST SRM 2585 (organics in house dust). 664 

The results of these analyses compared with indicative and certified values as 665 

appropriate are supplied in Table SD-1. 666 
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Table SD-1: Average concentrations (ng g
-1

) in 7 analyses of SRM 2585 and the reported certified PBDE (Stapleton et al., 2006) and indicative 667 

HBCD values (Keller et al., 2007) 668 

 669 

 BDE-47 BDE-85 BDE-99 BDE-100 BDE-153 BDE-154 BDE-183 BDE-209 α-HBCD β-HBCD γ-HBCD 

SRM Measured 

Value (n=7) 

347 ± 39 35.1 ± 4.6 730 ± 93 133 ± 13 126 ± 13 78.6 ± 13 44.4 ± 5.0 2460 ± 400  19 ± 5.7 5.6 ± 2.2 98 ± 35 

Certified/Indicative 

Values 

498 ± 46 43.8 ± 1.6 892 ± 53 145 ± 11 119 ± 11 83.5 ± 2.0 43.0 ± 3.5 2510 ± 190 19 ± 3.7 4.3 ± 1.1 120 ± 22 

 670 
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