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ARTICLE

ORBIT SIZE AND ESTIMATED EYE SIZE IN DINOSAURS AND OTHER ARCHOSAURS AND
THEIR IMPLICATIONS FOR THE EVOLUTION OF VISUAL CAPABILITIES

STEPHAN LAUTENSCHLAGER, *,1,2 RUNE F. ASTON,1 JESSICA L. BARON,1 JOHN R. BOYD,1 HAROLD
W. L. BRIDGER,1 VICTOR E. T. CARMONA,1 THOMAS DUCREY,1 OLIVE ECCLES,1 MORGAN GALL,1 SPENCER
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FRASERWESTON,1 KLARA J. WALLACE,1 TOM WHITEHOUSE,1 CHARLOTTE M. BIRD,1 and EMMA M. DUNNE 3

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.;
s.lautenschlager@bham.ac.uk;

2Lapworth Museum of Geology, Birmingham B15 2TT, U.K.;
3Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 90154 Erlangen, Germany

ABSTRACT—Vision is one of the most important senses for animals, allowing them to interact with their environment and
with further implications for evolutionary histories. However, relevant soft tissues, such as the eye and associated structures,
are not preserved in fossil vertebrates, limiting our knowledge of their visual capabilities. Here, we quantified absolute and
relative orbit size for 400 species of dinosaurs and other extinct archosaurs using linear measurements of the preserved
skeletal elements as a proxy for visual capabilities. Our results demonstrate that the orbit makes up on average 20% of
skull size with a strong and consistent correlation across all sampled groups. This trend is largely independent of temporal
distribution, species richness, and phylogeny. In fact, relative orbit size is narrowly constrained and did not surpass 45% of
skull size, suggesting physiological and functional controls. Estimated eye size was found to be absolutely larger in
herbivores, whereas carnivores tended to have smaller eyes absolutely and compared with skull size. Relatively large eyes
only occurred in small-bodied species and vice versa. However, eye size alone was not sufficient to discriminate between
different activity patterns or to characterize visual capabilities in detail.

SUPPLEMENTARY FILES—Supplementary files are available for this article for free at www.tandfonline.com/UJVP.
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INTRODUCTION

Vision is an important sense for animals, vital for hunting and
foraging, predator/prey interactions, mate choice, diel activity pat-
terns, locomotion, and other ecological activities (Hall & Heesy,
2011; Knell et al., 2013; Schmitz & Motani, 2010). In an evolution-
ary context, information on the visual capabilities of extinct
species can reveal how vision allowed adaptations to new environ-
ments, such as the transition from water to land (MacIver et al.,
2017) and the origin of nocturnality in the ancestors of
mammals (Angielczyk & Schmitz, 2014; Heesy & Hall, 2010).
However, the preservation of soft tissues is a rare occurrence in
fossil vertebrates and inferences on their anatomy, position, and
function generally have to be made based on the preserved skel-
etal elements. Eyes and surrounding tissues (such as the ocular
musculature, blood vessels, and nerves) are no exception and
are not preserved in fossil vertebrates so our knowledge of eye
anatomy and visual capabilities consequently remains elusive.

Nevertheless, advances in digital visualization and imaging
techniques have allowed reconstructions and inferences of
some soft-tissue anatomy in fossil species. Typical examples of
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this approach include the reconstruction of the gross brain and
neurovascular anatomy from physical or digital casts of the
brain cavity (Witmer et al., 2008) and the reconstruction of differ-
ent muscles based on the position of the attachment sites and
spatial constraints (Lautenschlager, 2013). Despite some inevita-
ble uncertainty (see Witmer [1995] and Witmer & Thomasson
[1995]) with such reconstructive methods, these techniques are
now routinely used in paleontology to obtain neurosensorial,
functional, and evolutionary data on extinct vertebrates (Ber-
trand et al., 2022; Bright, 2014; Cunningham et al., 2014).
In contrast, the detailed reconstruction of the complete eye

anatomy proves more challenging: unlike the brain and inner
ear, the eye is not tightly enclosed by bones, which could
provide information on its exact shape; similarly, the eyeball is
not in direct contact with the orbital bones but attaches via the
ocular musculature, which makes morphological inferences diffi-
cult. Previous studies have tried to address these problems by
using osteological proxies to obtain visual properties of fossil
species: for example, the dimensions of the sclerotic ring, albeit
rarely and often incompletely preserved, have been used to recon-
struct overall eye size as well as activity patterns in dinosaurs
(Choiniere et al., 2021; Schmitz & Motani, 2011), fossil birds
(Schmitz, 2009), ichthyosaurs (Fernández et al., 2005; Motani
et al., 1999), and the synapsid ancestors of modern mammals
(Angielczyk & Schmitz, 2014) (including the application of this
approach in modern vertebrates [Hall, 2008a, b]). Other studies
have focused on the orbit morphology itself and its implications
for cranial mechanics and dietary adaptation (Chure, 1998; Hen-
derson, 2003; Lautenschlager, 2022; Marcé-Nogué et al., 2015;
Rinehart et al., 2009), while only a handful of works have recon-
structed visual fields in extinct vertebrates (MacIver et al., 2017;
Stevens, 2006). Marugán-Lobón and Buscalioni (2003) quantified
orbit size in relation to rostral and braincase size as part of a larger
study on skull disparity of over 100 fossil (dinosaurs and ptero-
saurs) and 50modern archosaurs (birds) but this work did not con-
sider further functional or sensory implications of orbit size or its
temporal, ecological, or phylogenetic correlations. This scarcity of
studies is in stark contrast to the work on visual systems done in
extant animals (see Cerio & Witmer [2020], Martin [2017], and
Schmitz [2009] for a summary) and reflects the difficulty to infer
visual capabilities for fossil species.
Many of the previous studies have been hampered by small

sample sizes or a focus on a few species. This is often unavoidable
due to the dependence on the preservation of specific skeletal
elements (i.e., sclerotic rings) to obtain data. However, overall
eyeball size, if it can be obtained from fossils, can be used as an
informative proxy for visual capabilities in extinct species.
Although visual acuity depends on a number of factors, including
pupil aperture, lens configuration, eye shape, focal length, retina
anatomy, and others (Martin, 1983; Schmitz, 2009), there is a
general relationship between overall eyeball size and visual per-
formance (Martin, 1994; Schmitz & Motani, 2010): larger eyes
can accommodate more photoreceptive cells in the retina, can
capture more light, and have a larger focal length (Howland
et al., 2004; Martin, 1983; Schmitz & Motani, 2011), thereby
increasing the resolution of the captured image.
Recent studies have demonstrated a close relationship

between orbit size and eyeball size in avians (Schmitz, 2009)
and crocodilians (Cerio & Witmer, 2023). This relation allows
the estimation of eye size in dinosaurs and other archosaurs
based on their relative phylogenetic position bracketed by both
modern groups (Witmer & Thomason, 1995). Dinosaurs and
their kin further represent an ideal group for the investigation
of visual properties due to their fossil record covering more
than 150 million years and their well-understood phylogenetic
relationships. Furthermore, the diverse ecologies, dietary adap-
tations, and spanning several orders of magnitude in body size,
permit tests of if and how orbit and eye sizes changed with

these properties. Evidence from previous studies on orbit
shape in different archosauromorph groups suggests that orbit
size (and thereby presumably eye size) decreases relative to
skull size due to physiological and functional requirements (Lau-
tenschlager, 2022; Marugán-Lobón & Buscalioni, 2003). Results
from extant studies have recovered a negative allometric
relationship between eye size and body mass in crocodilians
(Cerio & Witmer, 2023) and other vertebrates (Howland et al.,
2004), and similar trends have been recovered in selected fossil
archosaurs (Marugán-Lobón & Buscalioni, 2003).

However, it has not been tested if the findings frommodern arch-
osaurs are also valid for extinct groups, such as dinosaurs and other
fossil archosaurs. Here, we reconstructed absolute and relative (in
comparison to skull length) eye size (Fig. 1A) in dinosaurs and
other archosaurs (including archosauromorphs as an outgroup) to
answer the following questions: (1)Does orbit size follow a negative
allometric trend as inmodern archosaurs and other vertebrates? (2)
Are absolute and relative orbit size influenced by ecological factors
(i.e., diet), temporal distribution, or phylogenetic relationships? (3)
Is orbit size biased by fossil species richness and the availability of
sampled specimens? (4) Are orbit size and estimated eye size
indicative of visual capabilities?

MATERIALS AND METHODS

Specimen Sampling

In total, 382 specimens of fossil archosauromorphs were
sampled from the literature. These largely correspond to speci-
mens sampled for a previous study (Lautenschlager, 2022) and
a complete list is available in the Supplementary Files. Due to
different measurements being collected some specimens had to
be removed from the original sample by Lautenschlager (2022)
as the full skull morphology was not preserved, whereas newly
described species were added to the current sample. Juvenile
specimens and other early ontogenetic stages (as far as obvious
from the fossil material) were disregarded. All species were
grouped here based on definitions in Ezcurra (2016): Archosaur-
omorpha (= all non-archosaurian archosauromorphs), Pseudosu-
chia (= all non-crocodylomorph pseudosuchians), Pterosauria,
Dinosauria (all non-avian dinosaurs), and Crocodylomorpha
(restricted to Mesozoic taxa). Dinosauria were further grouped
into: basal Ornithischia (all non-ornithopod ornithischians),
Thyreophora, Marginocephalia, Ornithopoda, Sauropodomor-
pha (all non-sauropod sauropodomorphs), Theropoda (= non-
maniraptoriform theropods), Maniraptoriformes, and Paraves.

For this study, the following measurements and information
were collected: (i) orbit diameter (= orbit size in this context), as
defined by the distance from the rostralmost margin of the lacri-
mal to the caudal-most margin of the postorbital (Fig. 1A).
Although more concrete points of reference (e.g., nasolacrimal
foramen as in Cerio & Witmer [2023]) would be desirable for
the consistency of measurements, this was not possible for the
sampled specimens as no feature was consistently present, pre-
served or figured. However, rostrocaudal orbit diameter has
been used in the past to quantify orbit dimensions across different
vertebrate groups (Hall, 2008b;Marcé-Nogué et al., 2015; Schmitz,
2009). In fact, orbit diameter is functionally more relevant in
representing eyeball space than homologous points. For specimens
with a distinctly non-circular orbit shape (e.g., keyhole or figure-
of-eight), only the dorsal portion of the orbit was considered for
the measurements, as only this portion of the orbit would have
been occupied by the eyeball. The ventral portion of these
orbits would have been filled by other soft tissues (e.g., muscles,
sinuses, etc.). (ii) Skull length, as defined by the distance from
the tip of the premaxilla to the caudal margin of the quadrate fol-
lowing the approach chosen by Marugán-Lobón and Buscalioni
(2003) and Bestwick et al. (2022) (Fig. 1A). Although skull
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shapes differ across archosauromorph groups, skull length rep-
resents a consistent comparative and quantifiable baseline avail-
able for a large sample size (in contrast to body mass estimates

often based on post-cranial bone measurements, which can
equally vary across groups). Furthermore, basal skull length (pre-
maxilla to quadrate distance) is an established metric for investi-
gating cranial disparity and ignores exaggerated ornamentation
and structures, such as ceratopsian frills. While the same is
true for braincase (postrostral) length, this information is often
more difficult to collect and braincase morphology may not
reflect functional and ecological adaptations (Bright et al., 2016).
(iii) Information on the taxonomic, dietary, and temporal distri-
bution was collected if not already in the data collected in Lau-
tenschlager (2022). (iv) The phylogenetic relationships of all
sampled species were represented by an informal supertree as
used in Lautenschlager (2022). Newly sampled specimens were
added accordingly, while species that were removed were
pruned from the tree.

Data collection for (i)–(iii) was performed as part of a year 1
undergraduate course at the University of Birmingham by 22
paleontology students over a period of 11 weeks. Training on
data collection was provided by the lead author at the start of
the course. The data set was divided into groups of approximately
20–30 species and each group was independently assigned to two
students to ensure consistency in the data collection. Where
measurements differed only negligibly the mean of the two
measurements was used. In case of substantial differences, the
measurements were checked and, if necessary, collected again by
the lead author. All data were further checked as part of a
marked course assignment for which each student had to write a
report about the data collected for their group of species.

Relative and Absolute Eye Size

Relative orbit size was calculated as the ratio between orbit
diameter and skull length. Absolute eye size was estimated
using the regressions for eyeball size vs. orbit size found for the
two extant archosaur groups, avians (Schmitz, 2009) and crocodi-
lians (Cerio & Witmer, 2023). As the regression equations for
both extant groups produced slightly different estimates and
given the wide range of orbit morphologies in fossil species, the
results were used to generate a lower and upper estimate for
eye size. For modern crocodilians, Cerio and Witmer (2022)
found slightly different relationships between orbit size and
eyeball size for crocodiles and alligators. Because the regression
for crocodiles is more similar to that of birds from Schmitz
(2009), the regression for alligators was used to account for the
maximal possible differences in the eyeball estimates. Even
then, both estimates led to very similar results. For orbit sizes
below 75 mm, the bird estimate produced larger values than
the crocodilian estimate and vice versa.

Correlation analyses of relative eye size (= orbit length against
skull length) were performed for all specimens as a single group
and also divided into different taxonomic and temporal sub-
groups. Taxonomic, temporal, and dietary groups were statisti-
cally compared using standard analysis of variance (ANOVA);
regressions were compared using analysis of covariance
(ANCOVA). Phylogenetic generalized least squares (PGLS)
regressions of the data were performed using the gls function
from the R package nlme (Pinheiro et al., 2018). The analyses
were performed in R version 4.3.0 (R Core Team, 2023) and
PAST (Hammer & Harper, 2001). Relative orbit size and absol-
ute eye size were mapped onto the archosauromorph supertree
to visualize distribution and evolution using Mesquite 3.7 (Mad-
dison & Maddison, 2021).

Species Richness

Inconsistent fossilization is known to affect the preservation
of individual skeletal elements and thereby morphological char-
acter availability (Brown et al., 2013; Cashmore et al., 2021). To

FIGURE 1. Absolute and relative orbit size in different archosauro-
morph groups. A, schematic illustration of obtained measurements. B,
boxplots showing orbit lengths, and C, relative orbit sizes for different
groups. ‘+’ and numerical values indicate mean value.
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evaluate whether total species richness and species sampling
may bias the data collection and inferences for orbit and eye
size evolution, results were compared with the total number
of species occurring in each time interval (at stage-level).
Fossil occurrence data for Mesozoic archosauromorphs were
obtained from the Paleobiology Database (PBDB; paleobiod-
b.org). These occurrence data were cleaned to remove trace
taxa (ichnotaxa) and egg taxa (ootaxa), as well as taxa that
were taxonomically indeterminate at species level. The total
number of species in this occurrence dataset was compared
with the number of species sampled for this study. No further
standardization was performed on the data. This face-value

(= raw, uncorrected) count of total species richness was then
plotted alongside species richness from the sampled data
(described above).

RESULTS

The measurement of orbit size across all sampled groups yields
a mean orbit size of 58.4 mm with a range from 5–185 mm
(Fig. 1B). This wide range reflects the several orders of magni-
tudes in body size difference and skull lengths (20–1750mm).
Compared against skull length, the mean relative orbit size is
0.2 showing that on average the orbit occupies ca. 20% of the

FIGURE 2. Scatterplots of orbit size against skull length for:A, all sampled species; B, non-archosaurian archosauromorphs; C, crocodylomorphs;D,
dinosaurs; E, pseudosuchians; and F, pterosaurs. Equation from phylogenetic generalized least square regression, r- and R2-values, and sample size
given for each.
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skull length (ranging from 0.15 in pterosaurs to 0.21 in dinosaurs)
(Fig. 1C). Relative orbit length follows a consistent pattern in
that there is a strong correlation between orbit size and skull
length. This correlation is statistically significant with an r =
0.88 and an R2 = 0.78 for the whole (log-transformed) sample
(Fig. 2A). The strength of correlation/determination (statistically
significant for all) differs somewhat for the various groups among
the data set (Fig. 2B–F). It is lowest for pseudosuchians (r = 0.85,
R2= 0.72), somewhat higher in pterosaurs (r = 0.87, R2 = 0.76)
and crocodylomorphs (r = 0.87, R2 = 0.76), and highest in non-
archosaurian archosauromorphs (r = 0.91, R2 = 0.84) and dino-
saurs (r = 0.93, R2 = 0.86). Among the major groups, the
regressions for non-archosaurian archosauromorphs and ptero-
saurs differ statistically significantly from all other groups

(Supplementary Table 1). In all studied groups, orbit size scales
negatively with skull size.

The relationship between orbit size and skull length differs
also among the sampled dinosaur groups (Fig. 3). Sauropodo-
morphs (r = 0.97, R2 = 0.94) and sauropods (r = 0.96, R2 = 0.92),
basal ornithischians (r = 0.97, R2 = 0.95), non-maniraptoriform
theropods (r = 0.95, R2 = 0.90), and maniraptoriforms (r = 0.97,
R2 = 0.95) show strong correlations. However, values for basal
ornithischians and sauropods are likely influenced by the small
sample size (n = 6 and n = 7) for these groups. On the other
hand, thyreophorans (r = 0.79, R2 = 0.61) have the weakest corre-
lation among the sampled groups, although the sample size is
limited as well and the morphological heterogeneity among the
group is high. Within dinosaurs, most groups are significantly

FIGURE 3. Relative orbit size in different dinosaur groups. Scatterplots of orbit size against skull length for:A, basal Ornithischia;B, Thyreophora;C,
Marginocephalia; D, Ornithopoda; E, Sauropodomorpha; F, Sauropoda; G, Theropoda; H, Maniraptoriformes; and I, Paraves. Equation from least
square regression, r- and R2-values, and sample size given for each.
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different in their regressions from each other, with the exception
of basal ornithischians and paravians (Supplementary Table 2).
The comparison of the model residuals shows that orbit sizes

for most groups fall close to the predicted value based on the
regressions with only a few species having substantially
smaller values than expected (Fig. 4A). Notable exceptions are

found in dinosaurs (in which a considerable part of the group
have orbit sizes both larger and smaller than predicted) and
pterosaurs (with several species having smaller orbit sizes than
predicted). For the major groups within dinosaurs, basal
ornithischians, ornithopods, sauropodomorphs and sauropods,
maniraptoriforms, and paravians show orbit sizes larger than
expected (Fig. 4B).

When observed through time, Jurassic species (irrespective of
group) have the lowest correlation between orbit size and skull
length (r = 0.84, R2= 0.71). The strength of the correlation
decreases slightly from the Triassic (r = 0.87, R2 = 0.75)
and increases again in the Cretaceous (r = 0.89, R2 = 0.79)
(Fig. 5A–C). However, the latter signal is probably due to the
overwhelming majority of dinosaur species in the sample during
the Cretaceous. Similarly, orbit size increases from the Triassic
(mean = 40.9 mm) to the Cretaceous (mean = 67.8 mm) (Fig.
5D). However, relative orbit size remains largely constant
throughout the Mesozoic (mean = 0.19–0.20) (Fig. 5E), likely
due to a concomitant trend to increase skull length (Fig. 5F). Sep-
arated by diet, herbivorous species appear to have on average
larger orbits (Fig. 5G), but also larger skulls (Fig. 5I). For relative
orbit size, carnivorous species appear to have on average the smal-
lest orbits compared with skull length (mean = 0.17), whereas
omnivores have the relatively largest orbits (mean = 0.26) with sig-
nificant differences between all three dietary groups (Fig. 5H).

In a phylogenetic context, there is a consistent trend throughout
all groups to start with a moderate to high relative orbit size in the
respective basal species and a decrease in relative orbit size in
derived members (Fig. 6A). This is particularly prominent in
basal archosauromorphs, pterosaurs, sauropodomorphs, and
ornithischians in general. Relative orbit size distribution centers
around a value between 0.15 and 0.20, but with a bimodal distri-
bution in non-archosaurian archosauromorphs, and to a lesser
degree also in dinosaurs and pterosaurs (Fig. 6C). Within Dino-
sauria, a similar trend is found in basal ornithischians and margin-
ocephalians, whereas non-maniraptoriform theropods and
paravians show a trimodal distribution (Fig. 6D). Absolute eye
size shows an almost inverse trend to relative orbit size. All
groups show small eye sizes below 50 mm in basal species. In
non-archosaurian archosauromorphs, crocodylomorphs, and pter-
osaurs eye sizes do not increase substantially across the respective
phylogenies. In contrast, pseudosuchian eye size increases moder-
ately in derived species. In dinosaurs, several groups stand out for
increased eye size. These include sauropods, non-maniraptoriform
theropods, ornithopods, and derived marginocephalians with an
estimated eye size of 70–125 mm (Figs. 7 and 8). These trends
are very similar for eye size estimates based on modern crocodi-
lian and avian data.

To evaluate whether variations in relative orbit and absolute
eye size are correlated with total species richness, both measure-
ments were compared with counts of species per time interval at
stage-level resolution. The number of sampled species tracks
closely with total species richness regardless of the group (Fig.
9). Stages with a high number of species allowed for more speci-
mens to be sampled. On the other hand, this trend is not found
for relative orbit size. Measurements are consistently ranging
between 0.1 and 0.4 with little fluctuation throughout the Meso-
zoic for the entire sample. Stages with a large number of species
do not show a wider range of relative orbit sizes; neither do low
species numbers translate to restricted ranges of relative orbit
size. This trend is also found in dinosaurs and crocodylomorphs
and, tentatively, in non-archosaurian archosauromorphs and
pseudosuchians as well. However, the short temporal range
makes it difficult to identify large-scale trends. It is only in pter-
osaurs that peaks in species richness (moderately) coincide with
larger orbital ratio variability. Results for absolute eye size are
very similar. Estimated eye size remains largely constant
throughout the Mesozoic and it is only at the end of the

FIGURE 4. Residual values indicating orbit sizes above and below
regression results (positive values indicating orbit sizes higher than pre-
dicted for given skull size, negative values indicated smaller orbit sizes
than predicted). Comparisons shown between A, major archosauro-
morph groups; and B, major dinosaur groups. Red dotted line indicates
regression value.
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Cretaceous that larger eye size ranges are observed. This
however may be related to the appearance of large-sized dino-
saurs rather than the increase in species richness.

DISCUSSION

Relative and Absolute Orbit Size

The results demonstrate that the evolution of orbit size in dino-
saurs and other archosauromorphs follows a consistent trend,

largely independent of temporal distribution, species richness,
and phylogenetic affinities. There is a strong correlation between
orbit size and skull length in all sampled groups. However, non-
archosaurian archosauromorphs and pterosaurs were found to
differ significantly from other major groups in their correlation.
This is not surprising considering the evolution of unusually
large skull sizes in groups such as erythrosuchids (Bestwick
et al., 2022) and the diversity of skull morphologies in pterosaurs
(Foth et al., 2012). Within dinosaurs, the level of correlation is
even stronger among individual groups. Basal ornithischians,

FIGURE 5. Orbit size, skull size, and relative orbit size through time and for different dietary categories. Scatterplots of orbit size against skull length
in the: A, Triassic; B, Jurassic; and C, Cretaceous. Boxplots comparing: D, orbit size; E, skull length; and F, relative orbit size during the Mesozoic;
andG–I, for different dietary categories. Equation from least square regression, r- and R2-values, and sample size given inA–C, statistical significance
(p < 0.05) in D–I indicated by *.
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sauropodomorphs, sauropods, and all theropods have particularly
high r andR2 values. Themajority of dinosaur groups differ signifi-
cantly in their correlations from each other with the exception of
basal ornithischians, which may be explained by the retention of
plesiomorphic skull morphologies. However, in some groups,
such as basal ornithischians (n = 6) and sauropods (n = 7) these
signals are likely an artifact of small sample sizes, as also noted
by Marugán-Lobón and Buscalioni (2003) in their study demon-
strating that the sample size has not substantially increased in
the last 20 years. Nevertheless, in most dinosaur groups, orbit
size can be predicted from skull length confidently.
Orbit size and eye size scale negatively with skull length in

dinosaurs and other archosauromorphs and these results
confirm other studies which recovered a negative allometric
relationship in vertebrate eyes more generally, including differ-
ent groups of birds, mammals, reptiles, and fishes (Brooke
et al., 1999; Hall & Ross, 2007; Howland et al., 2004; Kiltie,
2000; Ross et al., 2007). These and other studies compare orbit
and eye size (or eye mass) to overall body mass, rather than
skull length as in this study. However, considering that archosaur-
omorphs, and in particular dinosaurs, span several orders of

magnitude in body size, skull length was considered a more
reliable metric for this study and less prone to skew the corre-
lation due to extremes in body size (Bestwick et al., 2022).

Although absolute orbit size ranges between 5–185 mm, rela-
tive orbit size is more narrowly confined and does not exceed a
ratio of 0.45 or 45% of the skull length (one outlier, the pterosaur
Anurognathus ammoni with an orbit ratio of 0.55 aside). In fact,
mean relative orbit size for all sampled species is 0.2 and varies
only slightly (0.15–0.21) in individual archosauromorph groups
(Fig. 1C). A similar mean value and upper threshold for relative
orbit size was found by Marugán-Lobón and Buscalioni (2003)
with a maximum of 40% for the modern Falco tinnunculus
(common kestrel). Interestingly, a similar maximum limit of rela-
tive orbit size appears to be more widely present in non-mamma-
lian and mammalian synapsids (Marugán-Lobón et al., 2022).
While Permo–Triassic non-eucynodont synapsids reach
maximum orbit ratios of 45%, this value is considerably lower
(ca. 30%) in Mesozoic eucynodonts and mammals (Marugán-
Lobón et al., 2022).

Whenmajor archosauromorph groups are considered, the orbit
size of most species generally falls within the range predicted by

FIGURE 6. Relative orbit size in phylogenetic context.A, Relative orbit size mapped onto archosauromorph supertree, comparedB against time, and
frequency distribution shown for C, major archosauromorph and D, dinosaur groups. Abbreviations: Arch., Archosauria; Croc., Crocodylomorpha;
Dino., Dinosauria; Mani., Maniraptoriformes; Margi., Marginocephalia; Orni., Basal Ornithischia; Ornipo., Ornithopoda; Par., Paraves; Pseudo.,
Pseudosuchia; Ptero., Pterosauria; Sauro., Sauropoda; Sauromo., Sauropodomorpha; Ther., Theropoda; Thyr., Thyreophora.
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the phylogenetic linear regression. Dinosaurs deviate the stron-
gest with a large proportion of the species having smaller or
larger than predicted values. This is likely an effect of the large
range of skull and body sizes spanning several orders of magni-
tude. In particular ornithopods, sauropods, and maniraptori-
formes have larger orbit sizes than expected, all of which show
trends towards gigantism in the course of their evolution (Apal-
detti et al., 2018; O’Gorman & Hone, 2012; Zanno &Makovicky,
2013) but relatively small skull sizes (Bestwick et al., 2022). It is
noteworthy, that, although giant body sizes are present in the
group as well, non-maniraptoriform theropods tend to have
smaller orbit sizes than predicted. In particular, Carnosauria
and Tyrannosauroidea have skull sizes proportional to body
sizes but small orbits due to functional constraints as an adap-
tation to a hypercarnivorous ecology (Lautenschlager, 2022).

Ecological Factors and Sampling Biases

The orbit ratio remains constant through the Mesozoic
(Figs. 5E, 6B, 9) despite substantial fluctuations in species

richness, the emergence of new clades, extinction events, and epi-
sodes of faunal turnover. Diet appears to play some role in
shaping relative orbit size with statistically significant differences
recovered between carnivores, herbivores, and omnivores. Still,
mean relative orbit size varies only slightly between species of
different dietary adaptations (0.17–0.26). This consistency
across large time scales, dietary categories and phylogenetic
groups suggests that relative orbit size is generally constrained.
Looking at skull geometry and disparity more generally,
Marugán-Lobón and Buscalioni (2003) found that orbit size is
substantially constrained in size relative to braincase size
(which itself is strongly correlated with skull length) in fossil
and modern archosaurs. In contrast, rostrum length was found
to be more variable, suggesting loosened constraints in that
skull region possibly related to plasticity in response to diet.

It is likely that the aforementioned constraints on absolute and
relative eye size are limited physiologically and functionally and
cannot be increased above certain thresholds without compromis-
ing advantages in visual acuity. Large eyes are physiologically
expensive, require a substantial amount of nutrients to maintain,

FIGURE 7. Estimated eye size based on data frommodern birds in phylogenetic context.A,Relative orbit size mapped onto archosauromorph super-
tree, B, compared against time, and frequency distribution shown for C, major archosauromorph andD, dinosaur groups.Abbreviations:Arch., Arch-
osauria; Croc., Crocodylomorpha; Dino., Dinosauria; Mani., Maniraptoriformes; Margi., Marginocephalia; Orni., Basal Ornithischia; Ornipo.,
Ornithopoda; Par., Paraves, Pseudo., Pseudosuchia; Ptero., Pterosauria; Sauro., Sauropoda; Sauromo., Sauropodomorpha; Ther., Theropoda;
Thyr., Thyreophora.
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and can have other negative consequences, such as added weight,
counteracting camouflage, limiting locomotor capabilities, and sus-
ceptibility to damage (Hall & Heesy, 2011; Laughlin et al., 1998;
Lönnstedt et al., 2013; Martin & Katzir, 2000; Moran et al., 2015;
Zaret & Kerfoot, 1975). Additionally, recent research has demon-
strated that large, circular orbits are mechanically less efficient
than elliptical and keyhole-shaped orbits, which in turn restrict
eyeball size due to their anisometric shape (Lautenschlager, 2022).

Implications for Eye Size and Visual Acuity

Among vertebrates, ichthyosaurs are considered to have
evolved the largest eyes with a diameter of 300 mm or more,
which exceeds the largest eyes of modern marine mammals
considerably (ca. 110 mm eye diameter in the blue whale)
(Howland et al., 2004; Motani et al., 1999; Nilsson et al.,
2012). Among terrestrial vertebrates, horses and zebras (ca.
40–60 mm), and ostriches and emus (up to 70 mm) have the
absolutely largest eyes, whereas large megaherbivores such as
elephants and giraffes have only a more moderate eye size in

absolute terms (ca. 40 mm) (Howland et al., 2004; Schmitz,
2009). Visual acuity is thought to be relatively poor in the
latter, relying more on other senses (Howland et al., 2004).
Dinosaurs and most of the other archosauromorph groups
exceed these eye sizes based on the estimates obtained from
orbit dimensions. The mean eye size for all sampled species is
58.4 mm, substantially driven by dinosaurs in which mean eye
size is 72.5 mm but reaching a maximum of up to 125 and
140 mm, depending on the avian or crocodilian estimates,
respectively. However, it should be noted that the eye size esti-
mates are based on modern archosaurs with maximum orbit
sizes of 80 mm. All orbit/eye size correlations above this
threshold are based on the extrapolation of the data as no
modern archosaurs exist with orbit sizes comparable to large
ornithischians (up to 185 mm) and theropods (up to 172 mm).
While this extrapolation is unavoidable it leads to larger differ-
ences between the crocodilian-based and avian-based eye size
estimates. For Shantungosaurus (the species with the largest
orbit and eye estimate respectively) the difference between
estimates is 16 mm (or around 12%). For orbit sizes below

FIGURE 8. Estimated eye size based on data frommodern crocodilians in phylogenetic context.A,Relative orbit size mapped onto archosauromorph
supertree, B, compared against time, and frequency distribution shown for C, major archosauromorph and D, dinosaur groups. Abbreviations:Arch.,
Archosauria; Croc., Crocodylomorpha; Dino., Dinosauria; Mani., Maniraptoriformes; Margi., Marginocephalia; Orni., Basal Ornithischia; Ornipo.,
Ornithopoda; Par., Paraves; Pseudo., Pseudosuchia; Ptero., Pterosauria; Sauro., Sauropoda; Sauromo., Sauropodomorpha; Ther., Theropoda;
Thyr., Thyreophora.
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FIGURE 9. Relative orbit size and estimated eye size compared with species richness.A–F, relative orbit size, andG–L, estimated eye size (averaged
from data based on modern birds and crocodilians) plotted against face-value (= raw, uncorrected) species richness and sample size for individual
stages of the Mesozoic. A, G, all archosauromorph species; B, H, non-archosaurian archosauromorphs; C, I, crocodylomorphs; D, J, dinosaurs; E,
K, pseudosuchians; and F, L, pterosaurs. Correlation coefficient and statistical support (p < 0.05 indicated by *) given for each correlation.
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80 mm, this difference is less than 1 mm (or less than 1%).
Absolute eye size estimates for the largest species should there-
fore be considered with caution and within the upper and lower
estimates provided by the modern archosaur data.
Large eye size is a general proxy for increased visual per-

formance. For eyes with a large diameter, an equally larger
retinal surface area can be assumed (Schmitz, 2009) and
several studies have found a relationship between eye size
and activity patterns and foraging/hunting behavior (Baker &
Venditti, 2019; Potier et al., 2017; Thomas et al., 2006).
Larger eyes generally operate better in low-light conditions
or can resolve more details in a given light setting (Thomas
et al., 2006; Warrant, 2004), implying that they are predomi-
nantly found in nocturnal and crepuscular species. However,
the strict correlation between eye size and visual capabilities
(and by inference behavioral properties) is more complicated.
Visual performance is not just dependent on overall eye size
but also on aperture and axial length. A larger aperture can
potentially be achieved in large eyes, but the correlation is
not straightforward (Schmitz, 2009). The same is true for
axial length, but as eyeballs are not necessarily fully spherical,
a large axial length can be achieved in eyes with a small diam-
eter-to-length ratio (e.g., tubular eyes) (Schmitz & Motani,
2010).
It is further difficult for some vertebrate groups to confidently

estimate eye size from orbit dimensions and shape (e.g., pri-
mates; Kirk, 2006) and eye size is more reliably recovered in
large species (Schmitz, 2009). However, eye size estimates
based on data for modern birds and crocodilians are very
similar and the phylogenetic bracketing approach suggests that
these estimates are reasonable for fossil archosauromorphs.
Based on the current data, large eyes appear predominantly in

large-sized dinosaurs irrespective of diet, including sauropods,
non-maniraptoriform theropods (e.g., Ceratosauria, Abelisauri-
dae, Tyrannosauridae), and derived ornithopods and marginoce-
phalians. While large eyes have been hypothesized to correlate
with predatory behavior to aid in hunting (Lautenschlager,
2022), this can be ruled out as evolutionary pressure for herbivor-
ous groups. However, non-predatory foraging requires good
sensory acuity as well. Herbivores capable of locating plant
resources efficiently or discriminating between low- and high-
quality plants will benefit from increased food and nutrient
intake. For many modern mammalian herbivores, olfactory
cues produced by flowers and fruits, as well as leaf odors are rel-
evant for selective foraging (Stutz et al., 2016), including some of
the aforementioned megaherbivores with moderately sized eyes
and low visual acuity, such as elephants (Schmitt et al., 2018);
others rely on additional visual cues during foraging (Hirata
et al., 2019; Howery et al., 2000; Stutz et al., 2017). Large eye
sizes and, therefore, high visual acuity in dinosaurian megaherbi-
vores are therefore not surprising and may have aided foraging in
these groups.
Reconstructions of the endocranial anatomy of ornithopod

and marginocephalian dinosaurs show enlarged olfactory
bulbs in both natural and digital endocasts (Knoll et al., 2021;
Lauters et al., 2022; Paulina-Carabajal et al., 2022) suggesting
a good sense of smell. Optic lobes, which represent the brain
region responsible for processing visual information, were not
identified in ornithischian dinosaurs, with the exception of
Leaellynasaura (Rich & Rich, 1989). However, these structures
are usually obscured by the venous sinuses and may not be
reconstructed due to poor specimen preservation, hence the
absence of discernible optic lobes on endocasts is not necess-
arily evidence for a reduced size. As such, it is possible that
large ornithopod and marginocephalian dinosaurs may have
relied on a combination of olfactory and visual cues during
foraging. Evidence from increased relative olfactory bulb size
in theropods and neornithines suggests odor detection was an

important part of hunting behavior (Zelenitsky et al., 2009,
2011). However, herbivorous and/or omnivorous theropods,
such as ornithomimosaurs and oviraptorids, possessed the
lowest olfactory acuity among non-avian theropods (Zelenitsky
et al., 2009), but, based on data from this study, above-average
relative orbit sizes (0.26–0.35) and estimated eye sizes of up to
68 mm.

Similarly, large eyes in both carnivorous and herbivorous
species could have been an adaptation to hunting and foraging
in low-light conditions as found in some modern bird species
(Thomas et al., 2006). However, eye size alone is not sufficient
to discriminate between different activity patterns and further
information such as aperture size from preserved sclerotic
rings would be required (Schmitz & Motani, 2010, 2011). Fur-
thermore, different adaptations in the soft-tissue architecture
of the eye, such as photoreceptor types (cone cells for color
detection vs. rod cells for detection of light intensity) and
density on the retinal surface, are common in nocturnal
animals or those living in low-light environments (Warrant,
2004). As such, these features are not preserved in the fossil
record and could further confound the identification of diel
activity patterns. Similarly, sclerotic rings are only rarely pre-
served and the sample of species for which activity patterns
have been reconstructed (Schmitz & Motani, 2011) is too low
to make meaningful comparisons with our data. However,
existing reconstructions indicate that nocturnality (inferred
from orbit and sclerotic ring dimensions) is not correlated
with body size in different dinosaur species (Choiniere et al.,
2021; Schmitz & Motani, 2011). Alternatively, large eye size
can also be indicative of habitat selection. For example,
modern bird species that dwell in densely vegetated forested
areas and understories possess larger eyes than species occupy-
ing open habitats (Ausprey, 2021; Martínez-Ortegaet al., 2014).
Large eye size in archosaurian herbivores could therefore have
provided an advantage in terms of habitat use rather than
forage time.

CONCLUSION

The quantification of orbit and eye size across a wide range of
archosaur groups demonstrates a strong and consistent relation-
ship between these measurements and skull length with a high
degree of predictability if one of these properties is known. Rela-
tive orbit size was found to be largely independent of phylogeny,
temporal distribution and species richness suggesting that func-
tional and physiological constraints imposed limits on
minimum and maximum eye size. Our results thereby confirm
previous assumptions and results relying on a substantially
larger and more comprehensive sample size. The relatively
largest eyes were predominantly found in small species and
vice versa. Absolutely larger eyes, and thereby higher visual
acuity, occurred in both carnivorous and herbivorous archosaur
species, with herbivorous dinosaurs having some of the largest
estimated eye sizes in the dataset. This implies an increased
dependence on visual cues during foraging in groups such as
derived ornithopods. However, orbit size alone was not found
to provide additional detail on activity patterns, requiring
further information from rarely preserved skeletal elements,
such as sclerotic rings.
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