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Abstract

We developed a simple screening system for the evaluation of neuromuscular and

general toxicity in zebrafish embryos. The modular system consists of electrodynamic

transducers above which tissue culture dishes with embryos can be placed. Multiple

such loudspeaker-tissue culture dish pairs can be combined. Vibrational stimuli

generated by the electrodynamic transducers induce a characteristic startle and

escape response in the embryos. A belt-driven linear drive sequentially positions a

camera above each loudspeaker to record the movement of the embryos. In this way,

alterations to the startle response due to lethality or neuromuscular toxicity of chemical

compounds can be visualized and quantified. We present an example of the workflow

for chemical compound screening using this system, including the preparation of

embryos and treatment solutions, operation of the recording system, and data analysis

to calculate benchmark concentration values of compounds active in the assay. The

modular assembly based on commercially available simple components makes this

system both economical and flexibly adaptable to the needs of particular laboratory

setups and screening purposes.

Introduction

In recent years, zebrafish have become highly popular model

organisms for the evaluation of chemical compound effects,

encompassing research areas from drug development to

environmental toxicology1 . As vertebrates, zebrafish share

many aspects of their genetic makeup and overall physiology

with humans2,3 . Therefore, results obtained in this model

often are directly relevant to human health. Several drug
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candidates currently in clinical trials have been identified in

compound screens using zebrafish4 .

Toxicity assessment is one major application where tests

using zebrafish embryonic stages are of interest. Various

Organisation for Economic Co-operation and Development

(OECD) test guidelines exist for the use of zebrafish in

environmental toxicity testing5,6 . The small size and rapid

development of zebrafish embryos make them highly suitable

for screening approaches on a medium to high throughput

scale1,3 ,4 . Toxicological endpoints targeted by such screens

include embryonic malformations and lethality7 , endocrine

disruption8 , organ toxicity9 , and behavioral assessments

indicative of neural toxicity10,11 . The behavioral assays are

possible because zebrafish embryos show various types of

locomotor responses to different stimuli depending on their

stage of development. For example, 1 day post fertilization

(dpf) embryos show spontaneous tail coiling12  and respond

to a sequence of light pulses with a typical sequence of

movements, the so-called photomotor response (PMR)10 .

After hatching, typically occurring around 48-72 hours post

fertilization (hpf), the freely swimming eleutheroembryos13

gradually develop startle and escape responses to vibrational

stimuli starting around 4 dpf14 . These responses are

characterized by a distinctive bend to the direction opposite

the direction of the stimulus (the so-called C-bend or

C-start), which is followed by a smaller counter bend

and swimming behavior14,15 ,16 ,17 . Notably, embryonic

behaviors are governed by neural circuits using various

neurotransmitter systems, allowing for probing chemical

compound effects targeting these systems. For example, the

PMR assay revealed the effects of compounds interfering

with cholinergic, adrenergic, and dopaminergic signaling10 ,

while the startle response involves cholinergic, glutamatergic,

and glycinergic neurons16,18 . Furthermore, compounds that

damage the muscles or the neuro-muscular interface will

also affect these behaviors, as will compounds toxic to the

inner ear/lateral line hair cells19,20 . Observing zebrafish

locomotor behavior in response to a stimulus is thus a suitable

means to assess not only neurotoxicity but equally ototoxicity

and myotoxicity. Scoring locomotor behavior also serves

as a proxy for general toxicity/lethality assessment since

dead embryos do not move. Thereby, embryonic locomotion

behaviors represent an integrative readout for a first-tier

toxicity screening approach, which indicates lethal and

neuromuscular compound effects in one setup. Given that

the eleutheroembryos are already capable of metabolizing

compounds, the approach may also detect the effects

of metabolic transformation products7,21 ,22 . Importantly,

zebrafish embryos are not considered as protected life stage

under some animal protection legislations until the stage of

free feeding after 120 hpf13 . Therefore, they are regarded as

an alternative to animal toxicity testing.

https://www.jove.com
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Figure 1: Vibration startle response system setup. (A) Overview of the system. Plates with embryos exposed to the

test compounds are placed on the electrodynamic transducer array ("loudspeakers"). The camera is sequentially moved by

the belt-driven linear drive into the recording position above the targeted transducer. (B) Detailed view of the transducer/

loudspeaker with tissue culture dish inserted on top. The plates are illuminated from below by an LED light sheet at

4000-5000 lux. An LED light next to the speaker lights up while the stimulus is given. (C) Still image of video recorded by the

camera upon stimulation of the embryos. (D) Screenshot of the configuration file. (E) Screenshot of the recording software

interface. Please click here to view a larger version of this figure.

Here, we describe a testing protocol for the evaluation of

compound effects on the vibration startle response using an

in-house build simple testing device based on vibration stimuli

generated by electrodynamic transducers coupled with an

automated video recording of several freely moving embryos

in a tissue culture dish23 . The system is modular and allows

for sequential recording from several tissue culture dishes

in parallel. In the setup currently used, five electrodynamic

transducers provide a vibrational stimulus (500 Hz, duration 1

ms) to tissue culture dishes containing 20 embryos placed on

top of them (Figure 1). The plates are illuminated from below

at 4000-5000 lux with LED light sheets. An LED light next

to each transducer indicates periods of stimulus application,

and an oscilloscope indicates waveforms and frequency of

the applied stimulus (for details, see Ref. 23). The behavior

of the embryos is recorded by a high-speed camera (Table

of Materials) at 1000 frames per second (fps), which is

moved above the targeted speaker by a belt-driven linear

drive. This recording speed is required to reliably resolve the

startle response. The system provides a low-cost, individually

adaptable alternative to current commercial systems. The

precise workflow detailed below is currently performed in the

framework of the Precision Toxicology initiative24  in order

to determine suitable exposure conditions for OMICS data

https://www.jove.com
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acquisition from zebrafish embryos treated with a selected set

of toxicants.

Protocol

All zebrafish husbandry and handling were performed in

compliance with the German animal protection standards

and approved by the Government of Baden-Württemberg,

Regierungspräsidium Karlsruhe, Germany (Aktenzeichen

35-9185.64/BH KIT).

1. Preparing stock solutions of chemicals to be
tested

1. Label the glass vial (or chemical aliquot) with

the compound name/abbreviation, stock concentration,

and date of preparation. For example, CdCl2_2.5

g·L-1_210813.

2. Centrifuge the chemical aliquot at 2000 x g for 1 min at

room temperature (RT).

3. Under a fume hood, weigh the compound (if necessary)

on a scale sensitive to 0.001 g and transfer it to the

labeled vial. If the compound is a liquid, add it to the vial

using a pipette and plastic pipette tip.
 

NOTE: For example, for the tricaine methanesulfonate

stock used in the result example shown in Figure 2, 400

mg was weighed into the labeled vial.

4. Add solvent (e.g., sterile pure water or dimethyl sulfoxide

(DMSO), depending on the physicochemical properties

of the compounds) using a pipette and plastic pipette tip.

If possible, water is the preferred solvent.
 

NOTE: For example, for the tricaine stock, a 15.3 mM

solution in 100 mL water was prepared.

5. Seal the vial, shake gently, and check for precipitation.

6. Prepare dilute stock solutions (if necessary) in glass vials

using pipettes and plastic pipette tips.
 

NOTE: For example, no further dilution was necessary

for the tricaine stock.

7. Store the stock solution(s) at -20 °C until use.

8. Store the remaining chemical aliquot in the same

conditions as before.

9. Record stock aliquot information in the lab notebook.

2. Collecting and raising zebrafish embryos

1. Collect embryos in cleavage stages (2-8 cell stage) from

natural spawning of group matings in 10 cm tissue culture

dishes.

2. Select a batch of appropriate quality: less than 10%

unfertilized/dead eggs.

3. Clean the dishes (remove unfertilized eggs, debris,

scales, etc.).

4. Place 60 embryos per 10 cm tissue culture dish in 15

mL of E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM

CaCl2, 0.33 mM MgSO4)25 .

5. Place dishes into a humidified chamber prepared by

laying out paper towels soaked with water.

6. Raise embryos until 72 hpf in an incubator at 28.5 °C.

3. Preparing working dilution of chemicals to be
tested

1. Remove the stock solution from the -20 °C freezer and

let it thaw.

2. If compound solubility is high enough, prepare serial

dilutions in E3 medium in glass bottles, 1 mL per replicate

per concentration. Ensure that the the concentration is

10 times higher than the desired exposure concentration.

https://www.jove.com
https://www.jove.com/
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This avoids having to change the entire medium of the

embryos at the beginning of the exposure. In case of

low solubility, prepare the serial dilutions directly at the

desired exposure concentrations, 10 mL per replicate per

concentration.

3. Check for precipitation (if necessary). If the solution has

precipitated, record this, then further dilute to achieve the

next highest concentration. Check again for precipitation.

Repeat until there is no precipitation.

4. Check the pH of the exposure solution. If outside

the range of pH 7.0-8.5, record this, and prepare

the solutions in E3 containing 5 mM HEPES/pH 7.4,

adjusting the pH with HCl or NaOH.

5. Dispose of unused exposure media according to local

regulations.

4. Exposing embryos to the chemicals to be
tested

1. Check the dishes with the 72 hpf old embryos for dead/

unhatched embryos and remove them. If a batch of

embryos contains more than 5% of unhatched eggs,

remove the batch.

2. Place 10 embryos per 6 cm tissue culture dish in 9 mL of

E3 medium (exposure plate).

3. Label exposure plates with the compound name,

exposure concentration, and replicate number. For

example, "CdCl2 1 mg·L-1  01". Include sufficient E3-only

plates and a solvent control plate, if needed (see section

5).

4. Add 1 mL of exposure solution to each plate, starting

with the lowest concentration, and swirl the plate. For

compounds with low solubility, replace the entire 10 mL

of the plate with the exposure solution (see step 3.2.)

5. Record the temporal order in which compound solutions

were added to the embryos.

6. Incubate the plates in the humidified chamber in an

incubator at 28.5 °C for 48 h until they reach 120 hpf.

5. Performing the vibration startle assay

NOTE: Analyse the plates in the same order as recorded in

step 4.5. Each run should include an E3 control plate.

1. Switch on the computer and the vibration device (blue

LED light should be on).

2. Prepare the configuration file in a spreadsheet, as seen

in Figure 1D and attached as Supplementary File 1.

Record exposure information for each of the 5 plate

positions (compound, concentration, replicate).

3. Open the general user interface (GUI) program (available

at https://git.scc.kit.edu/xk4962/vibration-startle-assay-

kit , project ID 43215.)

4. Check the camera movement by selecting the different

positions in the GUI program and observing camera

movement.

5. Take out the sample plates to be measured from the

incubator. Place the sample plates on the 5 positions

(see Figure 1A, "loudspeakers") and let the embryos

settle for several minutes.

6. Click on Record; a window will open to select the

configuration file.

7. Select the appropriate configuration file prepared in step

5.2 for this run.

8. Check that the sample description corresponds to the

samples on each position (1-5).

https://www.jove.com
https://www.jove.com/
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9. Measuring will be conducted automatically (10 s /

position). When the sound pulse is applied by the

program, an LED is turned on. Recording for 10 s/position

allows acquiring enough data to estimate swimming

speed and distance traveled both before and after

the stimulus is applied and prevents habituation to

subsequent stimuli.

10. When the recording is completed, the camera goes back

to position 1 and the software starts to compress the files.

During this time, replace the samples with the next set

that needs to be measured.

11. Go to step 5.2. to record the next run.

12. When all plates have been measured, collect the

exposure solutions. Use a sieve to retain the embryos.

13. Euthanize the embryos by rapid chill in an ice/

isopropanol (5%) bath.

14. Dispose of the exposure solutions and dead embryos

according to the local regulations.

6. Data analysis

1. Open the video data with VirtualDub (1.10.4).

2. Score visually the number of embryos responding to the

sound pulse (when the control LED is on).

3. Enter data into a spreadsheet. Record the compound

name, the replicate, the concentration of the compound,

and the percentage of immotile embryos according to

the template provided in Supplementary File 2, which

includes the example dataset shown in Figure 2C.
 

NOTE: The template has a flexible structure and

principally allows application for data of other organisms

and endpoints. It describes the responses for each

concentration and also provides endpoint descriptions as

well as definitions of the parameters generated in the

subsequent concentration-response modeling.

4. Conduct the benchmark concentration (BMC) analysis

using a KNIME workflow (KNIME analytics 4.626 ) with

embedded R scripts (R version 3.6., R-packages plotrix,

drc and bmd27,28 ).
 

NOTE: In principle, the assessment could also be

conducted directly in R. However, for convenience

and to allow assessment as a web-based service,

the analysis has been organized in a KNIME server-

compliant workflow. The output of the KNIME workflow

is provided in Supplementary File 3. For details on the

statistical parameters generated by the KNIME workflow,

refer to this template. The statistical parameters to

estimate the goodness of fit and thresholds to accept

determined BMC values are shown in Table 1.

The KNIME workflow itself is available via GitHub

(https://github.com/precisiontox/range-finding-drc). The

concentration-response is modeled using a 4-parameter

log-logistic model. Two of the curve fitting parameters

can be fixed. Typically, one would fix the maximum to 100

in the case of percentage data. In case no background

effects are observed, the minimum can be fixed to 0%.

Representative Results

Figure 2A shows the percentage of immotile embryos in 48

clutches of untreated wild-type embryos (AB2O2 strain). On

average, 14.33% of untreated wild-type embryos do not react

to the vibration stimulus. In 4 clutches, the percentage of

immotile larvae reached 50%, but 75% of the clutches had a

percentage of immotile larvae below 20%.

Figure 2B,C show an example of a typical calculation

of a benchmark concentration/dose (BMC/BMD29,30 ) for

https://www.jove.com
https://www.jove.com/
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compound effects on motility with the vibration startle assay

workflow, as currently performed within the PrecisionTox

consortium24 . BMC10, BMC25, and BMC50 values

correspond to the concentrations at which 10%, 25%, and

50% of embryos show immotility levels higher than the

background, respectively. Only embryos that are completely

immotile are included in this calculation, not those that still

show partial responses, such as only a C-bend without

subsequent escape swimming or only tail movements (Figure

2B). The embryos were exposed to 8 concentrations of the

sodium channel inhibitor tricaine methanesulfonate, which

is frequently used for fish anesthesia31 . The data indicate

a background level of around 25% immotility in response

to the vibration stimulus. Starting at 1% tricaine, motility is

reduced and then ceases above 2.5%. The KNIME workflow

calculates the BMC50 as 164.9 µM, which corresponds to

1.07% tricaine and an immotility level of 75% (Figure 2C).

The small 95% confidence intervals (indicated by the grey

shades in the curve) indicate robust reproducibility of the

motility values in this assay.

Figure 2D shows an example of a suboptimal assay run,

the data of which should not be used for BMC calculations.

Five E3 treated control groups with different embryos derived

from the same clutch are shown (AB2O2 [wild-type strain]

replicate 1-5). Only the first group shows a near normal

response, showing around 25% immotility that is consistent

with literature values32  and those obtained in the assay

described here, as shown in Figure 2A, while all other groups

show reduced and/or incomplete behavioral responses (e.g.,

showing only a C-bend not followed by swimming activity,

or motility without a clear C-bend at the beginning). Such a

response may occur when embryos do not develop properly

and are in an immature state due to developmental delay,

which impacts the robustness of the startle response14,33 .

 

https://www.jove.com
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Figure 2: Example of a typical result, including benchmark dose calculation. (A) Percentage of non-responsive

embryos after the sound pulse for wild-type untreated larvae for 48 clutches (n = 10 per clutch). The mean (14.33%)

and standard deviation (±16.19%) are indicated in red. (B) Evaluation of startle response behavior of embryos (n=20 per

condition) treated with the indicated concentration of tricaine in E3 medium or with E3 alone as a control. Behavior is

classified according to the color scheme and cartoons indicated to the right of the graph, with each embryo assigned to only

one of the following classes: "immotile": embryo does not show any movement; "tail moving": embryo shows tail movement,

but neither C-bend nor swimming behavior; "motile": embryo shows swimming movement, but no C-bend in response

to the vibrational stimulus; "C-bend only": embryo shows C-bend, but not escape swimming; "C-bend + motile": embryo

shows typical C-bend behavior followed by escape swimming (the typical full startle response). The different behaviors are

shown as a percentage of the total number of embryos for each treatment. (C) BMC calculation graph generated by the

KNIME workflow, indicating the percentage of "immotile" embryos for each treatment concentration. Blue, red, and black

lines indicate the BMC10, BMC25, and BMC50 values, i.e., the concentrations at which 10%, 25%, and 50% of embryos

show immotility levels higher than the background, respectively. (D) Example of a discarded assay run. Five E3-treated

control runs with different AB2O2 wild-type embryos derived from the same clutch are shown (replicate 1-5). Only replicate

1 shows a nearly normal response, while embryos of the remaining runs do not show the typical C-bend + escape swimming

response. Please click here to view a larger version of this figure.

Table 1: Statistical parameters to estimate the goodness

of fit and thresholds to accept determined BMC values.

Please click here to download this Table.

Table 2: Properties of a selection of vibrational startle

response assay systems. Please click here to download this

Table.

Supplementary File 1: Excel template for configuration

file. Please click here to download this File.

Supplementary File 2: KNIME input template with an

example data set. Please click here to download this File.

Supplementary File 3: KNIME output file example. Please

click here to download this File.

Discussion

We present the workflow and data analysis for chemical

compound evaluation using a custom-built zebrafish embryo

vibration startle assay setup. The workflow generates robust

data that allow the calculation of typical parameters specifying

compound toxicity, such as benchmark concentration/dose

(BMC/BMD). The modularity of the setup allows adaptation

to different needs for throughput and space requirements.

As the system is made from low-cost basal components,

following a relatively simple setup, it provides a cheap

alternative to existing commercial systems, which are

generally designed for several assay types at once, rely on

proprietary software, and remain relatively costly.

Both these commercial systems and other custom-made

systems allow for the assessment of single embryos or

larvae in multiwell plates (e.g., 12-well34 , 16-well32,35 ,

24-well20,33 ,36 , 48-well37 , 96-well38,39 ,40 ,41 ,42  and even

384-well [as 4x96 well]43 ), but the spatial restriction in

the wells makes the analysis of some data parameters

of the escape response (e.g., distance traveled) more

https://www.jove.com
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challenging. Furthermore, in some of these setups, imaging

is restricted to a subset of the wells of the plate, reducing the

throughput36,39 . Imaging embryos in dishes allows for better

assessment of escape response parameters and enables

recording the behavior of several embryos at once (up to 30

in a 6 cm dish, for example). Usually, dish-based imaging is

limited to one dish per run44,45 ,46 ,47 ,48  (exceptions perform

imaging in parallel on 6 dishes with one larva each49  or on 4

larvae in 2 split dishes50 ), a drawback that can be solved by

parallel designs such as in our case. We have summarized

some characteristics of the system used in this study

and other commercial and custom-made solutions in Table

220,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50 ,
 

51,52 .

One advantage of the method is a readout capturing both

lethality and behavioral changes, which can increase the

performance of toxicity assessments. For example, while

the zebrafish fish embryo acute toxicity test (FET)5  has

been shown to predict toxicity in the adult fish acute toxicity

test53  quite well, its prediction accuracy was improved by

including behavioral readouts54 . The reason for this is the

weak mortality induced by neuroactive compounds seen in

fish embryos, probably due to the lack of respiratory failure

syndrome causing enhanced toxicity in juvenile or adult fish.

Neuroactivity can, however, be identified by assessment of

behavior. Furthermore, behavioral readouts can also capture

myotoxic and ototoxic effects as well as other, more subtle

toxic effects on physiology, which are sublethal yet influence

the behavioral performance of the organism.

When conducting the assay, it is critical to ensure proper

handling of compounds as well as using a homogenously

developing batch of zebrafish embryos. Thus, using glass

vials for compound storage should minimize the decline

in concentrations of chemicals, particularly hydrophobic

compounds, due to absorbance to plastic material. In

the case of compounds of high absorptive potential to

"plastic" polystyrene, glass plates can also be used for

the incubation. Cleaning of the eggs in the tissue culture

dishes used for collection and removal of dead embryos

is a critical step to ensure standard development. Normal

speed of development is important, as developmental delays

may affect the maturity of neural networks underlying the

assessed behavior14,33 . Also, to enable comparison of

compound effects, eggs should be derived from the same

strain since different strains have been reported to present

different behavioral profiles38,55 ,56 ,57 . During exposure, it is

important to incubate the embryos in a humidified chamber

in order to avoid excessive evaporation of the E3 medium,

which would alter the concentrations tested.

E3 controls should be incorporated into each run in order

to determine the baseline response level of the particular

batch of embryos used in the test series. Typically, we run

one plate of controls along each set of 5 measurements.

As illustrated in Figure 2D, this approach also allows for

the detection of batches with suboptimal responses due

to delayed development or for other reasons, such as

genetic background effects. In case of an unexpected lack

of response to the stimulus, also watch out for potential

transducer failure. Typically, the startle responses show a

sigmoidal concentration-response behavior that allows for

curve fitting using a log-logistic model. However, in rare

cases with biphasic responses, other models may have to be

employed, such as Gaussian or Cedergreen models. They

are available within the R packages drc and bdm27,28 .

The lack of response to the vibrational stimulus may indicate

simply the death of the embryos or severely impaired life

https://www.jove.com
https://www.jove.com/


Copyright © 2024  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com January 2024 • 203 •  e66153 • Page 10 of 14

functions due to general cytotoxicity, but might also reflect

more specific toxicity targeting neural circuits of stimulus

perception, integration, and locomotor output. Other possible

compound effects are interference with the neuromuscular

interface or with muscle structure and function. To distinguish

between these possibilities, further assays are necessary.

For example, the structural integrity of the muscles can be

assessed with a birefringency assay58,59 , and transgenic

lines are available to assess perturbance of muscular and

neural function60,61 . However, the recorded video data

already allow for a more detailed analysis of the morphology

and the behavioral response of the embryos that can provide

first additional information. Is only the C-bend impaired, or all

motility? Are still remnants of neuromuscular activity present,

as indicated by weak or trembling tail movements? Do such

altered behaviors go along with changes in morphology,

such as edema or increased body curvature? Additionally,

parameters such as latency time until the C-bend or the

distance travelled during the escape response can be

evaluated (see, for example, Ref. 44).

The screening protocol described here allows for rapid and

robust compound toxicity evaluations, with the added value

of specifically detecting non-lethal neurotoxic, ototoxic, and

myotoxic compounds. The provided analysis workflow is easy

to implement and provides a robust readout. Modifications of

the stimulus protocols used in the vibration startle assay have

been used to address compound effects on more complex

aspects of startle behavior as well, such as prepulse inhibition

(PPI)39,44  and habituation32,33 , and could be adapted to the

electrodynamic transducer-based stimulus setup used in this

study.

A main application of startle-response-based screening

systems is the assessment of compound effects in chemical

screens, which is of relevance both for human toxicity

evaluation and drug development1,4 ,62 . At the same

time, by testing the early life stages of an aquatic

organism, the results obtained have direct relevance for

ecotoxicological risk assessment63,64 . In addition, startle

response systems can be used for behavioral phenotyping

in genetic screens65,66 ,67 ,68 ,69 . Our easily implementable

and adaptable system provides an affordable setup to smaller

laboratories intending to conduct their own specific screening

projects in these various domains of application.
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