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Abstract. For a fixed poset P , a family F of subsets of [n] is induced P -saturated if F does
not contain an induced copy of P , but for every subset S of [n] such that S ̸∈ F , P is an in-
duced subposet of F∪{S}. The size of the smallest such family F is denoted by sat∗(n, P ).
Keszegh, Lemons, Martin, Pálvölgyi and Patkós [Journal of Combinatorial Theory Series A,
2021] proved that there is a dichotomy of behaviour for this parameter: given any poset P ,
either sat∗(n, P ) = O(1) or sat∗(n, P ) ⩾ log2 n. In this paper we improve this general
result showing that either sat∗(n, P ) = O(1) or sat∗(n, P ) ⩾ min{2

√
n, n/2 + 1}. Our

proof makes use of a Turán-type result for digraphs.
Curiously, it remains open as to whether our result is essentially best possible or not.

On the one hand, a conjecture of Ivan states that for the so-called diamond poset ♢ we
have sat∗(n,♢) = Θ(

√
n); so if true this conjecture implies our result is tight up to a multi-

plicative constant. On the other hand, a conjecture of Keszegh, Lemons, Martin, Pálvölgyi
and Patkós states that given any poset P , either sat∗(n, P ) = O(1) or sat∗(n, P ) ⩾ n+ 1.
We prove that this latter conjecture is true for a certain class of posets P .
Keywords. Partially ordered sets, saturation, Turán-type problems
Mathematics Subject Classifications. 06A07, 05D05

1. Introduction

Saturation problems have been well studied in graph theory. A graph G is H-saturated if it
does not contain a copy of the graph H , but adding any edge to G from its complement creates
a copy of H . Turán’s celebrated theorem [Tur41] can be stated in the language of saturation:

∗Research supported by EPSRC grant EP/V002279/1.
The main results of this paper were first announced in the conference abstract [FPST23].
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it determines the maximum number of edges in a Kr-saturated n-vertex graph. In contrast,
Erdős, Hajnal and Moon [EHM64] determined the minimum number of edges in a Kr-saturated
n-vertex graph; see the survey [CFFS11] for further results in this direction.

In recent years there has been an emphasis on developing the theory of saturation for posets.
Turán-type problems have been extensively studied in this setting (see, e.g., the survey [GL16]).
In this paper we are interested in minimum saturation questions à la Erdős–Hajnal–Moon. In
particular, we consider induced saturation problems.

All posets we consider will be (implicitly) viewed as finite collections of finite subsets ofN.
In particular, we say that P is a poset on [p] := {1, 2, . . . , p} if P consists of subsets of [p].
Let P,Q be posets. A poset homomorphism from P to Q is a function ϕ : P → Q such that
for every A,B ∈ P , if A ⊆ B then ϕ(A) ⊆ ϕ(B). We say that P is a subposet of Q if there is
an injective poset homomorphism from P to Q; otherwise, Q is said to be P -free. Further we
say P is an induced subposet of Q if there is an injective poset homomorphism ϕ from P to Q
such that for every A,B ∈ P , ϕ(A) ⊆ ϕ(B) if and only if A ⊆ B; otherwise, Q is said to be
induced P -free.

For a fixed poset P , we say that a family F ⊆ 2[n] of subsets of [n] is P -saturated if F is
P -free, but for every subset S of [n] such that S ̸∈ F , then P is a subposet of F ∪ {S}. A
family F ⊆ 2[n] of subsets of [n] is induced P -saturated if F is induced P -free, but for every
subset S of [n] such that S ̸∈ F , then P is an induced subposet of F ∪ {S}.

The study of minimum saturated posets was initiated by Gerbner, Keszegh, Lemons, Palmer,
Pálvölgyi and Patkós [GKL+13] in 2013. In their work the relevant parameter is sat(n, P ), which
is defined to be the size of the smallest P -saturated family of subsets of [n]. See, e.g., [GKL+13,
KLM+21, MNS14] for various results on sat(n, P ).

The induced analogue of sat(n, P ) – denoted by sat∗(n, P ) – was first considered by Fer-
rara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [FKK+17]. Thus, sat∗(n, P ) is defined
to be the size of the smallest induced P -saturated family of subsets of [n]. The following re-
sult from [KLM+21] (and implicit in [FKK+17]) shows that the parameter sat∗(n, P ) has a
dichotomy of behaviour.

Theorem 1.1. [FKK+17, KLM+21] For any poset P , either there exists a constant KP

with sat∗(n, P ) ⩽ KP or sat∗(n, P ) ⩾ log2 n, for all n ∈ N.

Probably the most important open problem in the area is to obtain a tight version of Theo-
rem 1.1; that is, to replace the log2 n in Theorem 1.1 with a term that is as large as possible. In
fact, Keszegh, Lemons, Martin, Pálvölgyi and Patkós [KLM+21] made the following conjecture
in this direction.

Conjecture 1.2. [KLM+21] For any poset P , either there exists a constant KP

with sat∗(n, P ) ⩽ KP or sat∗(n, P ) ⩾ n+ 1, for all n ∈ N.

Note that the lower bound of n + 1 is rather natural here. For example, it is the size of
the largest chain in 2[n] as well as the smallest possible size of the union of two consecutive
‘layers’ in 2[n], namely the layer containing [n] and the layer containing all subsets of [n] of size
exactly n−1. Furthermore, such structures form minimum induced saturated families for the so-
called fork poset∨, i.e., sat∗(n,∨) = n+1 [FKK+17]; so the lower bound in Conjecture 1.2 can-
not be increased. There are also no known examples of posets P for which sat∗(n, P ) = ω(n).
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In contrast, Ivan [Iva22, Section 3] presented evidence that led her to conjecture a rather
different picture for the diamond poset ♢ (see Figure 1 for the Hasse diagram of ♢).

Conjecture 1.3. [Iva22] sat∗(n,♢) = Θ(
√
n).

Our main result is the following improvement of Theorem 1.1.

Theorem 1.4. For any poset P , either there exists a constant KP with sat∗(n, P ) ⩽ KP

or sat∗(n,P) ⩾ min{2
√
n, n/2 + 1} for all n ∈ N.

Note that if n ⩾ 12 then n/2 + 1 ⩾ 2
√
n. Thus, if Conjecture 1.3 is true, the lower bound

in Theorem 1.4 would be tight up to a multiplicative constant.

Figure 1.1: Hasse diagrams for the posets N , Y , ♢ and X .

On the other hand, we prove that Conjecture 1.2 does hold for a class of posets (that does not
include♢). Given p ∈ N and a poset P on [p]we define the dual P of P as P :={[p]\F :F ∈P}.
We say a poset P has legs if there are distinct elements L1, L2, H ∈ P such that L1, L2 are
incomparable, L1, L2 ⊆ H and for any other element A ∈ P \ {L1, L2, H} we have A ⊇ H .
The elements L1 and L2 are called legs and H is called a hip.

Theorem 1.5. Let P be a poset with legs and n ⩾ 3. Then sat∗(n, P ) ⩾ n + 1. Moreover, if
both P and P have legs, then sat∗(n, P ) ⩾ 2n+ 2.

Our results still leave both Conjecture 1.2 and Conjecture 1.3 open, and it is unclear to us
which of these conjectures is true. However, if Conjecture 1.3 is true we believe it highly likely
that there will be other posets P for which sat∗(n, P ) = Θ(

√
n).

It is also natural to seek exact results on sat∗(n, P ). However, despite there already being sev-
eral papers concerning sat∗(n, P ) [BGJJ22, DI23, FKK+17, Iva20, Iva22, KLM+21, MSW20],
there are relatively few posets P for which sat∗(n, P ) is known precisely (see, e.g., Table 1
in [KLM+21] for a summary of most of the known results). Our next result extends this limited
pool of posets, determining sat∗(n,X) and sat∗(n, Y ) (see Figure 1 for the Hasse diagrams of X
and Y ).

Theorem 1.6. Given any n ∈ N with n ⩾ 3,

(i) sat∗(n, Y ) = n+ 2 and

(ii) sat∗(n,X) = 2n+ 2.
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Note that X = X , so Theorem 1.6ii easily follows via Theorem 1.5 and an extremal con-
struction. An application of Theorem 1.5 to Y only yields that sat∗(n, Y ) ⩾ n+1, so we require
an extra idea to obtain Theorem 1.6i.

In [MSW20] a trick was introduced which can be used to prove lower bounds on sat∗(n, P )
for some posets P . The idea is to construct a certain auxiliary digraph D whose vertex
set consists of the elements in an induced P -saturated family F ; one then argues that how
this digraph is defined forces D to contain many edges, which in turn forces a bound on the
size of the vertex set of D (i.e., lower bounds |F|). This trick has been used to prove
that sat∗(n,♢) ⩾

√
n [MSW20, Theorem 6] and sat∗(n,N) ⩾

√
n [Iva20, Proposition 4] (see

Figure 1 for the Hasse diagram of N ).
Our proof of Theorem 1.4 utilises a variant of this digraph trick. In particular, by introducing

an appropriate modification to the auxiliary digraph D used in [MSW20], we are able to deduce
certain Turán-type properties of D. Turán problems in digraphs are classical in extremal combi-
natorics and their study can be traced back to the work of Brown and Harary [BH69]. Here we
prove a Turán-type result concerning transitive cycles.

Given k ⩾ 3, the transitive cycle on k vertices
−⇀
TCk is a digraph with vertex set [k] and every

directed edge from i to i + 1 for every i ∈ [k − 1], as well as the directed edge from 1 to k.
We establish an upper bound on the number of edges of a digraph not containing any transitive
cycle.

Theorem 1.7. Let n ∈ N and let D be a digraph on n vertices. If D is
−⇀
TCk-free for all k⩾ 3,

then
e(D) ⩽ max

{
2(n− 1),

⌊
n2

4

⌋}
.

Note that the bound in Theorem 1.7 is best possible. Indeed, consider the n-vertex digraphD
with vertex classes A,B of size ⌊n/2⌋ and ⌈n/2⌉ respectively and all possible directed edges
fromA toB. SoD has ⌊n2/4⌋ edges and contains no transitive cycle. Similarly, pick an arbitrary
n-vertex tree T and let D′ be the digraph with vertex set V (D′) = V (T ) and with an edge
directed from i to j if and only if the unordered pair ij is an edge in T . So D′ has 2(n−1) edges
and contains no transitive cycle.

In Section 3 we explain why exploiting the connection between the induced saturation prob-
lem for posets and the Turán problem for digraphs hits a natural barrier if we wish to further
improve the lower bound in Theorem 1.4.

We conclude this introductory section by setting out notation that will be used in the rest of
the paper.

Notation

Given two elements A,B of a poset F ⊆ 2[n] we say that A dominates B if B ⊆ A. We say A
and B are comparable if one dominates the other; otherwise we say they are incomparable. An
element F in F is maximal if there is no other element in F which dominates F . We define
minimal analogously.

For a digraph D = (V (D), E(D)), we write −⇀xy for the edge in D directed from the ver-
tex x to the vertex y. We say that −⇀xy is an out-edge of x and an in-edge of y. For brevity, we
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write e(D) := |E(D)|. Given a set U ⊆ V (D), we denote the induced subgraph of D with ver-
tex set U as D[U ]. The underlying graph of D is the graph with vertex set V (D) whose edges
are all (unordered) pairs {x, y} such that −⇀xy ∈ E(D) or −⇀yx ∈ E(D).

Given k ⩾ 2, an oriented path v1 . . . vk from v1 to vk consists of the edges −⇀vivi+1 for
every i ∈ [k − 1]. Similarly, an oriented cycle v1 . . . vk consists of the edges −⇀vivi+1 for
every i ∈ [k − 1] and −⇀vkv1.

2. The proofs

2.1. Proof of Theorem 1.7

We proceed by induction on n. For the base case, it is easy to check that the statement of the
theorem holds for n ⩽ 3. Next, we prove the inductive step.

Let D be a digraph on n ⩾ 4 vertices which is
−⇀
TCk-free for all k ⩾ 3.

Claim 2.1. If D contains an induced oriented cycle then e(D) ⩽ max
{
2(n− 1),

⌊
n2

4

⌋}
.

Proof of claim. Suppose D contains an induced oriented cycle C. For every v∈V (D)\V (C),
it is straightforward to check that, since D[V (C) ∪ {v}] contains no transitive cycle, then

(i) there is at most one in-edge of v incident to V (C) and

(ii) there is at most one out-edge of v incident to V (C).

Let D′ be the digraph obtained by contracting the cycle C into one vertex c. Namely, D′ has
vertex set V (D′) = (V (D) ∪ {c}) \ V (C) and E(D′) is the union of the following sets:

• E(D[V (D) \ V (C)]),

• {−⇀xc : ∃ −⇀xy ∈ E(D), x /∈ V (C), y ∈ V (C)} and

• {−⇀cx : ∃ −⇀yx ∈ E(D), x /∈ V (C), y ∈ V (C)}.

Note that properties i and ii imply that e(D′) = e(D)− e(C) = e(D)− |V (C)|.
Suppose D′ contains a transitive cycle

−⇀
TCk on vertices v1, . . . , vk for some k ⩾ 3. Namely,

−⇀vjvj+1 ∈ E(D′) for every j ∈ [k − 1] and −⇀v1vk ∈ E(D′). If c ̸= vi for every i ∈ [k]
then v1, . . . , vk form a transitive cycle in D, a contradiction. Therefore, c = vi for some i ∈ [k].

For brevity we only consider the case i ̸= 1, k (the cases i = 1 and i = k can be han-
dled with a similar argument). By the definition of D′, there exist c1, c2 ∈ V (C) such that
−−⇀vi−1c1,

−⇀c2vi+1 ∈ E(D). Furthermore, there exists an oriented path u1 . . . uℓ from u1 to uℓ such
that u1 = c1, uℓ = c2 and uj ∈ E(C) for all j ∈ [ℓ]. Then v1 . . . vi−1u1 . . . uℓvi+1 . . . vk is an
oriented path from v1 to vk in D. Together with −⇀v1vk ∈ E(D), this forms a transitive cycle in D,
a contradiction.

Therefore, D′ is
−⇀
TCk-free for all k ⩾ 3; so by the induction hypothesis we have

e(D′) ⩽ max

{
2(n− |V (C)|),

⌊
(n− |V (C)|+ 1)2

4

⌋}
.
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The inequalities n ⩾ 4 and 2 ⩽ |V (C)| ⩽ n imply

2(n− |V (C)|) + |V (C)| ⩽ 2(n− 1) and
⌊
(n− |V (C)|+ 1)2

4

⌋
+ |V (C)| ⩽

⌊
n2

4

⌋
.

In particular, e(D) = e(D′) + |V (C)| ⩽ max
{
2(n− 1),

⌊
n2

4

⌋}
. This concludes the proof of

the claim. ■

Because of Claim 2.1 we may assume that D contains no double edges (which are induced
oriented cycles on two vertices). Additionally, we may assume that the underlying graph of D
contains no triangle, since such a triangle would either correspond to an induced oriented cycle
or a transitive cycle

−⇀
TC3 in D. By Mantel’s theorem, a triangle-free graph on n vertices has at

most ⌊n2/4⌋ edges, hence e(D) ⩽
⌊
n2

4

⌋
. This concludes the inductive step.

2.2. Proof of Theorem 1.4

We prove Theorem 1.4 using the following two lemmata.

Lemma 2.2. LetF ⊆ 2[n]. If for every i ∈ [n] there are elementsA,B ∈ F such thatA\B = {i}
then |F| ⩾ min{2

√
n, n/2 + 1}.

Notice that Lemma 2.2 is not specifically about induced saturated families. We will discuss
this further in Section 3.

Lemma 2.3. Given a poset P , let F0 ⊆ 2[n0] be an induced P -saturated family. Suppose there
is an i ∈ [n0] such that there are no elements A,B ∈ F0 satisfying A \ B = {i}. Then
sat∗(n, P ) ⩽ |F0| for every n ⩾ n0.

Proof of Theorem 1.4. Let P be a poset. Suppose that for every n ∈ N and every induced
P -saturated family F ⊆ 2[n] we have that for every i ∈ [n] there are elements A,B ∈ F
such that A \ B = {i}. Then Lemma 2.2 implies |F| ⩾ min{2

√
n, n/2 + 1}, and

thus sat∗(n, P ) ⩾ min{2
√
n, n/2 + 1}.

Otherwise, there exists some n0 ∈ N and i ∈ [n0] so that there is an induced P -saturated
familyF0 ⊆ 2[n0] such that there are no elementsA,B ∈ F0 withA\B = {i}. Then Lemma 2.3
implies that sat∗(n, P ) ⩽ KP for every n ∈ N where

KP := max{|F0|, sat∗(m,P ) : m < n0}.

The rest of this subsection covers the proofs of Lemmata 2.2 and 2.3. For the proof of
Lemma 2.2 we apply Theorem 1.7.

Proof of Lemma 2.2. LetD be a digraph with vertex setF and edge setE(D) defined as follows:
for every i ∈ [n], choose precisely one pair A,B ∈ F with A \ B = {i}; add the edge

−⇀
AB

to E(D). Thus D has exactly n edges. Note that the hypothesis of the lemma ensures D is
well-defined.
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Claim 2.4. For every k ⩾ 3, D is
−⇀
TCk-free.

Proof of claim. It suffices to show that given {A1, . . . , Ak} ⊆ F such that
−−⇀
AjAj+1 ∈ E(D) for

every j ∈ [k − 1] then
−−⇀
A1Ak /∈ E(D). By definition of D, there are distinct i1, . . . , ik−1 ∈ [n]

such that

Aj \ Aj+1 = {ij} for every j ∈ [k − 1]. (2.1)

This implies Aj ⊆ Aj+1∪{ij} for every j ∈ [k−1], and thus A1 ⊆ Ak∪{i1, . . . , ik−1}. Hence,

A1 \ Ak ⊆ {i1, . . . , ik−1}. (2.2)

Note that if
−−⇀
A1Ak ∈ E(D) then (2.2) implies that A1\Ak = {ij} for some j ∈ [k−1]. However,

recall that for every i ∈ [n] there is exactly one edge
−⇀
AB in D such that A \ B = {i}; so (2.1)

implies that
−−⇀
A1Ak /∈ E(D), as desired. ■

By Claim 2.4, we can apply Theorem 1.7 to the digraph D. This yields

n = |E(D)| ⩽ max

{
2(|F| − 1),

|F|2

4

}
,

which implies |F| ⩾ min{2
√
n, n/2 + 1}.

We now present the proof of Lemma 2.3.

Proof of Lemma 2.3. Observe that it is enough to prove that for every n ⩾ n0 there exists a
family F ⊆ 2[n] such that

(i) |F| = |F0|,

(ii) F is induced P -saturated and

(iii) there are no elements A,B ∈ F satisfying A \B = {i}.

We proceed by induction on n and observe that the base case (n = n0) follows directly from the
assumption in the statement of the lemma.

Given an induced P -saturated family F ⊆ 2[n] satisfying i-iii we consider the following
function f from 2[n] to 2[n+1]:

f(A) :=

{
A if i ̸∈ A and
A ∪ {n+ 1} if i ∈ A.

We shall prove that the family F ′ := f(F) ⊆ 2[n+1] satisfies i-iii.
First, note that i follows directly since f is injective. Second, iii also follows easily, since

every element f(A) either contains both i and n+1 or neither of them. Actually, because of this
last property one might say that n + 1 behaves as a ‘copy’ of i in f(2[n]). We need to prove ii,
i.e., that F ′ is induced P -saturated.
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It is easy to check that f preserves the inclusion/incomparable relations between elements.
More precisely, for every A,B ∈ 2[n] we have

A ⊆ B ⇐⇒ f(A) ⊆ f(B). (2.3)

Therefore, if P ′ forms an induced copy of P in F ′, then f−1(P ′) ⊆ F forms an induced copy
of P in F . This means that, since F is induced P -free, F ′ must be induced P -free as well. It
is left to prove that for any S ∈ 2[n+1] \ F ′, there is an induced copy of P in F ′ ∪ {S}. There
are four cases to consider depending on S. The first two cases are short and the fourth case is an
easy consequence of the third. Let S ∈ 2[n+1] \ F ′.

First case: i, n+1 /∈ S. Note that S ⊆ 2[n] and f(S) = S, thus S ̸∈ F (as otherwise we would
have S ∈ F ′). As F is induced P -saturated, there exists an induced copy P ′ of P in F ∪ {S}.
By (2.3) the set {f(F ) : F ∈ P ′} is an induced copy of P in F ′ ∪ {S}.

Second case: i, n + 1 ∈ S. Set S⋆ := S \ {n + 1}. Note that S⋆ ⊆ 2[n] and f(S⋆) = S,
thus S⋆ ̸∈ F (as otherwise we would have S ∈ F ′). As F is induced P -saturated, there exists
an induced copy P ′ of P in F ∪ {S⋆}. By (2.3) the set {f(F ) : F ∈ P ′} is an induced copy
of P in F ′ ∪ S.

Third case: i ∈ S and n + 1 /∈ S. For this case we use the assumption that there are no
elements A,B ∈ F such that A \B = {i}. Let S⋆ := S \ {i} ∈ 2[n]. We use the sets S and S⋆

to find elements A,B ∈ F that will contradict iii (for the family F).

Claim 2.5. Either F ′ ∪ {S} contains an induced copy of P or there exists an element A ∈ F
such that A ⊆ S and i ∈ A.

Proof of claim. Assume that there is no A ∈ F satisfying the properties of the claim; notice
that this implies S /∈ F . We need to prove that F ′ ∪ {S} contains an induced copy of P .

Since F is induced P -saturated, there exists an induced copy P ′ of P in F ∪ {S} that con-
tains S. We shall prove that {f(F ) : F ∈ P ′, F ̸= S}∪{S} is an induced copy of P inF ′∪{S}.

First, observe that (2.3) implies the set {f(F ) : F ∈ P ′, F ̸= S} is an induced copy of the
poset P ′ \ {S}. If for every F ∈ P ′ \ {S} the relation (inclusion/incomparability) between F
and S is the same as the one between f(F ) and S then we are done. Thus it is enough to prove
for every F ∈ P ′ \ {S} we have that

(i) if S and F are incomparable then S and f(F ) are incomparable,

(ii) if S ⊆ F then S ⊆ f(F ) and

(iii) if S ⊇ F then S ⊇ f(F ).

Notice that ii follows directly from F ⊆ f(F ). It is easy to check that i also holds by recalling
that i ∈ S and n+ 1 /∈ S. So finally, for F ∈ P ′ \ {S} as in iii, observe that i /∈ F otherwise F
would satisfy the properties of A in the statement of the claim. Then f(F ) = F and iii holds. ■

The proof of the following claim is very similar. We include it for completeness.
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Claim 2.6. Either F ′ ∪ {S} contains an induced copy of P or there exists an element B ∈ F
such that S⋆ ⊆ B and i ̸∈ B.

Proof of claim. Assume that there is no B ∈ F satisfying the properties of the claim; notice
that this implies S⋆ /∈ F . It remains to show that F ′ ∪ {S} contains an induced copy of P .

Since F is induced P -saturated, there exists an induced copy P ′ of P in F ∪ {S⋆} that
contains S⋆. We shall prove that {f(F ) : F ∈ P ′, F ̸= S⋆} ∪ {S} is an induced copy of P
in F ′ ∪ {S}.

First, observe that (2.3) implies the set {f(F ) : F ∈ P ′, F ̸= S⋆} is an induced copy
of the poset P ′ \ {S⋆}. If for every F ∈ P ′ \ {S⋆} the relation (inclusion/incomparability)
between F and S⋆ is the same as the one between f(F ) and S then we are done. Thus, for
every F ∈ P ′ \ {S⋆} we must prove that

(i) if S⋆ and F are incomparable then S and f(F ) are incomparable,

(ii) if S⋆ ⊇ F then S ⊇ f(F ) and

(iii) if S⋆ ⊆ F then S ⊆ f(F ).

For ii, notice that S⋆ ⊇ F implies i ̸∈ F and thus S ⊇ S⋆ ⊇ F = f(F ). It is easy to check
that i also holds by recalling that i ∈ S and n + 1 /∈ S. Finally, for F ∈ P ′ \ {S⋆} as in iii,
observe that i ∈ F otherwise F would satisfy the properties of B in the statement of the claim.
Then f(F ) = F ∪ {n+ 1} and iii holds. ■

To finish the proof of this case, suppose that F ′ ∪ {S} does not contain an induced copy
of P . By Claims 2.5 and 2.6 there are elements A,B ∈ F such that A ⊆ S, i ∈ A and
S \ {i} ⊆ B, i ̸∈ B. In particular, we have A \B = {i}, a contradiction.

Fourth case: i /∈ S and n+ 1 ∈ S. Let S ′ := (S \ {n+ 1})∪ {i}. Recall that every element
of F ′ either contains both i and n+ 1 or neither of them. This property ensures that

(a) S ′ ̸∈ F ′;

(b) for any A ∈ F ′, A ⊆ S if and only if A ⊆ S ′;

(c) for any A ∈ F ′, S ⊆ A if and only if S ′ ⊆ A.

By the third case we have that F ′ ∪ {S ′} contains an induced copy of P . Clearly b and c then
imply that F ′ ∪ {S} contains an induced copy of P .

2.3. Proof of Theorems 1.5 and 1.6

Given a poset P with legs and an induced P -saturated family F ⊆ 2[n], the following lemma
already implies that F has size at least n.
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Lemma 2.7. Let P be a poset with legs and F ⊆ 2[n] be an induced P -saturated family. Then,
there is an injective function f : [n] −→ F \ {∅} such that

f(i) =

{
{i} if {i} ∈ F and
H(i) if {i} /∈ F , where H(i) is the hip of an induced copy of P in F ∪ {{i}}.

Proof. Let F be an induced P -saturated family. For {i} /∈ F we shall choose a suitable
f(i) = H(i) in such a way that f is injective. Given i ∈ [n] with {i} /∈ F , let P ′ be an in-
duced copy of P in F ∪ {{i}} that contains {i}. Observe that {i} can only be a leg of P ′.
Among all possible choices for P ′, we pick it under the following conditions.

(i) The leg L′ of P ′ which is not {i} is taken so that |L′| is as large as possible;

(ii) under i, the hip H ′ of P ′ is taken so that |H ′| is as small as possible.

Thus we define f(i) := H ′. Note that since L′ and {i} are incomparable, i /∈ L′.

Claim 2.8. H ′ = L′ ∪ {i}.

Proof of claim. Suppose for a contradiction that L′ ∪ {i} ⊊ H ′. If L′ ∪ {i} ∈ F then the
poset (P ′∪{L′∪{i}})\{H ′} is an induced copy of P , which contradicts ii. Therefore L′∪{i}
is not in F and so F ∪{L′∪{i}} contains an induced copy P ′′ of P which uses the set L′∪{i}.

Denote the legs of P ′′ by L′′
1, L

′′
2. If L′ ∪ {i} is not a leg in P ′′ then L′′

1, L
′′
2 ⊂ L′ ∪ {i}.

This implies that (P ′ ∪ {L′′
1, L

′′
2}) \ {{i}, L′} is an induced copy of P in F , a contradiction.

Thus, L′ ∪ {i} is a leg, and we may assume L′′
1 = L′ ∪ {i}.

Note that if L′ and L′′
2 are incomparable, then (P ′′ ∪{L′}) \ {L′′

1} would be an induced copy
of P in F , a contradiction. Thus, L′ is comparable with L′′

2. In particular L′ ⊂ L′′
2, otherwise we

would have thatL′′
2 ⊆ L′∪{i} = L′′

1, which contradicts the fact thatL′′
1 andL′′

2 are incomparable.
Moreover, again because L′′

1 and L′′
2 are incomparable, we have that i /∈ L′′

2.
Finally, observe that (P ′′∪{{i}})\{L′′

1} is an induced copy of P in F ∪{{i}} with legs {i}
and L′′

2 ⊃ L′, which contradicts i. ■

Recall f(i) := H ′ = H(i). We shall prove that f is injective. Suppose not, namely
f(i) = f(j) for some i ̸= j. If either {i} ∈ F or {j} ∈ F then we get a contradiction. Thus, we
have {i}, {j} /∈ F , and hence there exist induced copies P ′ ⊆ F ∪ {{i}} and P ′′ ⊆ F ∪ {{j}}
of P such that H is the hip of both and f(i) = f(j) = H . Say {i} and L′ are the legs of P ′

while {j} andL′′ are the legs ofP ′′. Because of Claim 2.8 we have thatH = L′∪{i} = L′′∪{j},
and hence L′ and L′′ are incomparable. This implies that (P ′∪{L′′})\{{i}} is an induced copy
of P in F , a contradiction.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Observe that for a poset P with legs, the inequality sat∗(n, P ) ⩾ n + 1
follows directly by applying Lemma 2.7 and by noticing that the empty set is in every induced P -
saturated family.

For P such that P and P have legs, we proceed as follows. Let F ⊆ 2[n] be an induced
P -saturated family and observe that ∅, [n] ∈ F . The poset F ⊆ 2[n] is induced P -saturated
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and therefore we can apply Lemma 2.7 to both F and F to obtain injective functions f and f
respectively. Since both P and P have legs, it is easy to see that the hip of P is not a maximal
element of P . It follows that f(i) ̸= [n] for every i ∈ [n]. That is, f([n]) ⊆ F \ {∅, [n]};
similarly f([n]) ⊆ F \ {∅, [n]}.

By taking [n] \ f(i) for every i ∈ [n] we define a new injective function f̃ from [n]
to F \ {∅, [n]}:

f̃(i) :=

{
[n] \ {i} if {i} ∈ F , and
H(i) if {i} /∈ F , where [n] \H(i) is the hip of an induced P in F ∪ {{i}} .

Now, since f and f̃ are injective, proving that f([n])∩ f̃([n]) = ∅ yields that |F| ⩾ 2n+ 2
by recalling that the sets ∅ and [n] belong to F .

Suppose f(i) = f̃(j) for i, j ∈ [n]. If {i} ∈ F or [n] \ {j} ∈ F then it is easy to check
that such an identity is not possible. Hence, we have that f(i) = f̃(j) = H where: H is the hip
of an induced copy P1 of P in F ∪ {{i}} and [n] \ H is the hip of an induced copy P 2 of P
in F ∪{{j}}. In particular, this means that there is an induced copy P2 of P in F ∪{[n] \ {j}}
where [n] \ {j} plays the role in P2 of one of the two maximal elements of P ; H is in P2 and
dominates all elements of P2 except for the two maximal elements.

Let L1 be the leg of P1 other than {i}. Let L2
1, L

2
2 ∈ F be the legs of P2; in particular, L2

1

and L2
2 are incomparable and L2

1, L
2
2 ⊂ H . This implies that for every A ∈ P1 \ {L1, {i}},

L2
1, L

2
2 ⊂ A. Thus, (P1∪{L2

1, L
2
2})\{L1, {i}} is an induced copy ofP inF , a contradiction.

Theorem 1.6 now follows by a simple application of Lemma 2.7 and Theorem 1.5, together
with two upper bound constructions.

Proof of Theorem 1.6. Observe that sat∗(n, Y ) = sat∗(n,

Y

) where

Y

:= Y . Let F ⊆ 2[n] be an
induced

Y

-saturated family. Since

Y

has legs, Lemma 2.7 yields an injective function f from [n]
toF\{∅}with f(i) = {i} if {i} ∈ F and f(i) = H otherwise, whereH is the hip of an induced
copy of

Y

in F ∪ {{i}}. This already implies |F| ⩾ n+ 1 as ∅ ∈ F .
Observe that f(i) ̸= [n] for every i ∈ [n], therefore, if [n] ∈ F then |F| ⩾ n+2, as desired.

Hence, assume that [n] /∈ F , which means that F ∪ {[n]} contains an induced copy of

Y

that
uses [n]. Let L1, L2 be the legs of this copy of

Y

and H be the hip. Assume there is an i ∈ [n]
such that f(i) = H; so H is the hip of an induced copy of

Y

contained in F ∪ {{i}}. Let M be
the maximal element of this copy of

Y

and observe that {L1, L2, H,M} forms an induced copy
of

Y

in F , a contradiction. Hence, f(i) ̸= H for every i ∈ [n], which means that H was not
counted before and therefore |F| ⩾ n+ 2. This argument implies that sat∗(n, Y ) ⩾ n+ 2.

For the posetX observe thatX andX = X have legs, therefore Theorem 1.5 directly implies
that sat∗(n,X) ⩾ 2n+ 2. For the upper bounds, consider the posets

P := {F ∈ 2[n] : |F | ⩾ n− 1 or F = ∅} and Q := {F ∈ 2[n] : |F | ⩾ n− 1 or |F | ⩽ 1} ,

and notice that they are respectively inducedY -saturated and inducedX-saturated. Furthermore,
|P | = n+ 2 and |Q| = 2n+ 2.



12 Andrea Freschi et al.

We conclude this subsection by exhibiting a class of posets for which the bound in Theo-
rem 1.5 is sharp up to an additive constant.

For any ℓ ∈ N, let ∧ℓ denote the poset with the following properties:

- ∧ℓ has legs L1, L2 and hip H1;

- ∧ℓ \ {L1, L2} = {H1, . . . , Hℓ} where Hj ⊂ Hj+1 for every j ∈ [ℓ− 1].

Similarly, for any ℓ ∈ N, let Xℓ denote the poset with the following properties:

- Xℓ has legs L′
1, L

′
2 and Xℓ \ {L′

1, L
′
2} = ∨ℓ where ∨ℓ := ∧ℓ.

Clearly X1 = X and ∧2 =

Y

. Moreover, ∧ℓ, Xℓ and Xℓ have legs for every ℓ ∈ N, and therefore
Theorem 1.5 implies that sat∗(n,∧ℓ) ⩾ n + 1 and sat∗(n,Xℓ) ⩾ 2n + 2. The next proposition
states that these bounds are close to the exact values of sat∗(n,∧ℓ) and sat∗(n,Xℓ).

Proposition 2.9. For all integers n− 1 > ℓ ⩾ 2 we have,1

n+ 1 ⩽ sat∗(n,∧ℓ+1) ⩽ n+ 2ℓ+1 − ℓ− 1 and
2n+ 2 ⩽ sat∗(n,Xℓ) ⩽ 2n+ 2ℓ+1 − 2ℓ.

Proof. First, we consider ∧ℓ+1. Let F ⊆ 2[n] be the family containing precisely the following
sets:

- the empty set ∅;

- {i} for every i ∈ [n];

- all subsets of {1, 2, . . . , ℓ};

- all proper supersets of [n] \ {1, 2, . . . , ℓ}.

It is straightforward to check that F has n+2ℓ+1−ℓ−1 elements and is induced ∧ℓ+1-saturated.
Similarly, the family F ′ := F ∪ F ⊆ 2[n] has 2n + 2ℓ+1 − 2ℓ elements and is induced Xℓ-
saturated.

3. Concluding remarks

The following example shows that the bound in Lemma 2.2 is essentially tight.

Example 3.1. Let n ∈ N be a perfect square, i.e.,
√
n ∈ N. Let As, Bt ⊆ [n] be defined as

follows.

• As := {s
√
n+ 1, s

√
n+ 2, . . . , s

√
n+

√
n} for every s ∈ [

√
n− 1] ∪ {0};

• Bt := [n] \ {t, t+
√
n, t+ 2

√
n, . . . , t+ (

√
n− 1)

√
n} for every t ∈ [

√
n].

1Note that the case ℓ = 1 is covered by Theorem 1.6 since ∧2 =

Y

and X1 = X .
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Let F⋆ := {As : s ∈ [
√
n− 1] ∪ {0}} ∪ {Bt : t ∈ [

√
n]} ⊆ 2[n].

Observe that F⋆ has 2
√
n elements. Furthermore, for every i ∈ [n], there exists exactly

one pair of elements A,B ∈ F⋆ such that A \ B = {i}. Namely, if i = s
√
n + t where

s ∈ [
√
n− 1] ∪ {0} and t ∈ [

√
n] then As \Bt = {i}.

Note that the digraphD with V (D) = F⋆ and edge setE(D) = {
−⇀
AB : A\B = {i}, i ∈ [n]}

is precisely the balanced oriented bipartite graph (i.e., an extremal example for Theorem 1.7).
This example shows that if one can improve the lower bound in Theorem 1.4 by using the

auxiliary digraph approach, then one will really need to use the fact that the digraph is generated
by an induced P -saturated family (recall this was not assumed in the statement of Lemma 2.2).
On the other hand, if Theorem 1.4 is close to being best possible, then Example 3.1 points in
the direction of potential extremal examples. That is, is there some poset P such that there is a
minimum induced P -saturated family F ⊆ 2[n] that is ‘close’ to the family F⋆ in Example 3.1?

Another natural question is to characterise those posets P for which sat∗(n, P ) is bounded
by a constant. Observe that Lemma 2.3 provides a method for determining such posets. That
is, if one can exhibit an n0 ∈ N and an induced P -saturated family F ⊆ 2[n0] such that for
some i ∈ [n0] there are no elements A,B ∈ F with A \B = {i}, then sat∗(n, P ) = O(1).

Along the lines of this research direction, Keszegh, Lemons, Martin, Pálvölgyi and Patkós
[KLM+21] conjectured the following. Given a poset P on [p], let Ṗ denote the poset on [p+ 1]
where Ṗ := P ∪ {[p + 1]} (i.e., Ṗ is obtained by adding an element to P which dominates all
elements in P ).

Conjecture 3.2. [KLM+21] sat∗(n, P ) = O(1) if and only if sat∗(n, Ṗ ) = O(1).

Note that neither direction of Conjecture 3.2 has been verified except for some special cases
(see [KLM+21, Theorem 3.6]). It would be interesting to investigate if Lemma 2.3 can help
tackle Conjecture 3.2.

Finally, it is natural to consider induced saturation problems for families of posets. Given a
family of posets P , we say that F ⊆ 2[n] is induced P-saturated if F contains no induced copy
of any poset P ∈ P and for every S ∈ 2[n]\F there exists an induced copy of some poset P ∈ P
in F∪{S}. We denote the size of the smallest such family by sat∗(n,P). By following the proof
of Theorem 1.4 precisely, one obtains the following result.

Theorem 3.3. For any family of posetsP , either there exists a constantKP with sat∗(n,P)⩽KP
or sat∗(n,P) ⩾ min{2

√
n, n/2 + 1}, for all n ∈ N.

In light of Theorem 3.3 it is natural to ask whether an analogue of Conjecture 1.2 is true in
this more general setting, or whether (for example) the lower bound on sat∗(n,P) in Theorem 3.3
is best possible up to a multiplicative constant.
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