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Summary 

Context: Statistical models employed in analysing patient-level cost and effectiveness data need to be flexible 

enough to adjust for any imbalanced covariates, account for correlations between key parameters, and 

accommodate potential skewed distributions of costs and/or effects. We compare prominent statistical 

models for cost-effectiveness analysis alongside randomised controlled trials (RCTs) and covariate adjustment 

to assess their performance and accuracy using data from a large RCT.   

Methods: Seemingly unrelated regressions, linear regression of net monetary benefits, and Bayesian 

generalized linear models with various distributional assumptions were used to analyse data from the 

TASMINH2 trial. Each model adjusted for covariates prognostic of costs and outcomes.  

Results: Cost-effectiveness results were notably sensitive to model choice. Models assuming normally 

distributed costs and effects provided a poor fit to the data, and potentially misleading inference. Allowing for 

a beta distribution captured the true incremental difference in effects and changed the decision as to which 

treatment is preferable.  

Conclusions: Our findings suggest that Bayesian generalized linear models which allow for non-normality in 

estimation offer an attractive tool for researchers undertaking cost-effectiveness analyses. The flexibility 

provided by such methods allows the researcher to analyse patient-level data which are not necessarily 

normally distributed, while at the same time it enables assessing the effect of various baseline covariates on 

cost-effectiveness results. 
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Introduction 

Clinical research has been seen as a key activity and a vital means of improving the health of the population. 

Experimental studies of a particular design—randomised controlled trials (RCTs)—have been described as “the 

crown jewel” of clinical research [1] and are considered as a prime source of input in assessing the 

effectiveness and cost-effectiveness of competing health care technologies [2]. Much of the rigor in the results 

of RCTs stems from the design characteristics of such studies. A key design characteristic, randomisation of 

participants across treatment arms, aims to distribute patients across treatment groups so that relevant 

patient characteristics are balanced across treatments, with a view to avoiding bias and ensuring that any 

observed outcomes are due to the assigned treatment [3, 4].  

However, flaws in randomisation techniques, small numbers of participants, or simply chance, can lead to 

imbalances in baseline covariates [2, 8], which will inevitably result in biased effectiveness and cost-

effectiveness estimates [9-11]. To safeguard against such bias, researchers often carry out covariate 

adjustments, which typically account for the confounding effect of baseline imbalance through regression 

techniques [12].  

While such adjustments are commonplace in studies looking into the effectiveness of technologies, they are 

relatively less customary in cost-effectiveness analyses (CEA), despite the fact that covariate adjustment can 

reduce variation and give more accurate cost-effectiveness estimates, even when covariates are balanced [11, 

13]. In addition to covariate adjustment, CEA analyses need to account for possible correlation between costs 

and effects [14] as well as the skewed distribution of costs [15].  

In recognition of this, Hoch et al. [9] suggested the net benefit regression model, which is a linear regression 

model with net monetary benefits (NMBs) as a dependent variable allowing for the inclusion of covariates. 

NMBs are defined as a measure that combines costs and health outcomes by transforming health outcomes 

into monetary units, using as an exchange rate a hypothesised value of the decision makers’ willingness to pay 

(WTP) for a unit of outcome [16]. Willan et al. [17] extended this work and considered costs and effects jointly, 

assuming a bivariate normal distribution, by proposing the use of a system of seemingly unrelated regressions 

(SUR). In essence, SUR represents a set of regression equations in which the error terms are assumed to be 

correlated across a set of regression equations [18]. 
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A different route was taken by Nixon and Thompson [13] and Vazquez-Polo et al. [19] who, unlike Hoch et al. 

[9] and Willan et al. [17], adopted a Bayesian approach to provide covariate-adjusted cost-effectiveness 

estimates. Nixon and Thompson [13] and Vazquez-Polo et al. [19] extended Bayesian methods previously 

considered in the CEA literature [14, 20-22] to incorporate covariates. A regression model directly on effects 

and costs was proposed, in which patient characteristics were included as covariates, and effects were 

assumed to be correlated with costs. The relative advantage of adopting Bayesian methods is that distributions 

beyond the normal can be assigned to costs and effects resulting in more flexible approaches to estimation. 

While a number of approaches have been proposed in the literature, no definite answers exist as to the most 

appropriate method for modelling cost-effectiveness data. Methods assuming normally distributed costs or 

effects are widely used in CEA and are advocated by Thompson and Barber and Nixon et al. [23, 24]. Inference 

is based on the sample means, which can be obtained from linear regression models modelling cost-

effectiveness in the scale of interest. According to others, the extreme skewness typically observed in costs 

and/or effects needs to be acknowledged by either employing data transformations or using generalized linear 

models (GLMs) that can accommodate distributions more appropriate for skewed data [25, 26, 27]. Methods 

assuming normally distributed variables typically require relatively large sample sizes, non-extreme skewness 

and the absence of extreme outliers; unless these conditions are met, methods based on normal distribution 

are considered inappropriate for modelling cost-effectiveness data [28]. 

In either case, researchers setting out to analyse cost-effectiveness data will need to select the most 

appropriate method, as each dataset is unique and different statistical models may perform differently 

according to the characteristics of the data. 

Costs typically exhibit positive skewness, or, in some cases, they may even be multimodal. Distributions 

typically used to accommodate positively skewed data are the gamma and the log-normal. Effects expressed in 

terms of quality-adjusted life-years (QALYs) are subject to similar idiosyncrasies. Data are usually truncated at 

both ends of the distribution (ranging between 0 and 1 when the time horizon is 1 year or less). Also, QALYs 

exhibit negative skewness with most values lying in the upper end of the measurement scale and some 

extreme outliers at the lower end of the scale. The beta distribution is a candidate for modelling data in the 

range (0, 1), while supporting both positive and negative skewed distributions. The gamma distribution can 

also be used to model effects, though effects are usually negatively skewed while the gamma distribution is 
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appropriate for modelling positive skewed data. To overcome this problem an alternative is to model 1-effects 

(conditional on effects ranging between o and 1) with the gamma distribution. 

Important aspects in statistical analysis of cost-effectiveness data include selection of relevant covariates for 

subgroup analyses [29] as well as analyses of cost-effectiveness data which can incorporate covariate 

adjustment. The first refers to identifying the optimal decision for different subgroups of patients, as cost-

effectiveness estimates may vary in these populations due to the presence of treatment-modifying covariates. 

The second type of analysis refers to performing an adjustment for any imbalanced covariates so that their 

confounding effect can be accounted for. In this case, the aim is to provide unbiased estimates in order to 

determine the optimal decision for the whole population. The latter is the focus of this study. 

 Given the above, this paper aims to compare the observed model fit and cost-effectiveness estimates of three 

prominent methods for CEA and covariate adjustment: a) ordinary least squares (OLS) regression of NMBs; b) 

SUR and c) GLMs with interaction between costs and effects for various distributions for costs (normal, 

gamma, log-normal) and effects (normal, gamma, beta). The choice of NMB and SUR models is based on their 

popularity and their easy application in standard statistical software. Bayesian GLMs are chosen for their 

flexibility to accommodate different distributions. Irrespective of the distribution of costs and effects and the 

correlation between them, all the methods considered would be unbiased if we were to replicate a given study 

a number of times in a simulation. That is, what would differ between each method is the precision of costs 

and effects and not their point estimates. In a particular study, we expect on average to obtain relatively 

similar cost-effectiveness estimates with different levels of precision, according to the fit of each model to the 

specific data. NMB regression and SUR models are expected to provide precise estimates when the cost-

effectiveness data are approximately normally distributed and there are no extreme outliers. In such cases we 

could directly consider the NMB regression or the SUR, since these models are considerably easier to apply 

than the Bayesian GLMs. By considering and assessing different families of models and different underlying 

distributions, the model that best reflects the available data can be chosen.  To illustrate the above methods, 

we used data from a large RCT, the TASMINH2 study, aiming to look into the effect of self-management 

compared with usual care of hypertension in West Midlands, UK. To make the methods accessible to applied 

researchers, supplementary online material with the code for fitting the Bayesian models is provided. 
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The remainder of the paper is structured as follows. The next section outlines the purposes and characteristics 

of the randomised clinical trial which provided data for this work, and describes the statistical models 

employed in this analysis. Section 3 reports the results obtained from each of the statistical models under 

assessment, while section 4 discusses and interprets the results, gives the key strengths and limitations in the 

analysis and draws conclusions specific to the trial data.  

Materials and Methods 

Case study: the TASMINH2 trial 

The Tele-monitoring And Self-Management in the control of Hypertension (TASMINH2) randomised control 

trial was carried out to examine whether tele-monitoring and self-management of people with hypertension 

would lead to lower levels of blood pressure as compared to usual care [30]. The study took place in 24 

general practices (GPs) in the West Midlands, United Kingdom and involved patients aged between 35 and 85 

years old with blood pressure more than 140/90 mm Hg despite receiving antihypertensive treatment. Patient 

randomisation to tele-monitoring and self-management or usual care was stratified by GP, with minimisation 

factors including sex, baseline systolic blood pressure, and presence or absence of diabetes or chronic kidney 

disease. The trial’s main clinical endpoint was change in mean systolic blood pressure between baseline and 

the two follow-up periods (6 months and 12 months). Further information about the trial can be found 

elsewhere [30]. 

Patient level data on resource use and quality of life collected as part of TASMINH2 were analysed to obtain 

estimates of the cost-effectiveness of each treatment. Five hundred twenty seven (n=527) patients were 

randomised to self-management (n=263) or usual care (n=264). Of those patients, 47 were excluded from 

complete case analyses as they did not attend follow-up visits at 6 and 12 months. In the present analysis, a 

further 17 observations were disregarded due to missing data for important covariates used in the analysis, 

giving a total number of 463 patients (88% of original sample size; 227 in self-managements arm, 236 in usual 

care arm). The per patient NHS cost over a 12-month period was estimated as the sum of the cost for 

medications, training and equipment, inpatient and outpatient care and GP visits. Alongside patient’s mean 

systolic blood pressure (i.e. the principal clinical outcome in the RCT), the study collected patients’ responses 

to EQ-5D-3L [31, 32] a generic measure of preference-based health-related quality of life. EQ-5D scores were 
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used to calculate QALYs from baseline to 12 months, using the ‘area under the curve’ (AUC) approach [33]. EQ-

5D scores were calculated using the UK tariff [34]. 

Statistical models 

Three different methods for covariate adjustment are considered for the CEA of the TASMINH2 RCT: OLS 

regression of NMBs, SUR, and generalized linear regression models with interaction between costs and effects, 

estimated under a Bayesian approach. The following notation is used: let ci and ei be the costs and effects for 

the i
th

 individual. 

OLS regression of NMBs 

Net benefits can be calculated in order to convert costs and effects to a single variable and then be used in 

typical regression analyses. Hoch et al. [9] proposed a linear regression model, where NMB is the response 

variable with explanatory variables comprising an indicator for treatment arm plus the covariates of interest. 

That is: 

𝑁𝑀𝐵𝑖  = 𝑎 +  𝛿𝑡𝑖  +  ∑ 𝛽𝑗𝑥𝑖𝑗 +  휀𝑖
𝑝

𝑗=1
        (1) 

where, 𝑎 is an intercept term, 𝑡𝑖  a treatment dummy taking the value zero for the standard treatment and the 

value one for the new treatment, 𝑥𝑖𝑗  are the 𝑝 covariates of interest, and 휀 is a stochastic error term. The 

regression coefficient 𝛿 represents the incremental net benefit (INB) attributable to the new treatment 

controlling for covariates, for that WTP level. The INB is the difference in the mean NMB of the new treatment 

and the mean NMB of the standard treatment. 

Seemingly unrelated regressions 

SUR is a system of different regression equations with error terms that are assumed to be correlated across 

the equations [35]. Different sets of covariates can be included in each equation, allowing for a more flexible 

modelling approach to estimation. 

𝑐𝑖 = 𝑎𝑐  +  𝛿𝑐𝑡𝑖 +  𝛽1
𝑐𝑥𝑖1 + ⋯ +  𝛽𝑝

𝑐𝑥𝑖𝑝 +  휀𝑖
𝑐 
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𝑒𝑖 = 𝑎𝑒 +  𝛿𝑒𝑡𝑖 + 𝛽1
𝑒𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑒𝑥𝑖𝑝 +  휀𝑖
𝑒  ( 𝑖

𝑐

𝑖
𝑒) ~ 𝐵𝑉𝑁 ((0

0
), (

𝜎𝑐
2 𝜌𝜎𝑐𝜎𝑒

𝜎𝑒
2 ))    (2) 

where, a is the intercept term in each model, 𝑡 a treatment dummy taking the value zero for the standard 

treatment and the value one for the new treatment, 𝑥 are the 𝑝 covariates of interest, and ε are the stochastic 

error terms in each model. The regression coefficient 𝛿𝑐 represents the incremental cost (IC) attributable to 

the new treatment controlling for covariates, and the regression coefficient 𝛿𝑒 represents the incremental 

effect (IE) attributable to new treatment, again, controlling for covariates [17]. The error terms (휀) are 

assumed to follow a bivariate normal distribution, with mean zero and variances 𝜎𝑐
2 and 𝜎𝑒

2, while ρ represents 

the correlation between costs and effects, conditional on covariates. 

Generalized linear regression models with interaction between costs and effects 

Cost and effect data are frequently non-normally distributed, which can be estimated using GLMs [35]. A 

Bayesian approach provides a flexible way to estimate non-normal models. Five models with different 

underlying distributions for costs and effects are examined to show the iterative process of changing one 

distribution at a time. In this way, the impact from changing the distribution at either costs or effects is 

evidenced in the results. The fitted distributions for costs and effects are described next together with the 

respective models. 

a) Model with gamma distribution on costs and normal on effects 

Nixon and Thompson [13] and Vasquez-Polo et al. [19] described a model for covariate adjustment for CEA of 

patient level data using normal distribution for effects and gamma distribution for costs with likelihoods 

𝑒𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜑𝑒,𝑖 , 𝜎𝑒
2), 𝑐𝑖~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑐 , 𝜆𝑐,𝑖),   𝜆𝑐,𝑖 = 𝑎𝑐/𝜑𝑐,𝑖 

where the treatment and covariate effects are linear on the mean effects and mean costs 

𝜑𝑒,𝑖 = 𝑎𝑒 +  𝛿𝑒𝑡𝑖 + 𝛽1
𝑒𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑒𝑥𝑖𝑝 

𝜑𝑐,𝑖 = 𝑎𝑐  +  𝛿𝑐𝑡𝑖 + 𝛽1
𝑐𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑐𝑥𝑖𝑝 + 𝛽𝑝+1
𝑐 (𝑒𝑖 − 𝜑𝑒,𝑖)        (3) 

where, 𝛽𝑒 = (𝛽1
𝑒,…, 𝛽𝑝

𝑒), 𝛽𝑐  = (𝛽1
𝑐,…, 𝛽𝑝+1

𝑐 ) are vectors of unknown coefficients and precision term 𝜏𝑒 = 1/𝜎𝑒
2 

for effects. Correlation between costs and effects is allowed by including the term 𝛽𝑝+1
𝑐 𝑒𝑖  in the above 
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equation. The subtraction of 𝜑𝑒,𝑖  from 𝑒𝑖  in the above equation is done so that the interpretation of 𝑎𝑐  

remains the same as the overall mean cost of the control arm of the trial. For the same reason, when 

covariates 𝑥1, … , 𝑥𝑝 are continuous, they are centred on their mean by subtracting each covariate value from 

their overall mean (𝑥𝑖𝑝 − �̅�𝑝). In the presence of categorical covariates, dummy variables equal to the number 

of the categories of each covariate are included in the above model (e.g. 2 dummy variables for a dichotomous 

covariate). In this case, constraints on the coefficients of each covariate are needed so that their sum over all 

the trial population is zero and the interpretation of 𝑎𝑐  and 𝑎𝑒 remains the same [13]. 

The expected IE attributable to the new treatment, controlling for covariates is given by coefficient 𝛿𝑒 and the 

expected IC attributable to the new treatment controlling for covariates is given by  

𝐼𝐶 = 𝛿𝑐 +  𝛽𝑝+1
𝑐 𝛿𝑒 

Under a Bayesian estimation framework, the simultaneous prior distribution on coefficients α, β, δ, precision 

term τe and shape parameter αc must be specified. We use the following prior structure so that the influence of 

prior distributions on the model estimates is minimal 

𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0, 100), 𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100), 𝛿 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100) 

𝜏𝑒  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 10), 𝑎𝑐~𝑙𝑛𝑁𝑜𝑟𝑚𝑎𝑙(0, 100) 

b) Model with normal distribution on costs and beta on effects 

For the model under a beta distribution for effects, a GLM with a logit link function is chosen due to the unit-

support of the outcome variable (QALYs). The following likelihoods and equations are applied 

𝑒𝑖  ~ 𝐵𝑒𝑡𝑎(𝑎𝑒 , 𝜆𝑒,𝑖)    𝜆𝑒,𝑖 = 𝑎𝑒(1 − 𝜑𝑒,𝑖)/𝜑𝑒,𝑖  

𝑐𝑖~(𝜑𝑐,𝑖 , 𝜎𝑐
2) 

where the treatment and covariate effects are linear on the log-odds (logit) of the mean effects and mean 

costs 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑒,𝑖)  = 𝑎𝑒 + 𝛿𝑒𝑡𝑖 +  𝛽1
𝑒𝑥𝑖1 + ⋯ +  𝛽𝑝

𝑒𝑥𝑖𝑝 

𝜑𝑐,𝑖 = 𝑎𝑐  +  𝛿𝑐𝑡𝑖 + 𝛽1
𝑐𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑐𝑥𝑖𝑝 + 𝛽𝑝+1
𝑐 (𝑒𝑖 − 𝜑𝑒,𝑖)         (4) 

In model (4) the expected IE is estimated by 
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𝐼𝐸 =  
𝑒(𝑎𝑒+𝛿𝑒)

1 + 𝑒(𝑎𝑒+𝛿𝑒)
−

𝑒𝑎𝑒

1 + 𝑒𝑎𝑒  

and the expected IC is estimated by 

𝐼𝐶 = 𝛿𝑐 + 𝛽𝑝+1
𝑐 (

𝑒(𝑎𝑒+𝛿𝑒)

1 + 𝑒(𝑎𝑒+𝛿𝑒)
) − 𝛽𝑝+1

𝑐 (
𝑒𝑎𝑒

1 + 𝑒𝑎𝑒) 

With regard to prior distributions, again, log-normal distributions are assigned to shape parameters and 

normal distributions to regression coefficients and the precision term. 

c) Model with gamma distribution on costs and beta on effects 

The following likelihoods and equations are applied assuming a gamma distribution on costs and a beta on 

effects 

𝑒𝑖  ~ 𝐵𝑒𝑡𝑎(𝑎𝑒 , 𝜆𝑒,𝑖)    𝜆𝑒,𝑖 = 𝑎𝑒(1 − 𝜑𝑒,𝑖)/𝜑𝑒,𝑖  

𝑐𝑖  ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑐 , 𝜆𝑐,𝑖)    𝜆𝑐,𝑖 = 𝑎𝑐/𝜑𝑐,𝑖  

where the treatment and covariate effects are linear on the log-odds of the mean effects and mean costs: 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑒,𝑖)  = 𝑎𝑒 + 𝛿𝑒𝑡𝑖 +  𝛽1
𝑒𝑥𝑖1 + ⋯ +  𝛽𝑝

𝑒𝑥𝑖𝑝 

𝜑𝑐,𝑖 =  𝑎𝑐  +  𝛿𝑐𝑡𝑖 +  𝛽1
𝑐𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑐𝑥𝑖𝑝 +  𝛽𝑝+1
𝑐 (𝑒𝑖 − 𝜑𝑒,𝑖)      (5) 

In model (5), the expected IE and IC are estimated as in model (4). 

d) Model with gamma distribution on costs and on 1-effects 

To fit a gamma distribution on costs and 1-effects the following likelihood and model is used 

(1 − 𝑒𝑖)~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑒 , 𝜆𝑒,𝑖)   𝜆𝑒,𝑖 =  𝑎𝑒/𝜑𝑒,𝑖  

𝑐𝑖  ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑐 , 𝜆𝑐,𝑖)   𝜆𝑐,𝑖 = 𝑎𝑐/𝜑𝑐,𝑖  

where the treatment and covariate effects are linear on the mean (1- effects) and mean costs: 

𝜑𝑒,𝑖 = 𝑎𝑒 +  𝛿𝑒𝑡𝑖 + 𝛽1
𝑒𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑒𝑥𝑖𝑝 

𝜑𝑐,𝑖 =  𝑎𝑐  +  𝛿𝑐𝑡𝑖 +  𝛽1
𝑐𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑐𝑥𝑖𝑝 +  𝛽𝑝+1
𝑐 (𝑒𝑖 − 𝜑𝑒,𝑖)      (6) 

The expected IE is given by −𝛿𝑒 (negative because the model is on 1-effects) and the expected IC estimate is 

given as in model (3). 
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e) Model with log-normal distribution on costs and beta on effects 

The final model we consider is a log-normal model for costs and a beta model for effects: 

𝑒𝑖  ~ 𝐵𝑒𝑡𝑎(𝑎𝑒 , 𝜆𝑒,𝑖)    𝜆𝑒,𝑖 = 𝑎𝑒(1 − 𝜑𝑒,𝑖)/𝜑𝑒,𝑖  

log(𝑐𝑖) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜑𝑐,𝑖 , 𝜎𝑐
2) 

where the treatment and covariate effects are linear on the log-odds of the mean effect and log-mean costs: 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑒,𝑖)  = 𝑎𝑒 + 𝛿𝑒𝑡𝑖 +  𝛽1
𝑒𝑥𝑖1 + ⋯ +  𝛽𝑝

𝑒𝑥𝑖𝑝 

𝜑𝑐,𝑖 =  𝑎𝑐  +  𝛿𝑐𝑡𝑖 +  𝛽1
𝑐𝑥𝑖1 + ⋯ + 𝛽𝑝

𝑐𝑥𝑖𝑝 +  𝛽𝑝+1
𝑐 (𝑒𝑖 − 𝜑𝑒,𝑖)         (7) 

The expected IE is given as in model (4) and the expected IC is given as 

𝐼𝐶 = 𝑒
𝑎𝑐+𝛿𝑐+𝛽𝑝+1

𝑐 (
𝑒(𝑎𝑒+𝛿𝑒)

1+𝑒(𝑎𝑒+𝛿𝑒)
)

− 𝑒
𝑎𝑐+𝛽𝑝+1

𝑐 (
𝑒𝑎𝑒

1+𝑒𝑎𝑒)
 

Model comparison 

Each of the statistical methods described above were applied to adjust for covariates which are prognostic of 

costs and effects. The comparison of statistical models was aided by obtaining values of the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) [37]. Lower AIC and BIC values indicate 

improved model fit and are preferred to higher values. The standard error (SE) of the expected INB at a 

willingness-to-pay level of £20,000 per additional QALY is also reported. 

OLS regression and SUR models were estimated in STATA software, version 12.1 [38], while the Bayesian 

models were implemented using Markov Chain Monte Carlo (MCMC) methods in WinBUGS software [39]. For 

the Bayesian models, two parallel chains were used with different starting values. Posterior distributions for 

the parameters of interest were derived from 60,000 iterations of the Markov chain, after an initial burn-in of 

20,000 iterations. History and autocorrelation plots were examined to ensure convergence was achieved. 
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Results 

Descriptive analyses 

The distributions of costs for the control and intervention groups are presented in Figures 1.a and 1.b, 

respectively, together with fitted densities from the normal distribution. It is obvious from Figure 1 that costs 

are positively skewed (median costs in intervention arm £367, interquartile range £228 to £558; median costs 

in control arm £229, interquartile range £109 to £467) and that the normal distribution fits poorly the data. 

Effectiveness data are illustrated in Figure 2. QALYs exhibit negative skewness (median QALYs in intervention 

arm 0.848, interquartile range 0.739 to 0.962; median QALYs in control arm 0.9194, interquartile range 0.796-

1.000). Again, the normal distribution provided a poor fit of the data. A low level of correlation between costs 

and effects was found in the descriptive analysis (-0.10). 

Table 1 reports the balance of baseline characteristics between the two treatment groups, measured as per 

cent standardised mean differences (SMDs)
1
, which is invariant to sample size [41]. There is not a pre-specified 

level of imbalance that should be a concern, but a SMD of more than 10% is considered to be important [41, 

42]. Apart from the SMD, the correlation between each covariate with costs and QALYs for the two treatment 

groups is reported. As it can be seen, baseline EQ-5D scores were imbalanced (SMD=30.51%), while BMI and 

coronary kidney disease were slightly imbalanced (SMD=10.83% and SMD=13.86%, respectively). With regard 

to correlations with endpoints, baseline EQ-5D scores were strongly correlated with QALYs in both treatment 

groups (rcontrol = 0.77, rintervention = 0.88), while for the other covariates a low level of correlation or no correlation 

was found with either costs or QALYs. 

The findings in Table 1 motivate the need to adjust for the imbalanced and correlated with endpoints 

covariates. Therefore, baseline EQ-5D is included in the analysis while BMI and coronary kidney disease are 

not, as despite the slight imbalance between the treatment arms they are not prognostic of costs or outcomes. 

Results of statistical models 

                                                           
1
 The formula for calculating the SMD for a continuous covariate (x) is: 𝑆𝑀𝐷𝑥 =

𝜇𝑥1−𝜇𝑥2

√(𝑣𝑎𝑟𝑥1+𝑣𝑎𝑟𝑥2)/2
, where 𝜇𝑥1, 𝜇𝑥2 

and 𝑣𝑎𝑟𝑥1, 𝑣𝑎𝑟𝑥2 are the means and variances for each group [40]. 
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Assessment of the overall cost-effectiveness of the TASMINH2 trial using the different regression methods is 

provided in Table 2.  Generally, each model reports different cost-effectiveness estimates leading to different 

reimbursement decisions in some cases. Model fit, reported in the AIC and BIC measures, also varies across the 

methods and so does the precision of the estimates. Models allowing for the skewness in the observations 

report improved fit and in some cases report more precise estimates.  

The NMB regression model achieves the worst model fit (AIC and BIC values of 8488 and 8501, respectively) 

with the expected INB estimated at 14.1. The largest level of uncertainty is also reported in the NMB model, 

with the standard error (SE) of the expected INB being equal to 217.1. The SUR model reports a better 

performance in terms of both model fit and precision (AIC and BIC values of 6718 and 6739, respectively; SE of 

expected INB equal to 215.8). The expected INB estimate is equal to -5.2, indicating that the standard 

treatment is cost-effective under the SUR model. 

Allowing for a gamma distribution on costs and a normal distribution on effects in the Bayesian GLM resulted 

in further improve in both the model fit and the precision of the expected INB. The respective AIC and BIC 

values are 6094 and 6127 while the SE of the expected INB is equal to 203.7, indicating that the gamma 

distribution is more appropriate for modelling the cost data. The expected INB is equal to 51.1 under this 

model. The change in the expected INB compared to the SUR model is driven from the change in the expected 

incremental cost.  

Allowing for the skewness in the effect data by using a beta distribution also results in improved model fit. 

That is, the GLM having a normal distribution on costs and a beta distribution on effects provides better fit of 

the data; however, the expected INB is less precise compared to the gamma-normal distributed GLM. The AIC 

and BIC values are 5987 and 6020, respectively and the SE of the expected INB is equal to 212.4. A possible 

explanation for the increased uncertainty in the expected INB relates to the flexibility of the beta distribution 

in fitting different types of data. This flexibility in handling QALYs results in improved fit at the expense of 

reduced precision. Modelling effects with a beta distribution results in negative incremental effect, indicating 

that the new treatment is less effective than the current one. The expected INB in this model is -282.2. 

The same pattern is noticed in the SE of the expected INB in the model having a gamma distribution on costs 

and a beta on effects. Even though an improved fit of the data is observed compared to all previous models 

(AIC and BIC values of 5222 and 5255, respectively), the SE of the expected INB is equal to 210.8. That is, less 
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accurate results are obtained from the models using the beta distribution to model the effect outcome 

compared to the remaining models for the effect data. The expected INB is estimated at -330.8 due to the 

negative incremental effect. Applying the beta distribution on effects changes the decision rule and in this case 

the current treatment dominates the new treatment as it is less costly and more effective. 

Allowing for a gamma distribution on both costs and effects results in worst model fit compared to the 

gamma-beta distributed model (AIC and BIC values of 5461 and 5494, respectively). This indicates that the 

beta distribution is more appropriate for modelling the effect data. However, the precision of the expected 

INB is considerably improved (SE equal to 199.0) resulting in the most precise estimates of all the models 

under consideration. Using a gamma distribution on effects results in an incremental effect of 0.0082 which is 

similar to the incremental effect estimate obtained using a normal distribution. The expected INB under this 

model is 94.8. 

Finally, allowing for a log-normal distribution on costs and a beta on effects results in the best model fit with 

AIC and BIC values of 4801 and 4834, respectively. However, the precision of the INB estimate (SE of 214.1) is 

less than all the remaining Bayesian GLMs. Despite this, the expected INB is more precise than that of the NMB 

and SUR models. The expected INB under this model is estimated at -378.0, similar to the other two models 

with beta distributed effects. 

Discussion 

This study explores the appropriateness of three prominent methods for covariate adjustment in cost-

effectiveness analyses: OLS regression of NMBs, SUR, and generalized linear regression with interaction 

between costs and effects. Each of the methods was applied to patient-level cost and health outcome data 

from the TASMINH2 trial. Distributions other than the normal (gamma and log-normal on costs, gamma and 

beta on QALYs) were fitted for the purposes of these analyses. Prognostic factors of costs and QALYs were 

considered as covariates with only baseline EQ-5D found to be a significant predictor of QALYs.  

Findings suggest that cost-effectiveness inferences are sensitive to the statistical model employed, and 

therefore an assessment of model fit is essential. Despite the different INB estimates obtained from each 

model, such differences are not statistically significant and they are driven from small differences in the 



14 
 

estimates of incremental QALY. On the basis of the available data from TASMINH2, we found that OLS 

regression of NMBs gave a poor fit to the data. Without taking into consideration the skewed distributions of 

costs and effects, the SUR model provided relatively good fit of the trial data. Moreover, considering that its 

application requires less time and effort than Bayesian GLM models, SUR can be a preferred modelling 

approach in circumstances where costs and effects are approximately normally distributed. 

Distributions of cost data usually exhibit a high degree of skewness and other idiosyncrasies such as non-

negative values and heteroskedasticity) [43]. In such occurances, based on the findings from our study, non-

normal distributions could be applied to costs as model fit and accuracy is improved. While this finding is in 

agreement with conclusions in previous studies [13, 26, 44, 45], it is not in line with previous findings 

stipulating that methods that assume normality are reasonably robust to skewed cost data [17, 46]. In this 

particular dataset, extreme outliers in costs resulted in poor fit to the normal distribution. On the contrary, the 

Bayesian GLMs were more robust to these outliers, reporting more precise estimates, in accordance with 

findings from Cantoni and Ronchetti [47]. 

Distributions of QALYs can also present the same idiosyncrasies observed in cost data [48]. Therefore, methods 

that extend beyond the normal distribution could be applied. In this specific example, fitting a gamma 

distribution to effects improved the goodness of fit of the model compared to a normal distribution; yet, it was 

not enough to capture the negative difference in mean QALYs between the two groups. The beta distribution 

provided further improvement in model fit and captured the true incremental difference in QALYs. This finding 

is in line with previous research suggesting that beta regression models are superior to different regression 

techniques [48-50]. Overall, the best fit of the TASMINH2 trial dataset was provided by a GLM specified under 

a Bayesian approach, allowing for a log-normal distribution on costs, a beta distribution on QALYs and 

controlling for baseline EQ-5D scores. 

An unexpected finding was the performance of the Bayesian GLMs in terms of both the fit of the data and the 

precision of the estimates. Modelling effect data with a beta distribution resulted in considerably improved 

model fit, but the precision of the expected incremental effect and consequently the expected INB was 

reduced. A potential explanation on the loss of precision is employing a logit link function to model effects 

which required back-transforming data to the original scale. The issue of loss of precision from transformation 

of data has already been considered in terms of the analysis of cost data [28]. However, in a Bayesian MCMC 
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framework, the transformation is calculated at each iteration of the simulation and this is not expected to lead 

to less precise estimates, only to slower convergence of the Markov Chain. Having carefully examined 

convergence in the models under consideration, we believe that it is the flexibility of the beta distribution in 

modelling QALYs that provides improved fit of the data, while giving less precise estimates. In any case, better 

model fit of the data does not always imply more precise estimates. For instance, in some circumstances more 

flexible statistical models may provide better fit and this flexibility in fitting the observed data results in less 

precise estimates. Random-effect models, typically used in meta-analyses of trial data, are an example of 

models that can provide a better fit while giving less precise estimates compared to fixed-effects models [51].  

Although Bayesian GLMs are extremely flexible in handling different types of datasets their application 

requires considering some aspects. First, it should be highlighted that such bivariate models are only an 

approximation of the true joint distribution of costs and effects by recognising the correlation between them. 

There is no reassurance that the combination of a marginal (effects) with a conditional (costs) model will 

converge to their true joint distribution, as the properties of the bivariate distributions considered here are not 

well known. Prior distributions require attention as their impact on the posterior estimates should be 

minimum, although in large datasets their impact diminishes. Prior distributions should also be chosen so that 

model parameters do not cause costs or effects to lie outside their appropriate bounds (e.g. become negative). 

Consideration should also be given on convergence of the posterior estimates, as with model complexity 

increasing converge may become slower and larger number of iterations may be required. A final 

consideration regards issues of autocorrelation in the simulation due to high correlation between the intercept 

and slope parameters. This correlation results in poor mixing of the MCMC chains, which in turn results in lack 

of convergence [52]. However, centring of effects and covariates at their mean values, as discussed in the 

Materials and Methods section, would solve such problem.  It must be noted that the correct method of model 

selection from a family of possible models under a Bayesian paradigm is through their associated Bayes factors 

[53]. Whilst Bayes factors are very helpful in model selection, they are complex to compute, and not available 

from an MCMC simulation in WinBUGS, which is the most commonly used tool for such analyses. In addition, 

presenting the Bayes factor of each Bayesian GLM does not allow a comparison with the frequentist models 

(NMB regression and SUR). Presenting model fit in terms of AIC and BIC together with visual inspection of the 

data is a common method of model comparison, which can result in robust conclusions. 
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Covariates can be incorporated in the analysis for the additional reason of assessing the cost-effectiveness of 

interventions at a more individualised level, by examining whether different subgroups of the population are 

associated with different cost-effectiveness estimates. This is owing to the fact that effects, or even costs, may 

be modified by a covariate and as a consequence the choice of an optimal intervention may vary for different 

values of the covariate [29]. While testing for subgroup effects, especially for subgroups that have not been 

pre-specified in the trial protocol, is viewed with some suspicion in clinical effectiveness studies [54-57], 

subgroup analyses have been actively encouraged in cost-effectiveness studies [58]. Such analyses give policy 

makers the flexibility not only to identify the optimal treatment for the trial population, but also to make more 

‘individualised’ decisions for subgroups of the trial population. The case study in our analysis focuses on 

identifying the optimal intervention for a population akin to the trial population, nonetheless, results for 

patient subgroups can also be obtained by extending the models to consider treatment with covariate 

interaction terms. 

Data from the TASMINH2 trial have informed a recent economic evaluation by Kaambwa et al. [59]. The 

authors developed a Markov model to predict the costs and health effects associated with usual care and self-

management of hypertension over a 35 year time horizon. The results of this study suggest that self-

management is cost-effective for both men and women, with a probability of cost-effectiveness at £20000 per 

QALY exceeding 0.99 for both genders. While there is disagreement between the very appealing ICER values 

cited by Kaambwa et al. [59] and the results obtained from the present study, there are important differences 

between these studies which render any comparisons between them potentially misleading. While the analysis 

by Kaambwa et al. [59] makes use of a decision model which is populated by estimates of clinical progression 

taken from various studies, the present study is based solely on patient-level data from TASMINH2 trial, and 

relates to a follow-up period of 12 months. It must be noted that, rather than conducting an economic 

evaluation to highlight differences in the results between dissimilar studies, our study aimed to assess the 

performance of different statistical approaches.  

The above findings are specific to the TASMINH2 RCT and different models and methods may perform better 

in different situations. To draw solid conclusions on the relative performance of each model, simulated data 

that compare these models across a range of circumstances that may be faced by researchers should be 

employed. However, such work is beyond the scope of this paper and could be the objective of a future study. 
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Future studies should also examine the relative performance of QALYs generated by other measures, including 

the longer version EQ-5D 5 level that has recently been developed [60]. 

Our findings illustrate that cost-effectiveness results can be sensitive to the choice of model and distributional 

assumptions. We would therefore recommend that a wide variety of modelling assumptions are considered, 

and model fit is thoroughly assessed and taken into account when selecting a model for analysis. This should 

be coupled with visual inspection of the empirical distribution of the cost and effect observations. In particular, 

this application has shown that methods based on Bayesian approaches that allow for non-normality in 

estimation, offer an attractive alternative for cost-effectiveness analyses and covariate adjustment. The 

flexibility provided by employing such methods allows the researcher to explore different underlying 

distributions and baseline covariates in order to identify an optimal methodology. On this basis, it is thought 

that the use of such methods in economic evaluations of healthcare technologies warrants more attention. 
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Table I. Baseline characteristics of TASMINH2 trial: balance of baseline characteristics, correlation with 
endpoints 

Baseline characteristics 
Intervention 

group (n=227) 
Control group 

(n=236) 

Standardised 
difference 

(%) 
Correlation with endpoints 

Baseline EQ-5D, mean (SD) 0.81 (0.21) 0.88 (0.19) 30.51 r cost 1 = -0.08 r cost 0 = -0.04 

        r QALYs 1 = 0.87 r QALYs 0 = 0.77 

Male, n(%) 105 (46.30%) 108 (45.80%) 1.11 r cost 1 = -0.15 r cost 0 = -0.11 

  
   

r QALYs 1 = -0.07 r QALYs 0 = -0.08 

Age (years), mean (SD) 66.10 (8.73) 65.70 (8.86) 4.34 r cost 1 = -0.01 r cost 0 = 0.07 

        r QALYs 1 = -0.14 r QALYS 0 = -0.01 

Baseline SBP*, mean (SD) 151.96 (11.92) 151.66 (11.88) 2.49 r cost 1 = 0.05 r cost 0 = 0.03 

        r QALYs 1 = 0.04 r QALYs 0 = -0.01 

Ethnicity: White, n(%) 218 (96.00%) 228 (96.60%) 3.14 r cost 1 = -0.04 r cost 0 = 0.34 

        r QALYs 1 = -0.04 r QALYs 0 = -0.09 

Height, mean (SD) 1.66 (0.10) 1.66 (0.09) 0.11 r cost 1 = 0.09 r cost 0 = -0.02 

        r QALYs 1 = -0.01 r QALYs 0 = 0.05 

Body mass index, mean (SD) 29.46 (5.68) 30.06 (5.47) 10.83 r cost 1 = 0.02 r cost 0 = -0.05 

        r QALYs 1 = -0.18 r QALYs 0 = -0.10 

Marital status: Married (n%) 171 (77.00%) 172 (73.00%) 3.71 r cost 1 = 0.06 r cost 0 = -0.05 

        r QALYs 1 = -0.08 r QALYs 0 = -0.12 

Occupation: Managerial, n(%) 96 (42.30%) 106 (44.90%) 5.81 r cost 1 = -0.06 r cost 0 = 0.06 

        r QALYs 1 = 0.06 r QALYs 0 = 0.02 

IMD** 2007 score, mean (SD) 16.85 (13.38) 17.31 (13.88) 3.39 r cost 1 = -0.02 r cost 0 = 0.01 

        r QALYs 1 = -0.14 r QALYs 0 = -0.11 

Current smoker, n(%) 16 (7.10%) 14 (6.00%) 4.53 r cost 1 = -0.06 r cost 0 =  0.04 

        r QALYs 1 = 0.03 r QALYs 0 = -0.10 

Alcohol intake in last year, n(%) 184 (81.10%) 188 (79.70%) 3.51 r cost 1 = 0.02 r cost 0 = 0.03 

        r QALYs 1 = 0.29 r QALYs 0 = 0.10 

Past medical history: 
    

  

   Coronary kidney disease, n(%) 16 (7.10%) 26 (11.00%) 13.86 r cost 1 = 0.00 r cost 0 = 0.22 

   (CKD)       r QALYs 1 = 0.04 r QALYs 0 = -0.01 

   Diabetes, n(%) 18 (7.90%) 16 (6.80%) 4.39 r cost 1 = 0.01 r cost 0 =  0.03 

        r QALYs 1 = -0.01 r QALYs 0 = -0.06 

* Systolic blood pressure; **Index of multiple deprivation 
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Table II. Estimates and model fit of statistical models applied to TASMINH2 data 

N=463 

NΜΒ 
regression 

SUR 

Bayesian regression models with different underlying distributions (Costs - 
QALYs) 

gamma - 
normal 

normal - 
beta 

gamma - 
beta 

gamma -
gamma 

log-normal - 
beta 

Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE] Mean [SE] 

Incremental 
cost 

Not 
applicable 

107.57 
[72.36] 

68.25    
[7.91] 

13.39    
[9.89] 

68.30    
[7.82] 

68.43    
[7.89] 

110.90 
[29.07] 

Incremental 
QALY 

Not 
applicable 

0.0051 
[0.0099] 

0.0060 
[0.0102] 

-0.0134 
[0.0106] 

-0.0131 
[0.0105] 

0.0082 
[0.0099] 

-0.0133 
[0.0106] 

INB at λ = 
£20,000 

14.1                
[217.1] 

-5.2    
[215.8] 

51.1    
[203.7] 

-282.2 
[212.4] 

-330.8 
[210.8] 

94.8    
[199.0] 

-378.0 
[214.1] 

AIC 8488 6718 6094 5987 5222 5461 4801 

BIC 8501 6739 6127 6020 5255 5494 4834 

INB: Incremental net benefit; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion;  
ΝΜΒ: Net monetary benefit; SUR: Seemingly unrelated regression; QALYs: 
quality-adjusted life years; SE: standard error. 
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Model 1: gamma distribution on costs and normal on effects 

model{ 

for (i in 1:N){ 

 

 efic[i] ~ dnorm(phi.e[i], tau1) 

   

 cost[i]~dgamma(shape.c, rate.c[i]) 

 rate.c[i]<-shape.c/phi.c[i] 

   

 phi.e[i] <- mu.e + beta[1]*x1[i] + beta[2]*(x2[i]-mean(x2[])) 

 phi.c[i] <- mu.c + delta[1]*x1[i] + delta[2]*(efic[i]-phi.e[i]) 

 } 

 

 

#covariate prior distributions 

for (m in 1:2){ 

beta[m]~dnorm(0, 0.01); 

delta[m]~dnorm(0, 0.01); 

} 

 

#prior distributions 

tau1~dunif(0, 8) 

log(shape.c)<-log.shape.c 

log.shape.c~dnorm(0,0.01) 

 

 

mu.e~dnorm(0,0.01) 

 

mu.c~dnorm(0,0.01) 

 

#Incremental QALY 

effect1<-mu.e 

effect2<-mu.e + beta[1] 

diff.e <- effect2 - effect1 

 

#Incremental Cost 

cost1<- mu.c + delta[2]*effect1 

cost2<-mu.c + delta[1] + delta[2]*effect2 

diff.c<- cost2 - cost1 

 

#ICER 

ICER<-diff.c/diff.e 

 

#INB lamda=20000 

INB<-diff.e*20000-diff.c 

 

} 

 

# Starting values. 

list(tau1=0.1, log.shape.c=0, mu.e=1, mu.c=1, 

beta =c(1,1), 

delta=c(1,1)) 

 

list(tau1=0.5, log.shape.c=1 mu.e=0.1, mu.c=0.1, 

beta=c(0.1,0.1), 

delta=c(0.1,0.1)) 
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Model 2: normal distribution on cost and beta on effects 

model{ 

for (i in 1:N){ 

 efic[i] ~ dbeta(shape.a, shape.b[i]) 

 shape.b[i] <- (shape.a*(1-phi.e[i]))/phi.e[i] 

   

 cost[i]~dnorm(phi.c[i], tau) 

   

 logit(phi.e[i]) <- mu.e + beta[1]*x1[i] + beta[2]*(x2[i]-mean(x2[])) 

 phi.c[i] <- mu.c + delta[1]*x1[i]  + delta[2]*(efic[i]-phi.e[i]) 

  } 

 

#covariate prior distributions 

beta[1]~dnorm(0,0.1) 

beta[2]~dnorm(0,0.1) 

delta[1]~dnorm(0,0.1) 

delta[2]~dnorm(0,0.1) 

 

 

#prior distributions 

tau~dunif(0, 8) 

 

mu.e~dnorm(0, 0.01) 

mu.c~dnorm(0,0.01) 

 

log(shape.a)<-log.shape.a 

log.shape.a~dnorm(0, 0.01) 

 

#Incremental QALY 

logit(effect1) <- mu.e 

logit(effect2) <- mu.e + beta[1] 

diff.e<- effect2 - effect1 

 

#Incremental Cost 

cost1<-mu.c + delta[2]*effect1 

cost2 <- mu.c + delta[1] + delta[2]*effect2 

diff.c<- cost2 - cost1 

 

#ICER 

ICER<- diff.c/diff.e 

 

#INB lamda=20000 

INB<- diff.e*20000- diff.c 

} 

 

# Starting values. 

list(tau=0.1, mu.e=5, mu.c=2, log.shape.a=0.1, 

beta =c(0.1,0.1), 

delta=c(0.1,0.1)) 

 

list(tau=0.5, mu.e=-1, mu.c=0.2, log.shape.a=0.5, 

beta =c(-1,1), 

delta=c(1,-1)) 
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Model 3: gamma distribution on costs and beta on effects 

model{ 

for (i in 1:N){ 

 efic[i] ~ dbeta(shape.a, shape.b[i]) 

 shape.b[i] <- (shape.a*(1-phi.e[i]))/phi.e[i] 

   

 cost[i]~dgamma(shape.c, rate.c[i]) 

 rate.c[i]<-shape.c/phi.c[i] 

  

 logit(phi.e[i]) <- mu.e + beta[1]*x1[i] + beta[2]*(x2[i]-mean(x2[])) 

 phi.c[i] <- mu.c + delta[1]*x1[i]  + delta[2]*(efic[i]-phi.e[i]) 

 } 

 

 

#covariate prior distributions 

for (m in 1:2){ 

beta[m]~dnorm(0, 0.01) 

delta[m]~dnorm(0, 0.01) 

} 

 

#prior distributions 

log(shape.c)<-log.shape.c 

log.shape.c~dnorm(0,0.01) 

 

mu.e~dnorm(0,0.01) 

mu.c~dnorm(0,0.01) 

 

log(shape.a)<-log.shape.a 

log.shape.a~dnorm(0, 0.01) 

 

#Incremental QALY 

logit(effect1) <- mu.e 

logit(effect2) <- mu.e + beta[1] 

diff.e<- effect2 - effect1 

 

#Incremental Cost 

cost1<- mu.c + delta[2]*effect1 

cost2<-mu.c + delta[1] + delta[2]*effect2 

 

diff.c<- cost2 - cost1 

 

#ICER 

ICER<- diff.c/diff.e 

 

#INB lamda=20000 

INB<- diff.e*20000- diff.c 

} 

 

# Starting values 

list(log.shape.c=0, mu.e=1, mu.c=2, log.shape.a=0, 

beta =c(0.1,0), 

delta=c(0.1,0)) 

 

list(log.shape.c=0.5, mu.e=2, mu.c=0.2, log.shape.a=0.2, 

beta =c(-1,1), 

delta=c(1,1))  
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Model 4: gamma distribution on costs and gamma on effects 

model{ 

for (i in 1:N){ 

 efic.minus[i]<-1-efic[i] 

 efic.minus[i] ~ dgamma(shape.e, rate.e[i]) 

 rate.e[i] <- shape.e/phi.e[i] 

   

 cost[i]~dgamma(shape.c, rate.c[i]) 

 rate.c[i]<-shape.c/phi.c[i] 

  

 phi.e[i] <- mu.e + beta[1]*(x1[i]) + beta[2]*(x2[i]-mean(x2[])) 

 phi.c[i] <- mu.c + delta[1]*(x1[i]) + delta[2]*(efic[i]-phi.e[i]) 

 } 

 

 

#covariate prior distributions 

for (m in 1:2){ 

beta[m]~dnorm(0, 0.01); 

delta[m]~dnorm(0, 0.01); 

} 

 

#prior distributions 

log(shape.c)<-log.shape.c 

log.shape.c~dnorm(0,0.01) 

 

log(shape.e)<-log.shape.e 

log.shape.e ~ dnorm(0, 0.01) 

 

mu.e~dnorm(0,0.01) 

mu.c~dnorm(0,0.01) 

 

#Incremental QALY 

effect1<-mu.e 

effect2<-mu.e + beta[1] 

diff.e <- -(effect2 - effect1) 

 

#Incremental Cost 

cost1 <- mu.c +delta[2]*effect1 

cost2 <- mu.c +delta[1] +delta[2]*effect2 

diff.c <- cost2 - cost1 

 

#ICER 

ICER<-diff.c/diff.e 

 

#INB lamda=20000 

INB <- diff.e*20000-diff.c 

 

} 

 

# Starting values 

list(log.shape.c=0.6, log.shape.e=0.6, mu.e=0.2, mu.c=2.2, 

beta =c(0.15,0.15), 

delta=c(0.15,0.15)) 

 

list(log.shape.c=0.5, log.shape.e=0.5, mu.e=0.1, mu.c=2, 

beta=c(0.1,0.1), 

delta=c(0.1,0.1))  
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Model 5: log-normal distribution on costs and beta on effects 

model{ 

for (i in 1:N){ 

 efic[i] ~ dbeta(shape.a, shape.b[i]) 

 shape.b[i] <- (shape.a*(1-phi.e[i]))/phi.e[i] 

   

 cost[i]~dlnorm(phi.c[i], tau) 

   

 logit(phi.e[i]) <- mu.e + beta[1]*x1[i] + beta[2]*(x2[i]-mean(x2[])) 

 phi.c[i] <- mu.c + delta[1]*x1[i]  + delta[2]*(efic[i]-phi.e[i]) 

  } 

 

#covariate prior distributions 

beta[1]~dnorm(0,0.01) 

beta[2]~dnorm(0,0.01) 

delta[1]~dnorm(0,0.01) 

delta[2]~dnorm(0,0.01) 

 

 

#prior distributions 

tau~dunif(0, 8) 

 

mu.e~dnorm(0, 0.01) 

mu.c~dnorm(0,0.01) 

 

log(shape.a)<-log.shape.a 

log.shape.a~dnorm(0, 0.01) 

 

#Incremental QALY 

logit(effect1) <- mu.e 

logit(effect2) <- mu.e + beta[1] 

diff.e<- effect2 - effect1 

 

#Incremental Cost 

log(cost1)<-mu.c + delta[2]*effect1 

log(cost2)<- mu.c + delta[1] + delta[2]*effect2 

diff.c<- cost2 - cost1 

 

#ICER 

ICER<- diff.c/diff.e 

 

#INB lamda=20000 

INB<- diff.e*20000- diff.c 

} 

 

# Starting values. 

list(tau=0.1, mu.e=5, mu.c=2, log.shape.a=0.1, 

beta =c(0.1,0.1), 

delta=c(0.1,0.1)) 

 

list(tau=0.5, mu.e=-1, mu.c=0.2, log.shape.a=0.5, 

beta =c(-1,1), 

delta=c(1,-1)) 

 


