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Simple Summary: In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma
(ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent
chemotherapy. However, side effects of treatment are common, and outcomes are poorer after
relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and
have fewer side effects. Targeted therapies are potential solutions to these problems, however, the
development of resistance may limit their impact. This review summarises the potential resistance
mechanisms to these targeted therapies.

Abstract: Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in
children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large
B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma
(LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90%
but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs.
Therefore, targeted therapies are of interest as potential solutions to these problems. However, the
major problem with all targeted agents is the development of resistance. Mechanisms of resistance
are not well understood, but increased knowledge will facilitate optimal management strategies
through improving our understanding of when to select each targeted agent, and when a combina-
torial approach may be helpful. This review summarises currently available knowledge regarding
resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL.
Specifically, we outline where gaps in knowledge exist, and further investigation is required in order
to find a solution to the clinical problem of drug resistance in ALCL.

Keywords: nucleophosmin1-anaplastic lymphoma kinase; anaplastic large cell lymphoma; resistance;
chemotherapy; paediatric cancer

1. Introduction
1.1. Epidemiology and Pathologenesis of Paediatric ALCL

Anaplastic large cell lymphoma (ALCL) is a peripheral T cell non-Hodgkin lymphoma
(NHL) with an annual incidence of 1.2 per million children aged under 15 [1]. The World
Health Organisation (WHO) sub-classifies ALCL into anaplastic lymphoma kinase (ALK)-
positive nodal/systemic, ALK-negative nodal/systemic, primary cutaneous and breast
implant-associated ALCL [2]. The majority of paediatric ALCL is ALK-positive, usually
due to a t(2;5)(p23;q35) chromosomal translocation causing the expression of the oncogenic
breakpoint product NPM1-ALK [1,3]. This translocation results in unregulated ligand-
independent activation of ALK, a receptor tyrosine kinase [2,4], due to homodimerization
and auto-phosphorylation of its kinase domain [5] (Figure 1). The oncogenic activity of
NPM1-ALK has been proven in a variety of genetically modified murine models and is
therefore considered the driving event in these malignancies [6–9]. In essence, NPM1-ALK
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is able to activate a number of pathways that confer the hallmarks of cancer on incipi-
ent tumour cells [10] including pathways that facilitate increased survival and reduced
apoptosis, such as the mitogen-activated protein kinase (MAPK) [11], phosphoinositide 3-
kinase (PI3K)-Akt [12], Janus kinase (JAK)-signal transducer and activator of transcription
(STAT) [13] and phospholipase C gamma (PLCγ) pathways [14] (Figure 2).
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Figure 1. The NPM1-ALK fusion protein produced due to a t(2;5)(p23;q35) chromosomal transloca-
tion. The kinase domain, depicted in red, is the site within the ALK portion of the fusion protein
where ALK tyrosine kinase inhibitors (ALK TKIs) bind. Mutations here can lead to ALK TKI
resistance [15,16]. AAs = amino acids, TM = transmembrane, TK = tyrosine kinase.
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Figure 2. Summary of the signalling pathways activated by NPM1-ALK. The hyperactive intracellular
tyrosine kinase NPM1-ALK activates a plethora of signalling pathways including MAPK, PI3K-Akt,
JAK-STAT and PLCγ. These collectively drive ALCL through conferring the hallmarks of cancer
including increasing cell survival and reducing apoptosis [11–14,17,18].
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However, while NPM1-ALK is necessary for the development of ALK-positive ALCL,
its presence alone is not sufficient for lymphomagenesis given that approximately 1% of
newborn babies carry the t(2;5)(p23;q35) translocation (as evidenced by the presence of the
translocation in cord blood stem cells) but, the incidence of ALCL is orders of magnitude
lower [19]. In keeping with multi-step carcinogenesis, ‘second hits’ might include antigen-
induced T-cell receptor (TCR) signalling, or antigen-independent microenvironmental
factors [2,7,11,20,21] (Figure 3).
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Figure 3. The pathogenesis and aetiology of ALCL expressing NPM1-ALK may be dependent on
TCR signalling and/or microenvironmental factors. NPM1-ALK mimics low-intensity tonic TCR
signalling required for T cell development. The TCRs are ultimately downregulated as they are either
surplus to requirement or are prohibitive towards tumour development. If the TCR is downregulated
or non-functional soon after emerging into the periphery, antigen-independent inflammatory mi-
croenvironmental factors might provide the ‘second hit’ promoting ALCL development. If the TCR is
functional after emerging into the periphery, an antigen-presenting cell (APC) might expose the T cell
to a ‘second hit’ in the form of a major histocompatibility complex (MHC)-bound ligand that provides
additional stimulation and promotes ALCL development. With this additional stimulation, the TCR
might then be downregulated to facilitate cell survival by preventing over-stimulation [2,7,11,20,21].
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The uncertainty surrounding the precise pathogenesis of ALCL is made more complex
by the illusive ‘cell of origin’. Most ALCL tumour cells express CD4 (indicative of helper T
cells, although CD3 expression is seen in <20% tumours), granzyme B, TIA-1 and perforin
(indicative of cytotoxic T cells), CD30 (indicative of activated lymphocytes) and some-
times CD25 (indicative of activated lymphocytes or regulatory T cells when co-expressed
with CD4), with the common denominator being a T cell [2,20,22,23]. However, gene
expression profiles of ALCL not only share features with T helper 17 (Th17) cells [24], but
also with early thymic progenitors or haemopoietic stem cells [25]. Whether this latter
genetic signature is a consequence of the cell of origin or NPM1-ALK-induced activity is
debatable. In support of the former, NPM1-ALK enables thymocytes to skip beta-selection
in mice, and it has been observed that two-thirds of human ALCL tumours have TCR
rearrangements that would not normally be permissive of successful thymic development
suggesting that NPM1-ALK is active in the aberrant thymocytes of children carrying this
translocation [7,20]. However, NPM1-ALK is also able to transform primary human periph-
eral T cells to mimic ALCL and activate a gene signature associated with stemness [26–29].
Nevertheless, additional events, beyond the expression of NPM1-ALK, are required for
the development of ALK-positive ALCL. In summary, ALCL is a rare paediatric NHL
whose oncogenic driver is NPM1-ALK. Its exact cell of origin and pathogenesis remains
the subject of continued research.

1.2. Clinical Presentation and Management of Paediatric ALCL

Children with ALCL usually present with high-grade advanced-stage nodal and extra-
nodal disease [30]. Up to 61% have bone marrow involvement when minimal disseminated
disease (MDD) is assessed using qualitative reverse-transcription polymerase chain reac-
tion [31], and 5% have central nervous system (CNS) involvement [32]. Symptoms vary
with disease location but typically include lymphadenopathy and B symptoms [30].

Paediatric ALCL is treated in many countries with the internationally recognised
ALCL99 multi-agent chemotherapy regimen which has a 10-year overall survival (OS)
of over 90% [20,33] but often leads to acute toxicities and late effects [34]. Addition-
ally, progression-free survival (PFS) is only 70% and outcomes are poorer for relapsed
cases [20,33]. The European Inter-Group for Childhood Non-Hodgkin Lymphoma (EIC-
NHL) ALCL-RELAPSE trial suggested vinblastine monotherapy was effective for low-risk
first relapse, and multi-agent chemotherapy followed by allogeneic stem cell transplant
(SCT) was best for high-risk first relapse [2,35]. However, there is no absolute management
consensus, particularly for subsequent relapses [20,33].

Current challenges in the treatment of paediatric ALCL are to find less toxic treatments,
predict relapse, and treat it more effectively. Vinblastine monotherapy is minimally toxic
and effective for a subgroup of patients with relapsed disease; it is the subject of an
upcoming trial in newly diagnosed non-high-risk ALCL patients.

Vinblastine is a vinca alkaloid that binds to the mitotic spindle and stops cell division
at metaphase. It is usually given at a weekly dose of 6 mg/m2 intravenously and is gener-
ally well tolerated, with the advantage that monotherapy can be delivered on an outpatient
basis [36]. Vinblastine has shown efficacy in the treatment of relapsed/refractory ALCL
whereby a study conducted by the French Society of Paediatric Oncology reported that vin-
blastine monotherapy (median duration 14 months) led to complete remission (CR) in 83%
of relapsed patients, which was sustained for 7 years in 36% of cases [37]. Additionally, the
EICNHL-ALCL-RELAPSE trial showed that 2 years of vinblastine monotherapy achieved
a 3-year event-free survival (EFS) of 85% and OS of 90% for low-risk relapses [35]. This
suggests that vinblastine-induced remissions are better sustained with longer treatment.
However, in the first-line setting the efficacy of vinblastine is not as clear cut; EICNHL
together with the Children’s Oncology Group (COG) investigated the addition of 1 year
of vinblastine to standard first-line multi-agent chemotherapy for paediatric ALCL. Un-
fortunately, this approach did not reduce the relapse rate, and instead increased acute
toxicity [38,39]. These data suggest that vinblastine is best utilised as a single agent if the
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goal is to reduce treatment-related toxicity. Therefore, EICNHL will investigate vinblastine
monotherapy as a first-line treatment for low-risk patients, but with a longer treatment
duration of 2 years in an upcoming trial [20]. Given the efficacy of the ALCL99 regimen,
this is unlikely to further improve survival rates but is expected to reduce toxicity [33].

Resistance to vinblastine is a distinct possibility as has been reported for other malig-
nancies. The major cause of vinblastine resistance in these cases is due to upregulation of
expression of members of the ATP-binding cassette (ABC) transporter superfamily, such as
ABCC1 and MDR-1 (P-glycoprotein). These transporters facilitate multi-drug resistance
through their ability to efflux drugs, resulting in a reduced intracellular drug concentra-
tion. They have been shown to mediate vinblastine resistance specifically in renal cell
carcinoma [40,41] and T cell lymphoblastic leukaemia [42] cell lines. Increased expression
of these efflux pumps generally occurs through gene amplification or via downregulation
of negative regulators of their expression, such as a decrease in MiR-210-3p which is a
negative regulator of ABCC1 [40,43]. Many drugs have been investigated as potential
therapies to overcome vinblastine resistance caused by ABC transporters. These include
chloroquine, chlorpromazine, verapamil, cyclosporine A, quinine, valspodar, biricodar and
zosuquidar [41,44–47]. However, these drugs did not perform well in clinical trials due to
poor efficacy and/or toxicity problems and none are currently approved for the reversal of
drug resistance caused by ABC transporters [46,47]. Indeed, through this mechanism, resis-
tance to multiple standard toxic chemotherapy agents is induced and with the advent and
increasing use of novel targeted agents, the search for inhibitors of multi-drug resistance in
this form may become of decreasing necessity.

A second cause of vinblastine resistance is increased expression or activity of c-Jun, a
member of the transcription factor, activator protein-1 (AP-1) family, which disrupts the
ability of vinblastine to initiate apoptosis [48]. As AP-1 transcription factors are actively
transcribed in ALCL, this mechanism of resistance is a distinct possibility [16]. A third cause
of resistance is an alteration in tubulin content and polymerisation status, which interferes
with the site of action of vinblastine [49]. However, despite these possible mechanisms,
resistance to vinblastine monotherapy is not particularly common in ALK-positive ALCL,
as it remains effective for subsequent relapses that occur after therapy cessation in the
majority of patients [37]. Additionally, as previously mentioned, the increased use of novel
targeted agents will likely negate any pressure to develop counter-active measures towards
resistance to vinblastine.

Emerging agents targeting the pathways dysregulated by NPM1-ALK hold great
promise for both newly diagnosed and relapsed patients. However, both primary (intrinsic)
and acquired resistance to these drugs are a major problem and, at present clear solutions
or guidelines to overcome this issue do not exist. A prerequisite for establishing solutions
is a detailed understanding of the potential mechanisms of resistance and therefore this
review will focus on the latter rather than providing solutions.

2. Targeted Agents for the Treatment of ALCL

Studying targeted agents for the treatment of paediatric ALK-positive ALCL is chal-
lenging due to the low disease incidence. However, coordinated international efforts to
study the treatment of paediatric ALCL, in addition to knowledge gained from investi-
gating adult ALCL and other ALK-positive diseases, has led to the suggestion that ALK
tyrosine kinase inhibitors (ALK TKIs), armed antibodies to CD30 (such as brentuximab
vedotin (BV)) and immune checkpoint inhibitors (such as nivolumab) may be useful drugs
to overcome the current challenges in the treatment of paediatric ALCL.

2.1. ALK Tyrosine Kinase Inhibitors

ALK TKIs inhibit the kinase activity of aberrantly expressed ALK largely through
binding to the ATP pocket. They are given orally and are generally well tolerated as
monotherapy with few, largely manageable side effects [20,50]. As ALK is usually only
expressed in neonatal neurons, off-target side effects were expected to be minimal [51],
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particularly as ALK knockout mice are viable without any obvious health defects [52,53].
The use of ALK TKIs to treat ALCL has benefitted from prior investigations of their use in
ALK-positive non-small cell lung cancer (NSCLC) [1,54]. The first ALK TKI approved for
NSCLC by the Food and Drug Administration (FDA) was crizotinib, but second (ceritinib,
alectinib and brigatinib) and third (lorlatinib) generation inhibitors have subsequently
also been authorised [1]. Approval for use in ALCL has been difficult, particularly in
children due to disease rarity [20]. However, crizotinib recently gained FDA approval for
relapsed/refractory ALK-positive ALCL in patients aged over one year [55]. This was
based on evidence that crizotinib was well tolerated and led to a complete response in
67–83% of patients with relapsed ALCL [50,56,57]. Additionally, alectinib has recently
gained approval in Japan for relapsed ALCL, due to a trial showing efficacy (PFS 58.3%,
EFS and OS both 70%) [58].

How ALK TKIs should be combined with or replace existing frontline therapy remains
to be resolved given the already high survival rate of multi-agent chemotherapy protocols
such as ALCL99. A recently completed trial (NCT01606878) employed crizotinib in combi-
nation with ALCL99 therapy and showed unacceptable cytopenias and gastrointestinal
toxicity in the paediatric ALCL relapse setting [59]. Another trial (ITCC053) closed the arm
in which crizotinib and vinblastine were given in combination for relapsed paediatric ALCL
due to toxicities [60]. The full results of an additional trial (NCT01979536) administering
crizotinib with the ALCL99 chemotherapy regimen in newly diagnosed paediatric ALCL,
are awaited, although a temporary pause in the trial had to be imposed due to a number of
thromboses [1,61]. Whether other ALK inhibitors will result in different toxicity profiles
remains to be seen. An industry-led trial (Takeda) combining brigatinib with ALCL99
multi-agent chemotherapy is planned. Brigatinib has shown efficacy in adults with NSCLC
resistant to crizotinib and unlike crizotinib, brigatinib has shown good brain penetrance
and durable responses in patients with NSCLC [62], and it is hoped that its use in the
treatment of ALCL will be similarly effective.

2.2. Brentuximab Vedotin

All ALK-positive paediatric ALCL express the transmembrane receptor CD30, which
facilitates cancer cell survival through the activation of, for example, the nuclear factor-
kappa B (NF-kB), Interferon regulatory factor 4 (IRF4) and MYC proto-oncogene (MYC)
pathways [63,64]. However, monoclonal antibodies (MABs) targeting CD30 alone were
disappointing; only 17% of adult ALCL patients had any response to the anti-CD30 MAB
SGN-30 in a Phase II trial [65]. Therefore, the antibody-dug conjugate BV was developed.
This consists of an antibody targeting CD30 bound to the anti-tubulin agent monomethyl
auristatin E (MMAE). When the antibody binds to CD30, the drug-receptor complex is
internalised, and after lysosomal processing, MMAE is released inside the cell, driving
apoptosis [63].

BV was approved by the FDA for adults with relapsed ALCL in 2011 [1]. This was
based on early results from a phase II study (NCT00866047) which has since demonstrated
durable remissions at five years [66,67]. BV was next recommended for use alongside
multi-agent chemotherapy in newly diagnosed adult ALCL due to the results of the phase
III ECHELON-2 trial [68]. Subsequently, BV has been studied for use in paediatric ALCL.
A phase I/II study (NCT01492088) including paediatric patients with relapsed/refractory
ALCL showed that the pharmacokinetic profiles were similar to those in adults; 53% of
patients achieved an overall response, and side effects were manageable [69]. Another
phase II study (ANHL12P1) showed that the addition of BV to the ALCL99 chemotherapy
regimen for newly diagnosed ALK-positive paediatric ALCL led to an EFS of 79.1%, an
improvement from the assumed EFS of 70% for ALCL99 therapy alone, without any
additional toxicity. Moreover, this treatment approach almost completely eliminated
progression/relapse during first-line treatment. This is particularly important because
children who progress during first-line treatment have the poorest prognosis [63,70].
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2.3. Checkpoint Inhibitors

ALK-positive ALCL cells constitutively express the immune checkpoint protein pro-
grammed cell-death ligand 1 (PD-L1) on their surface. This interacts with the programmed
cell death 1 (PD-1) receptor to dampen the T cell immune response against the tumour, al-
though the precise mechanism via which this occurs is currently under investigation [71,72].
MABs directed against PD-L1, nivolumab and pembrolizumab, may be particularly effec-
tive in ALK-positive ALCL because NPM1-ALK drives high levels of PD-L1 expression via
STAT3 [1]. Indeed, initial case reports describe durable responses and limited toxicities in
teenagers with relapsed/refractory ALK-positive ALCL [73,74]. Patients are currently be-
ing recruited to a phase II trial (NCT03703050, NIVO-ALCL) to study the use of nivolumab
in adult and paediatric patients with relapsed/refractory ALK-positive ALCL previously
treated with chemotherapy and either an ALK TKI or BV [1].

3. Mechanisms of Resistance to ALCL Therapy

It is anticipated that resistance to these novel agents may be a major problem. Un-
derstanding how this resistance develops, and how it can be overcome, will be essential
to the successful integration of these novel approaches into the mainstream treatment of
paediatric ALK-positive ALCL.

3.1. Mechanisms of Resistance to ALK Tyrosine Kinase Inhibitors

Despite the promise of ALK TKIs, it appears at least in some contexts, that therapy
will either have to be for long periods of time or as a bridge to another treatment, as swift
relapses have been observed on the discontinuation of crizotinib monotherapy [1,75]. In
addition, resistance is expected as has been experienced for patients with ALK-positive
NSCLC [17]. Indeed, reports of crizotinib resistance developing within months of treatment
initiation in patients with ALCL have been published [56,57].

ALK TKI resistance can either be ALK-dependent or -independent with the former
largely occurring due to mutations in ALK (Figures 1 and 4). These have been reported as
either mutations in residues at the TKI binding site, or those that result in conformational
changes that increase aberrant ALK activity [76,77]. Extensive studies of ALK-dependent
resistance mechanisms in NSCLC [17,78] have identified numerous mutations which in
some cases are specific to a certain ALK TKI and in others are ubiquitous amongst the ALK
TKIs (Table 1). In the treatment of NSCLC, clinicians usually start by treating with crizotinib,
and then swap to second- or third-generation inhibitors depending on the ALK mutation
that has developed. Ultimately this increases the risk of compound mutations developing,
which confer resistance to second and even third-generation inhibitors [17,79]. However,
some of these compound mutations can actually re-sensitise patients to crizotinib, even if it
has been administered to the patient previously [17]. Cycling of TKIs may therefore be an
approach to preventing or responding to the development of resistance.

Another form of ALK-dependent resistance is caused by the amplification of the ALK
gene (Figure 4). This results in resistance due to a target excess [17,78] as has been reported
for NSCLC cell lines [80,81] and patients [78,82,83], as well as ALCL cell lines [84,85] but
not yet for ALCL patients. Interestingly, ALK upregulation in response to ALK TKIs results
in overwhelming ALK signalling such that if the ALK TKI treatment is stopped, the excess
in ALK signalling can counterintuitively drive apoptosis. Therefore, a non-continuous
dosing regimen may be beneficial [85–87].
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Figure 4. ALK-dependent mechanisms of resistance to ALK TKIs. (A) Mutations in the ALK tyrosine kinase domain prevent
the ALK TKI from binding to the receptor and exerting its inhibitory effect on oncogenic ALK signalling. (B) Amplification
of the ALK gene provides an excess of drug target outcompeting the inhibitor.

Table 1. Summary of reported ALK mutants conferring resistance to ALK TKIs. Sites of the identified mutations are
reported according to their position in the full-length ALK protein. Resistance mutations refer to those reported in the
context of conferring resistance to ALK TKIs, some of which have been proven to confer sensitivity to ALK TKIs and others
with conflicting evidence as to their ALK TKI response. Ins = insertion, del = deletion.

ALK TKI
ALK Mutation

Resistance Sensitivity Conflicting

Crizotinib C1156T [88]
C1156Y [17,79,89–94]

L1198F [79,89,95,96]
C1156Y/L1198F [95]

D1203N [79,96–98] G1202R/L1198F [91]
E1210K [79,90,99] I1171N/L1265F [91]
F1174C [76,79,89,91,99]
F1174I [91]
F1174L [100,101]
F1174V [91]
F1245V [92]
G1128A [102]
G1202R [78,79,89,90,94]
G1202del [79,89]
G1269A [79,82,89,90,94,96,99]
G1269S [103]
I1171N [79,89,90,103–105]
I1171S [79,89,90,103]
I1171T [76,79,89–92,98]
I1171X [106]
I1268L [91]
L1152P [103,107]
L1152R [81,94]
L1196M [17,78–80,82,89–94,96,98,99]
L1196Q [91,96,104]
L1198P [97]
R1192P [108]
S1206C [90,103]
S1206Y [78,79,90,94]
T1151K [109,110]
T1151M [108]
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Table 1. Cont.

ALK TKI
ALK Mutation

Resistance Sensitivity Conflicting

Ceritinib F1174L [79,90,103,107,108] E1210K [79,89] C1156Y [79,89,90,103,107,112]
V1180L [96]
Q1188_L1190del [111]
1151Tins [78,90]
D1203N/E1210K [79,89]
D1203N/F1174C [79,89]
F1174L/G1269A [98]
F1174S [90] F1245C [113] D1203N [79,89,90,96]
F1174V [103] I1171T [79,89,107] F1174C [79,89,107,112]
G1123S [114] I1268L [91] G1202R [79,89,90,92,98,103,112]
G1128A [98] L1196Q [91] G1269A [79,89,96,98,107,108]
G1202del [79,89,103] S1206Y [107,115] I1171N [79,89,90,107]
L1122V [96] V1185L [91] I1171S [79,89,90]
L1152P [103] G1269A/I1171S [116] L1196M [79,89–91,96,107,115]
L1152R [103,107] G1269A/I1171N [91]
L1198F [79,89,96]
R1192P [108]
R1275Q [17]
T1151K [109]
T1151M [108]
T1151Sins [117]
Q1188_L1190del [111]
1151Tins [103,107]
C1156Y/I1171N [79]
C1156Y/G1202del/V1180L [79]
D1203N/E1210K [79,89]
D1203N/F1174C [79,89]
E1210K/I1171T [98]
G1202R/F1174L [79]
G1202R/F1174V [92]
G1202R/L1196M [91]

Alectinib F1174I [91] C1156Y [79,89,118] F1174C [76,79,89]
F1174L [79,90,91,103,107,108] D1203N [79,89,96] I1171T [76,79,89–91,119]
F1174S [90] E1210K [79,89] L1196M [79,89–91,96,118]
F1174V [91,103] F1174L [118] 1151Tins [118]
G1202R [79,89,90,92,99,118] G1269A [79,89,96,118]
G1202S [99] I1268L [91]
G1202del [79,89] L1152R [118]
G1210K [120] L1198F [79,89]
G1269A [108] L1256F [91]
I1171N [79,89–92] S1206Y [118]
I1171S [79,89–91,108] T1151K [110]
I1171 X [106] V1185L [91]
L1122V [96] I1171N/L1256F [91]
L1196Q [91]
L1198F [96]
R1192P [108]
T1151M [108]
V1180L [119]
W1295C [98]
D1203N/E1210K [79,89]
D1203N/F1174C [79,89]
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Table 1. Cont.

ALK TKI
ALK Mutation

Resistance Sensitivity Conflicting

F1174L/G1269A [98]
G1202R/L1196M [98]
L1196M/V1185L [91]

Brigatinib G1202L [121] C1156Y [79,89,107] D1203N [79,89,90,96,107]
G1202del [79,89] F1174C [79,89,107] E1210K [79,89,90]
L1122V [84,96] F1174L [107] G1202R [62,79,89,90,107]
S1206C [90] G1269A [96,107] I1171N [79,89,104,107]
D1203N/F1174C [89] I1171S [79,89,106] L1198F [79,89,96,107]
D1203N/E1210K [89] I1171T [79,89] S1206Y [17,90,107]
E1210K/S1206C [89,99,103] L1152P [107]
F1174V/L1198F [84] L1152R [107]
F1174L/L1198V [99] L1196M [79,80,89,96,107]
G1202R/L1196M [122] L1196Q [104]

V1180L [96,107]
1151Tins [107]
G1269A/I1171S [116]
G1269A/I1171N [91]
I1171N/L1196M [91]
I1171N/L1198F [91]
I1171N/L1256F [91]

Lorlatinib C1156F [123] C1156Y [79,89] E1201K [79,89,123]
G1128S [123] D1203N [79,89] G1269A [79,89,96,124]
L1256F [91] F1174C [79,89] I1171N [79,89,123]
C1156F/D1203N [123] F1174I [123] I1171T [79,89,123]
C1156F/L1198F [124,125] F1174L [126]
C1156Y/D1203N [125] F1245C [126]
C1156Y/F1174C [125] G1202del [79,89]
C1156Y/F1174I [125] G1202K [120]
C1156Y/F1174V [125] G1202L [121]
C1156Y/G1269A [125,127] G1202R [79,89,128]
C1156Y/I1171T [125] I1171S [79,89]
C1156Y/L1196M [125] L1196M [79,89,96]
C1156Y/L1198F [125] R1275Q [126]
C1156Y/S1256F [125] V1180L [96]
D1203N/F1174C [79,89]
D1203N/L1196M [127]
F1174C/G1202R [91]
F1174C/G1269A [125]
F1174C/L1196M [125]
F1174L/G1202R [91,127]
G1202R/G1269A [91,98,124]
G1202R/I1171N [91]
G1202R/L1196M [92,122,125]
G1202R/L1198F [91,125]
G1269A/I1171S [116]
G1269A/I1171N [125]
G1269A/I1171T [125]
G1269A/L1196M [91,125]
G1269A/N1178H [124]
I1171N/C1156Y [91]
I1171N/L1198F [91]
I1171N/L1256F [91]
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Table 1. Cont.

ALK TKI
ALK Mutation

Resistance Sensitivity Conflicting

L1196M/F1174C [125]
L1196M/F1174L [125]
L1196M/F1174V [125]
L1196M/I1171S [125]
L1196M/I1179V [125]
L1196M/L1198F [125]
L1196M/L1198H [125]
L1196M/L1256F [125]

ALK-independent mechanisms of resistance occur when the need for NPM1-ALK
is bypassed through the activation of its downstream targets via alternative signalling
cascades, so-called bypass tracks (Figure 5 and Table 2) [17,78]. For example, increased
signalling through the insulin-like growth factor receptor (IGF-1R) activates the JAK/STAT,
MAPK and PI3K/Akt pathways normally stimulated by EML4-ALK or NPM1-ALK, caus-
ing crizotinib resistance in NSCLC and ALCL respectively [129,130].
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Figure 5. ALK-independent ‘bypass’ mechanisms of resistance to ALK TKIs. The effects of inhibited
ALK activity are substituted by the upregulation of alternative signalling cascades that activate the
same downstream targets as does aberrantly active ALK. The need for ALK is effectively bypassed.
Mutations in the downstream targets of ALK, indicated with a lightning symbol, also bypass the
need for ALK.
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Table 2. Summary of reported bypass tracks conferring resistance to ALK TKIs.

Protein Alteration
(Upregulation Unless Otherwise Specified) ALK TKI Disease

IGF-1R Crizotinib [129,130] NSCLC and ALCL

Epidermal growth factor receptor (EGFR)

Crizotinib [78,81,98,131,132]
Ceritinib [98,133]

Alectinib [98,132,134]
Lorlatinib [124,132]

NSCLC

Lorlatinib [124] Neuroblastoma

Human epidermal growth factor receptor (HER), including via
increased neuregulin 1 ligand Ceritinib and alectinib [135,136] NSCLC

KIT proto-oncogene receptor tyrosine kinase (KIT), including
via increased stem cell factor (SCF) ligand

Crizotinib [78]
Ceritinib [98] NSCLC

MET proto-oncogene receptor tyrosine kinase (MET), including
via increased hepatocyte growth factor (HGF) ligand

Alectinib [134,137–140]
Ceritinib and lorlatinib [79,98,117] NSCLC

SRC proto-oncogene, non-receptor tyrosine kinase (SRC) Crizotinib [141]
Alectinib [138] NSCLC

Discoidin domain receptor tyrosine kinase 2 (DDR2) Alectinib [79] NSCLC

Fibroblast growth factor receptor 2 (FGFR2) Ceritinib [79] NSCLC

ERb-B4 receptor tyrosine kinase 4 (ErbB4) Lorlatinib [124] Neuroblastoma

Interleukin 10 receptor subunit alpha (IL10RA)

Crizotinib [142]
Alectinib [142]
Brigatinib [142]
Lorlatinib [142]

ALCL

Protein tyrosine phosphatase non-receptor tyrosine kinase 1/2
(PTPN1/2) loss Crizotinib [143] ALCL

Alternatively, ALK-independent resistance can be induced due to activation of the
pathways downstream of aberrant ALK activity via mutation of genes encoding proteins
involved in these pathways (Figure 4). For example, mutations in the MAPK pathway com-
ponents KRAS [82,99,131,144,145], NRAS [79,98], BRAF [79,98,132,140] and MEK [132,146],
as well as reduced DUSP6 (a MAPK phosphatase) [144] and mutations in the RAS negative
regulators neurofibromin 1 and 2 (NF1/2) [99,127], cause ALK TKI resistance in NSCLC.
Furthermore, lorlatinib and ceritinib resistance has been associated with upregulation of the
MAPK pathway in ALCL xenografts [124] and neuroblastoma cell lines [147], respectively.
Additionally, PI3KCA mutations cause ALK TKI resistance in NSCLC [79,98,132,146], and
lorlatinib resistance of ALCL xenografts has been associated with PI3K/Akt pathway
upregulation [124]. Finally, NOTCH1 mutations in NSCLC [99] and ALCL [148], and
PIM1 overexpression in neuroblastoma [149], also cause ALK TKI resistance through their
effects on the JAK-STAT pathway. In a similar manner, we have shown that activation
of signalling via the IL10R bypasses NPM-ALK to activate STAT3 in ALCL mediating
resistance to crizotinib, alectinib, brigatinib and lorlatinib [142].

Besides ALK-dependent and independent mechanisms of resistance, there are some
additional mechanisms through which ALK TKIs cease to be effective. Some are well
studied, such as the CNS relapses that occur if crizotinib and ceritinib are effluxed from the
CNS by P-glycoprotein in the blood-brain barrier. These effects can be overcome by using
alectinib, brigatinib or lorlatinib as they are not substrates for P-glycoprotein [107]. Other
resistance mechanisms are very specific to individual tumour types. For example, NSCLC
acquires resistance through epithelial–mesenchymal transition, whereby cells lose their
polarity and become more fibroblastic and invasive [79,127,150,151]. NSCLC also acquire
resistance through transforming to a small cell lung cancer (SCLC) phenotype, although
given that these cells retain their ALK rearrangements, further investigation is required
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to determine why these transformations mediate resistance [152–155]. Additionally, neu-
roblastoma cells driven by MYCN and ALK amplifications can acquire resistance via a
multi-step process in which they downregulate MYCN, and instead upregulate and become
dependent on BORIS, a DNA binding protein that increases the proliferation and survival
of cancer cells, and here causes increased expression of transcription factors that promote
the transformation to an ALK TKI-resistant phenotype [156,157]. Further resistance mecha-
nisms are less well studied, such as the generation or loss of different ALK fusions. Indeed,
in the case of NSCLC with 3 co-existing rare ALK fusions at diagnosis (COX7A2L-ALK,
LINC01210-ALK and ATP13A4-ALK), the generation of an additional SLCO2A1-ALK
fusion mediated crizotinib resistance, and the subsequent loss of the ATP13A4-ALK and
SLCO2A1-ALK fusions mediated ceritinib resistance [158]. Additionally, increased au-
tophagy in which cells break down obsolete constituents of their own cytoplasm as a way
of generating additional energy for tumour growth and proliferation leads to crizotinib
resistance in ALCL [159] and NSCLC [160] by allowing the cell to overcome the metabolic
stress of the ALK TKI. Indeed, treatment of ALCL cells (both in vitro and in vivo) with
crizotinib and chloroquine, which inhibits autophagy, resulted in a greater inhibitory
effect than treatment with crizotinib alone, suggesting that there are potential ways of
overcoming resistance caused by this mechanism [159].

Another potential cause of resistance to ALK TKIs is p53 disruption. It is already
known that TP53 mutation can cause resistance to traditional genotoxic chemotherapeutic
agents by preventing apoptosis despite chemotherapy-induced DNA damage [161,162].
However, the resulting genetic instability caused by p53 disruption enables mutations to
accumulate over time, and it is these later changes that may drive resistance to targeted
agents. This has been shown to be the case in chronic lymphocytic leukaemia [161,162].
Additionally, in neuroblastoma, it has been shown that combination treatment with an
ALK TKI and a p53 activator may prevent the resistance seen with ALK TKI monotherapy
because the combination stimulates apoptosis rather than reversible growth arrest seen
in cells treated with monotherapy [163]. However, p53-mediated resistance to targeted
agents has not yet been demonstrated in ALCL. This should be investigated further because
p53 is inactivated in some cases of ALCL, occasionally due to TP53 gene mutations [164]
but more usually via NPM1-ALK stimulated induction of JNK and MDM2 activity [165].
Additionally, it has been shown that the p53 activator nutlin-3a can induce apoptosis of
ALCL and thereby enhance the efficacy of chemotherapy [166].

In summary, due to a large number of possible ALK TKI resistance mechanisms, it
is essential that tumours are assessed at the time of resistance to identify the underlying
cause, to inform on the next best therapeutic approach towards a cure. For example, the
identification of an ALK mutation could dictate which ALK TKI to use next, and the
emergence of ALK-independent bypass mechanisms may identify other druggable targets
to overcome resistance. Indeed IGF-1R [129], HER [99], HGF [139], SRC [146], MEK [146]
and mTOR [167] inhibitors have been shown to overcome ALK TKI resistance caused
by activation of these bypass pathways. Therefore, these could be considered as future
treatments in these cases. It is also imperative that further potential resistance mechanisms
continue to be identified in the laboratory as for many patients, the mechanisms cannot
be explained by known pathways. In evidence, a large study of NSCLC patients resistant
to ALK TKIs found that only 33–44% of the resistance phenotype could be explained by
currently known resistance mechanisms [98]. This is even more important for ALCL, as
well as neuroblastoma, because the majority of known ALK TKI resistance mechanisms
have been studied in NSCLC and may differ substantially between diseases due to differing
underlying biology and activities specific to the type of aberrant ALK expression observed,
including overexpression of full-length ALK, compared to a fusion protein.

Additionally, the schedule of ALK TKI delivery and the combination of drugs with
which it is administered may also impact resistance mechanisms. For example, resistance
may be delayed or prevented when combination therapies are given upfront rather than
as sequential monotherapies; when therapy is given in a metronomic manner; or when
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treatments are cycled before resistance has developed rather than changing treatment
once resistance has already developed. In particular, alternating ALK TKIs based on the
additional proteins that they target other than ALK may be useful in reducing the selective
pressure leading to specific ALK mutations and bypass resistance tracks. For example,
crizotinib (also an MET and ROS1 inhibitor [90]) could be cycled with alectinib (also an
RET, LTK and GAK inhibitor [90]). Furthermore, it has been demonstrated in NSCLC that
MET-driven ALK TKI bypass resistance is present at lower levels in patients treated with
a less selective ALK TKI [168]. This requires investigation specific to ALCL but suggests
that the development of drugs with potent ALK inhibition, but not necessarily more ALK
specificity, is required.

3.2. Mechanisms of Resistance to Brentuximab Vedotin

Resistance to BV develops relatively frequently, with around half of patients with
relapsed/refractory ALCL treated with BV either progressing on therapy or requiring addi-
tional treatments [169]. The most obvious mechanism of resistance is a reduction in CD30
protein expression, the target of BV activity. This has been observed in at least one case of
adult ALK-negative ALCL [170] and in epithelioid inflammatory myofibroblastic sarcoma
patient-derived xenografts (PDXs) [171]. It is unclear whether these reductions in CD30
were due to downregulation of the CD30 target, increased turnover of CD30, CD30 internal-
isation, or the selective outgrowth of sub-clones with lower levels of CD30 expression [171].
However, CD30 target reduction does not account for all BV resistance because CD30
expression is maintained in some BV-resistant Hodgkin lymphoma and ALCL [172]. A sec-
ond potential resistance mechanism is upregulation of ABC transporters, which has been
demonstrated in BV-resistant Hodgkin lymphoma cell lines and patient samples [172–174],
and epithelioid inflammatory myofibroblastic sarcoma PDXs [171]. However, this also
cannot account for all BV resistance because Hodgkin lymphoma cells treated with BV and
an MDR-1 inhibitor eventually stop responding to this combination [174].

In summary, further work is required to fully elucidate how to use BV in paediatric
ALK-positive ALCL. In order to explore whether BV might allow traditional chemotherapy
to be reduced, a better understanding of BV resistance mechanisms is required. This will
help to establish whether it can be used as a monotherapy, with factors put in place to
prevent the acquisition of resistance, or whether it should only ever be used alongside
other agents.

3.3. Mechanisms of Resistance to Immune Checkpoint Inhibitors

Resistance to anti-PD-L1 immune checkpoint inhibitors will eventually occur in the
majority of patients, although there are differences in rates between tumour types. This
can be a consequence of PD-L1 upregulation [175–177], which can occur due to increased
JAK-STAT signalling, caused by: loss of the tumour suppressor FBP1 [176,178], mutations
in JAK1/2 [179], or stimulation of tumour cells’ interferon-gamma receptor 2 by interferon-
gamma released from activated CD8+ T cells in the tumour microenvironment [180,181].
PD-L1 upregulation can also occur when loss of the tumour suppressor PTEN results in
increased PI3K/Akt signalling [176,177].

Alternatively, resistance to anti-PD-L1 immune checkpoint inhibitors can occur as a
result of a skew in the distribution of immune cells in the tumour microenvironment to-
wards an immunosuppressive one, compensating for the effects of loss of PD-L1 signalling.
This skew can be caused by a low overall T cell abundance [181], an increased ratio of
regulatory T cells to effector T cells [182], dysfunctional CD8+ T lymphocytes [183,184],
increased myeloid-derived suppressor cells (MDSCs) [185] and/or increased PD-L1 posi-
tive M2 macrophages [185,186]. These changes are mediated in a variety of ways (Table 3),
which might be therapeutically targetable. For example, a clinical trial (NCT03048500)
is investigating whether metformin used alongside nivolumab in NSCLC can overcome
the nivolumab resistance caused by the detrimental effects of hypoxia on CD8+ lympho-
cytes [184,187].
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Table 3. A skew towards immunosuppression in the tumour microenvironment can drive resistance to immune
checkpoint inhibitors.

Event Impact on the Tumour Microenvironment

Increased AXL receptor tyrosine kinase (AXL) expression Increases regulatory T cells, MDSCs and M2 macrophages [185]

Increased Wnt signalling Decreases tumour infiltrating lymphocytes [185]

Loss of Phosphatase and tensin homolog (PTEN) Induces vascular endothelial growth factor (VEGF) production
and reduces T cell infiltration [176,185]

Loss of functional beta 2 microglobulin Dysfunctional CD8+ T cells [175,188]

Hypoxia Dysfunctional CD8+ T cells [184,187]

Upregulation of T cell immunoglobulin and mucin-domain
containing-3 (Tim-3)

Dysfunctional T helper 1 (Th1) cells and reduced cytokine
expression [189,190]

Reduced expression of absent in melanoma 2 (AIM2) Decreases inflammation [181]

Reduced expression of poliovirus receptor-related
immunoglobulin domain containing protein (PVRIG) Dysfunctional CD8+ T cells [181]

Increased expression of mannosidase alpha class 2A
member 1 (MAN2A1) Altered Th1/T-helper 2 (Th2) axis towards Th2 expression [181]

Another cause of resistance to anti-PD-L1 immune checkpoint inhibitors is a reduction
in neoantigen expression on the tumour cell surface. A lack of neoantigens, either due to a
low tumour mutational burden, or altered antigen processing and presentation, results in a
reduced immune response to the tumour, which compensates for the immunosuppressive
effects of PD-L1 signalling that have been lost [180,185,191].

It is important to note that although there is some understanding of mechanisms
of resistance to immune checkpoint inhibitors, these may not all be relevant to ALCL.
For example, there is an endogenous immune response to ALCL via the production of
anti-ALK autoantibodies amongst other mechanisms, therefore, an immunosuppressive
microenvironment and a lack of neoantigens may not be as relevant in ALCL as it is in other
diseases [1]. Further research is required to determine whether these potential resistance
mechanisms apply in ALCL, to find other resistance mechanisms, and to determine how to
overcome these.

4. Conclusions

In summary, there is a trade-off between reducing side effects and the potential for
resistance to develop when choosing targeted therapies for ALK-positive paediatric ALCL.
Knowledge of potential resistance mechanisms is starting to develop but large gaps remain.
Further investigation into how resistance develops is an essential prerequisite for finding a
solution to this resistance problem so that targeted agents can be successfully integrated
into the mainstream treatment of ALK-positive paediatric ALCL. This will include the
investigation into potential differences between primary (intrinsic) resistance, where there
is a lack of response to treatments from the start of therapy, and acquired resistance, where
the selective pressure of exposure to a treatment results in the outgrowth of resistant sub-
clones and eventual resistance after an initial response [17]. Overall, the ability to evaluate
patient tumour samples for known resistance mechanisms prior to treatment will enable
the prediction of treatment response, and after the development of resistance will enable
identification of the causes. This will inform on the best therapeutic approach towards a
cure on an individual patient basis.
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