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Abstract

Introduction

Localised infections, and burn wound sepsis are key concerns in the treatment of burns
patients, and prevention of colonisation largely relies on biocides. Acetic acid has been
shown to have good antibacterial activity against various planktonic organisms, however
data is limited on efficacy, and few studies have been performed on biofilms.

Objectives

We sought to investigate the antibacterial activity of acetic acid against important burn
wound colonising organisms growing planktonically and as biofilms.

Methods

Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of
pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms.

Results

Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was
antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16—
0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradica-
tion of mature biofilms was observed for all isolates after three hours of exposure.

Conclusions

This study provides evidence that acetic acid can inhibit growth of key burn wound patho-
gens when used at very dilute concentrations. Owing to current concerns of the reducing
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efficacy of systemic antibiotics, this novel biocide application offers great promise as a
cheap and effective measure to treat infections in burns patients.

Introduction

Local infections and burn wound sepsis are key concerns in the treatment of thermally injured
patients [1], and are closely correlated to mortality and morbidity [2,3]. Despite careful treat-
ment and infection control practices in such patients, burn wounds are readily colonised with a
range of pathogenic micro-organisms, vastly increasing risks of systemic infection and graft
failure [1]. Consequently, systemic sepsis resulting from invasive infection remains the leading
cause of death among those with burn wounds.

Whilst the aetiology of burn wound colonisation and infection varies between specialist
burn units, the most frequently implicated bacteria are Pseudomonas aeruginosa, Acinetobacter
baumannii, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumo-
niae, and Enterobacter spp [4, 5]. Of these, P. aeruginosa and A. baumannii are most prevalent
[2], with Lawrence [6] finding P. aeruginosa in one-third of burn wounds, and in 59% of those
patients with extensive burns. Yali et al [7] took clinical samples from burns patients in burn
intensive care units and common burn wards and identified 1621 pathogens from 2395 clinical
samples. In the burn intensive care unit, 74.2% of the pathogens were Gram-negative, and A.
baumannii and P. aeruginosa were the most prevalent, representing 34.4%, and 17.7% of all the
organisms in this setting, respectively. P. aeruginosa was most prevalent in the common burn
wards at 12.3%.

P. aeruginosa is ubiquitous in the environment and may enter a clinical setting via the
domestic water supply, A. baumannii is a particular problem in hospitals and can also persist
in the hospital environment for extended periods. Dressings, topical antibacterial agents and
antibiotics are used to prevent or reduce the chances of wound colonisation as well as treating
infections.

Owing to the reducing efficacy of antibiotics against a large number of nosocomial patho-
gens (due to the emergence of resistant organisms) [8], the high doses required to treat organ-
isms growing in sessile biofilms, and the realisation that routine use of antibiotics does not
prevent bacterial colonisation [9], there is much interest in the use of novel biocide applications
to prevent or reduce microbial contamination and bacterial loads in burns and wounds. A
range of biocides have been investigated in this regard (e.g. silver nitrate, mafenide acetate,
povidine iodine, silver sulfadiazine and chlorhexidine), including acetic acid (CH;COOH).

Acetic acid (AA), or vinegar, has been used sporadically in medicine for the past 6000 years
[1,10], being successfully implemented to treat plague, ear, chest, and urinary tract infections
[11,12,13], and in the elimination of Bacillus pyocyaneus (now Pseudomonas aeruginosa) from
war wounds [2]. Furthermore, there are reports of use as a general disinfectant [14], and in the
elimination of bacteria from fresh produce [15].

AA has been used for a decade in our burns centre at a concentration of 2.5% to treat
patients with burn wounds infected or heavily colonised with P. aeruginosa. Here it is applied
topically within dressings, is well-tolerated by patients, and is observed to have good clinical
outcomes. Additionally, AA is currently used in a number of lesser economically developed
countries (LEDCs) and other resource-limited settings for burn wound management.

Although there is a scarcity of literature, several small-scale clinical trials have been per-
formed which have shown effectiveness of AA against wound infection [1,10,16,17]. In one
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study by Sloss et al [16], 16 patients with P. aeruginosa- infected burns or ulcers were recruited
and treated with sterile gauze soaked in 1-5% AA, applied for 15 minutes twice daily, for 14
days. Over the study period, swabs were taken to assess the elimination of organisms from the
wounds, and tests performed to assess the minimum inhibitory concentration (MIC) of AA
needed to inhibit the growth of each P. aeruginosa isolate. Of the 16 patients, P. aeruginosa was
eliminated from ten (63%) within seven days and from five more (31%) within 14 days. There
was one eradication failure, where the burn wounds of one patient remained colonised with P.
aeruginosa despite 28 days of treatment, and the authors also observed that wounds remained
colonised with S. aureus and Proteus spp despite AA treatment.

A further study by Ryssel et al. [1] assessed the activity of 3% AA (selected since concentra-
tions higher than this have been associated with severe pain and itching [9,16]) against a range
of Gram-negative and Gram-positive bacterial strains isolated from patients in their burn unit.
Overnight cultures of the organisms were exposed to 3% AA for 5, 30, and 60 minutes at 37°C
before being diluted and covered with agar. After 48 hours incubation, the numbers of colony-
forming units were counted, and analysis revealed good activity of AA, with the majority of the
organisms (Proteus vulgaris, P. aeruginosa, A. baumannii, 3-haemolytic Streptococci A and B,
S. epidermidis, S. aureus, and Enterococcus faecalis) eradicated after just 30 minutes of expo-
sure. Additionally, Cortesia et al [18] have shown AA to be an effective tuberculocidal disinfec-
tant, with 30 minutes of exposure to 6% AA resulting in an 8-log;, reduction in viable
Mycobacterium tuberculosis.

A recent paper by Bjarnsholt et al [19] tested the in vitro ability of 0.5% or 1% AA to eradi-
cate pre-existing biofilms of P. aeruginosa or S. aureus during 24 hour exposures. They found
that P. aeruginosa biofilms were completely eradicated by the 0.5% AA, but that S. aureus
required the higher dose of 1% AA for complete eradication.

Although these clinical studies and our observations provide evidence in support of the clin-
ical utility of AA, the small sample sizes and heterogeneous nature of the study designs make it
difficult to draw conclusions and furthermore there is little data about the antibacterial nature
of AA. Fraise et al [20] performed the first in vitro assessments of the antibacterial activity and
stability of AA, where they determined the MIC of AA against a range of organisms, as well as
any potential inhibition of action due to evaporation, the presence of cotton gauze and organic
matter. They concluded that AA was effective at a far lower concentration than initially indi-
cated by previous studies (with MICs of 0.16% against P. aeruginosa), and that there was no
reduction in activity due to evaporation and cotton gauze/organic matter.

Despite Fraise et al [20] providing the first robust experimental data of the ability of AA to
prevent the growth of a range of important nosocomial pathogens, a key limitation was the
focus on planktonic growth. Since it is estimated that 80% of all infections include at some
point the infective bacteria existing as a biofilm [21], and bacteria in a biofilm are significantly
more antibiotic and biocide resistant than planktonic cells [21], the current study was under-
taken to further investigate the in vitro antibacterial activity of AA against important burn
wound colonising organisms growing planktonically and as sessile biofilms.

We assessed the ability of AA to both prevent formation of a biofilm (to reduce colonisation
of a wound), and to eradicate pre-formed biofilms (to treat colonised wounds).

Methods

A series of in vitro experiments were conducted with a panel of organisms (Table 1) to deter-
mine the efficacy of acetic acid against planktonic (free-floating in broth) and biofilm (attached
to a surface) growth. The strains comprised well-characterised control strains and clinical iso-
lates (including those from burn patients), and were selected because of their relevance to
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Table 1. List of the control and clinical isolates used in this study.

Study Identifier

Organism

Description (genotyping results®)

PS_PAO1 Pseudomonas aeruginosa ATCC_15692 (10,2,2/4,2/5,5,3,-,3,8)

PS_6749 Pseudomonas aeruginosa NCTC_6749 (11,3,2,5,4,-,4,2,10)

PS_27853 Pseudomonas aeruginosa ATCC_27853 (11,4,5,2,3,2,-,4,7)

PS_919 Pseudomonas aeruginosa QEHB Clinical burn isolate (10,2,5,4,6,2,-,4,-)
PS_927 Pseudomonas aeruginosa QEHB Clinical burn isolate (10,2,5,4,6,2,10,4,12)
PS_1054 Pseudomonas aeruginosa QEHB Clinical burn isolate (11,6,2,2,1,3,7,2,11)
PS_1586 Pseudomonas aeruginosa QEHB Clinical burn isolate (11,4,5,2,2,3,8,2,13)
PS_1587 Pseudomonas aeruginosa QEHB Clinical burn isolate (10,3,5,5,4,1,3,7,7)
AB_19606 Acinetobacter baumannii ATCC_19606 (unique)

AB_17978 Acinetobacter baumannii ATCC_17978 (unique)

AB_1a Acinetobacter baumannii QEHB Clinical burn isolate (QUEE13AC-27)
AB_53 Acinetobacter baumannii QEHB Clinical burn isolate (QUEE13AC-27)
AB_AYE Acinetobacter baumannii MPR Clinical Isolate (unique)

AB_C58 Acinetobacter baumannii NCTC_13305 (unique)

AB_C59 Acinetobacter baumannii NCTC_13420 (S E Clone)

AB_C60 Acinetobacter baumannii NCTC_13424 (unique)

EC_073 Escherichia coli EPEC CFT_073

EC_042 Escherichia coli EAEC_042

PM_421 Proteus mirabilis QEHB Clinical wound isolate

MSSA_10788 Staphylococcus aureus NCTC_10788

MRSA_12493 Staphylococcus aureus NCTC_12493

MRSA_F475 Staphylococcus aureus EMRSA_16

MRSA_F473 Staphylococcus aureus EMRSA_15

MDR_A CPEA Klebsiella pneumoniae (NDM-1* positive) QEHB Clinical isolate

MDR_B CRE* Klebsiella pneumoniae (ESBL positive with additional permeability changes) QEHB Clinical isolate

MDR_C E. coli (ESBL® positive) NCTC_13451

MDR_D Pseudomonas aeruginosa (VIM$ positive) Royal Free Hospital Clinical isolate

MDR_E CRE Enterobacter cloacae (AmpC* positive with additional permeability changes) QEHB Clinical isolate

MDR_F CRE Enterobacter cloacae (AmpC positive with additional permeability changes) QEHB Clinical isolate

A Carbapenemase producing Enterobacteriaceae

* New Delhi metallo-B-lactamase

* Carbapenem resistant Enterobacteriaceae

@ Extended-Spectrum B-lactamase

$ Verona integron-encoded metallo-B-lactamase

# AmpC-type B-lactamase

£ genotyping refers to VNTR profile for P. aeruginosa and PFGE data for Acinetobacter.

doi:10.1371/journal.pone.0136190.t001

infection in the burn unit setting (P. aeruginosa and A. baumannii). Control strains were cho-
sen to represent major globally relevant clonal complexes of the two species (ensuring the
results are likely to be generally applied to each species as a whole). All P. aeruginosa and A.
baumannii isolates were genotyped prior to the study through variable number tandem repeat
analysis (VNTR) and pulsed-field gel electrophoresis (PFGE), respectively by the relevant UK
reference laboratories of Public Health England.

For A. baumannii we included representatives of seven distinct strains, including two iso-
lates of profile QUEE13AC-27 (previously found in the hospital), and one isolate that clusters
with the South East clone (a sub-lineage of International Clone II that has been prevalent in the
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past). Strain AYE was also included as a representative of International Clone I, the other
major globally relevant lineage (Table 1). The P. aeruginosa isolates represent seven distinct
strains. Of note, PS_1054 and PS_1587 are representatives of clones C and D, both of which
are frequently isolated in the UK [22]. We aimed to test diverse isolates in preference to large
numbers of related strains, and recent isolates from burns patients were included to ensure no
differences were seen in isolates from typical patient specimens. We also included a range of
other 'comparator’ organisms commonly causing hospital acquired infection including E. coli,
P. mirabilis, S. aureus, K. pneumoniae and Enterobacter cloacae. The panel also included con-
trol strains of S. aureus (NCTC 10788, NCTC 12493) and P. aeruginosa (NCTC 6749, ATCC
27853), since these are recognised test strains in the EN standards for assessing the efficacy of
chemical disinfectants (e.g. EN 13727 [23]). All isolates were characterised (and were varied) in
terms of antibiogram (data not shown), were stored at -80°C on Protect beads, and were rou-
tinely cultured on cysteine lactose electrolyte deficient (CLED) agar prior to each experiment.

Experiments were designed to assess i) the antibacterial activity of AA in terms of its mini-
mum inhibitory concentrations (MIC) against planktonic growth, and ii) activity against bio-
filming organisms, both in terms of prevention of formation, and destruction of pre-formed
biofilms. Acetic acid supplied at 5% w/v [Tayside Pharmaceuticals, Dundee, UK] was used as a
stock for all experiments.

Determination of the Minimum Inhibitory Concentration of acetic acid

Susceptibility to AA was assessed using fresh overnight lysogeny broth (LB) [Sigma-Aldrich,
UK] cultures of the organisms, which were diluted in Iso-sensitest (ISO) broth [Oxoid, Basing-
stoke, UK], and seeded (50ul) into 96-well microtiter trays (MTT) at a concentration of
approximately 10° colony forming units/ml. Acetic acid (5% w/v) was then diluted in ISO
broth to produce a range of final biocide/inocula concentrations of 2.5%,1.25%, 0.63%, 0.31%,
0.16% and 0.08%. 50l of these concentrations were then added to the test organisms in the
MTT and the volume of each well made up to 150pl through the addition of a further 50ul of
ISO broth. Therefore per test well the concentrations of AA contained in the 150l ranged
from 1.6-0.026%. Since in an in vivo setting the amount of wound exudate would not be stan-
dard, all results were reported based on the initial inocula concentrations.

Controls were included for each assay, comprising 50yl diluted overnight cultures of the
organisms, plus 100ul ISO broth (for the positive control), or 150ul ISO broth alone (for the
negative control). Three technical replicates were performed for each AA concentration, and
each organism tested in duplicate.

The MICs were read visually after 18 hours static incubation at 37°C. Data from MTTs
where the negative control wells were turbid were rejected.

Impact of acetic acid on biofilm formation

The concentration of AA needed to prevent biofilm formation was assessed using a crystal vio-
let biofilm formation assay as described by Baugh et al [24], with the endpoint measurement
being the ‘minimum biofilm inhibitory concentration’ (MBIC). Overnight LB cultures of all
the test strains were diluted in fresh antibiotic-free Mueller-Hinton (MH) broth [Oxoid] to an
optical density at 600nm (ODyqp) of 0.1, and then 100ul seeded into wells of a 96-well MTT,
alongside 100yl of either diluted AA (water as diluent) or sterile water. AA was tested at the fol-
lowing inocula concentrations: 5%, 2.5%, 1.25%, 0.63%, 0.5%, 0.4%, 0.31%, 0.16%, 0.1%, 0.09%,
0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03%, 0.02% and 0.01%. This range was chosen to reflect
the concentration used in clinical practice and below. Whilst the MIC is known to be at the
lower end of the range we aimed to determine activity against biofilms (where susceptibility
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may be less), so used a range starting at 2 X that in current clinical practice (i.e. 5%). The range
also included sub-inhibitory concentrations to allow assessment of any impacts against biofilm
formation which may not relate to growth inhibition. Suitable controls were included in each
assay, comprising 100yl overnight bacterial culture with 100pl water (for the positive control),
or 200ul MH broth (for the negative control). Two biological and three technical replicates
were performed for each strain and each AA dilution, respectively, and each experiment was
repeated to check for reproducibility.

Plates were sealed and statically incubated at (33°C); the temperature of the surface of a
wound [25]. After 72 hours, the liquid was removed from the wells and the plates rinsed in tap
water to remove any unbound cells. Any existing biofilms were then visualised through stain-
ing with 200ul of 1% crystal violet (CV) [Sigma Aldrich, Poole, UK], further rinsed (as above)
to remove unbound CV, and dye solubilised by the addition of 200ul of 70% ethanol. The
ODygqo of the solubilised CV solution was then measured using a FLUOstar Optima [BMG Lab-
tech] to assess the biomass of the biofilms.

The positive and negative controls for each test plate were examined and if within a normal
range the rest of the data analysed for statistical significance by comparing values at each con-
centration of AA to untreated (positive) controls using the students’ ‘t’ test.

Impact of acetic acid on biofilm viability

The antibacterial activity of AA against pre-formed biofilms was also assessed by conducting
‘minimum biofilm eradication concentration’ (MBEC) experiments (as in Ceri et al [26]) on
each isolate. Overnight LB cultures of the test strains were diluted in fresh antibiotic-free MH
broth to an ODgg of 0.1 and then 200pul seeded into wells of a 96-well MTT. Positive (200pl 0.1
ODygq diluted organisms) and negative (200ul MH broth) controls were included for each
MTT.

To produce a ‘transferable biofilm’, a 96 well polypropylene plate [Starlabs, UK] was then
placed into the MTT so that each well contained a ‘peg’, on which biofilms could form, before
the plates were sealed, and statically incubated at 33°C for 72 hours. After 72 hours, the pegs
(+biofilm) were removed and washed in a MTT containing sterile water (to remove any
unbound cells), and the ‘peg plate’ placed into a new MTT containing either 200ul of AA (at
concentrations from 5% to 0.01% diluted in water, as for the MBIC), or 200ul broth (for the
positive and negative control wells). This assembly was wrapped, and left to incubate for three
hours at 33°C. The peg plate was then removed from the AA, washed as before, and carefully
placed into a MTT containing 200yl sterile MH broth (herein referred to as ‘reporter broth’)
for overnight incubation. After 18 hours, the OD of the reporter broth was measured to assess
the viability (seeding) of the biofilms following AA exposure, and to determine the minimum
concentration of AA which prevented any seeding of the reporter broth and by inference had
killed some of the cells in the biofilm.

To demonstrate the presence of biofilms on the pegs, CV assays were performed on the pegs
after the OD of the reporter broth had been measured. This involved placing the pegs into
MTTs containing 200yl of 1% CV, followed by washing and subsequent solubilisation in 200pl
of 70% ethanol. The peg biofilm biomass could then be measured using OD readings as previ-
ously and the presence of the biofilm confirmed. Two biological and three technical replicates
were performed for each strain and each AA dilution, respectively.

To confirm that prevention of seeding in the biofilm eradication experiment was due to loss
of viability of the cells (rather than lack of release of viable cells), a sonication experiment was
performed on biofilms representing each species. This involved forming biofilms on 5 ml
polystyrene tubes [Deltalab, Spain] placed inside 15ml Falcon tubes [Corning Life Sciences,
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Netherlands], exposing the test biofilms to 3 hours of AA (and the control biofilms to water
alone), and then assessing seeding as before. All biofilms were then sonicated using a MSE
SoniPrep 150 platform for 10 seconds at 2.5Mhz and 200yl of the sonicate placed into 5ml LB
broth for overnight incubation at 37°C. The OD of the broth was then measured as previously.
These data supported the use of the reporter broth as a good measure of biofilm viability
although it is not possible to exclude the potential for small numbers of viable cells in a dor-
mant state or encased deeply within matrix not to be identified in these type of experiments.

Results
Determination of the Minimum inhibitory concentration of acetic acid

A total of 29 isolates were tested (nine P. aeruginosa, eight A. baumannii, and 12 comparators
(Table 1)). AA was effective at preventing planktonic growth of all organisms, with MICs from
0.16-0.31%. Nine isolates (31%) had a MIC of 0.16%, with a further 20 (69%) inhibited by
0.31% AA. Consequently, all 29 isolates (100%) had an AA MIC < 0.31% (Table 2).

The difference in MIC between 0.16 and 0.31% for different strains of the same species was
not considered significant and was not linked to any differences in antibiogram.

Impact of acetic acid on biofilm formation

The same 29 isolates were subjected to AA in the MBIC assay (Table 2). A spectrum of biofilm
formation was seen, but four isolates (13.8%) (comprising A. baumannii (n = 1) and MRSA

(n = 3)), were poor at producing biofilms (when compared to other isolates of the same spe-
cies), and two isolates (6.9%) (comprising A. baumannii (n = 1) and MDR_E carbapenem-
resistant E. cloacae (n = 1)) were deemed unreliable biofilm-producers. MDR_E was defined as
being unreliable, since this isolate exhibited variable biofilm production and failed to produce a
biofilm equivalent to the lowest amount produced by MSSA_107880n 25 of 44 tests. Isolates
where the average biofilm formation (as measured by OD) after crystal violet staining was not
significantly different (as measured by students ‘t’ test) to the broth only controls, were
excluded from further analysis. This included the six isolates mentioned above (20.7%) which
were not included in further analysis of anti-biofilm effects (nor tested in the MBEC model)
(Fig 1).

AA was effective at preventing the formation of a biofilm for the remaining 23 isolates
tested, with MBICs of i) <0.10% for five (20.8%) organisms (P. aeruginosa, A. baumannii, and
E. coli), ii) 0.16% for 10 (43.5%) (P. aeruginosa, A. baumannii, E. coli, K. pneumoniae, and E.
cloacae), and iii) 0.31% for eight (33.3%) (P. aeruginosa, P. mirabilis, and MSSA) (Table 2).
Consequently 0.31% AA (or lower) was effective at preventing the formation of biofilms by all
23 isolates tested.

The degree of biofilm inhibition was dose-dependent, with the MBIC representing the low-
est dilution where there is no apparent biofilm, and a statistically significant difference
(p<0.05) in biofilm biomass compared to the positive control. Fig 2 shows these data for two
randomly selected representative strains of P. aeruginosa (PS_919 and PS_1586). Graphs show-
ing the MBIC for all the isolates can be found in the supplementary results (S1 Fig).

Concentrations of AA below the MIC were also analysed for biofilm formation, by measur-
ing the Biofilm Forming Units (BFU) (A595 of the solubilized CV solution/A600 of the plank-
tonic phase). There was no significant inhibition of biofilm formation at these low
concentrations of AA (an example of these data are shown in S2 Fig).

Student t-tests performed on the data from test wells with and without AA, and at all % of
AA, indicated statistically significant (p-value <0.05) reduction in biofilm biomass formed for
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Table 2. Table showing the tests performed on the isolates and their MIC, MBIC and MBEC values of AA.

Study Identifier

PS_PAO1
PS_6749
PS_27853
PS_919
PS_927
PS_1054
PS_1586
PS_1587
AB_19606
AB_17978

AB_1a
AB_53
AB_AYE
AB_C58
AB_C59
AB_C60
EC_073
EC_042
PM_421
MSSA_10788
MRSA_12493
MRSA_F475
MRSA_F473
MDR_A
MDR_B
MDR_C
MDR_D
MDR_E

MDR_F

Organism

P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
P. aeruginosa
A. baumannii
A. baumannii

. baumannii
. baumannii
. baumannii
. baumannii
. baumannii
. baumannii

A

A

A

A

A

A

E. coli
E. coli

P. mirabilis
S. aureus
S. aureus
S. aureus
S

. aureus
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i) five isolates with a MBIC of <0.10%, ii) 10 with an MBIC of 0.16%, and iii) eight with an

MBIC of 0.31%.

Impact of acetic acid on biofilm viability

The MBEC assay was performed on 22 biofilm-forming isolates to assess the activity of AA
against pre-formed biofilms. Seven were not tested since they failed to form a biofilm in the
MBIC assay (Table 2), or were identified to be a weaker biofilm-producing organism in this

specific assay (PS_27853).
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Fig 1. Graph showing the mean average biomass of the biofilms produced by all isolates, as measured through the crystal violet assay. Optical
density on the y axis refers to the average biofilm biomass (in the absence of AA) for all the isolates shown on the x axis. White (unshaded) bars represent
isolates that were excluded from further testing owing to poor biofilming ability when compared to their other species counterparts. Red bars represent the
isolates with unreliable biofilm production. Error bars represent the standard error for each average value and asterisks denote values statistically
significantly different from the broth only control.

doi:10.1371/journal.pone.0136190.g001

For the 22 isolates tested, incubation of the biofilm-coated peg plate for three hours at 33°C
in the range of dilutions of AA (5-0.01%) resulted in a statistically significant reduction in
seeding. This was visualised by plotting a graph of the detector broth OD (with high numbers
indicating turbidity and hence seeding of a viable biofilm), and then measured by subjecting all
AA dilutions and the positive control (the overnight bacterial cultures in the absence of AA) to
the paired t-test. The lowest concentration of AA where there was minimal seeding of the bio-
film and a p value of <0.05% was recorded as the MBEC (Table 2). Fig 3 shows randomly
selected representative MBEC data for AB_AYE and MDR_A. Graphs showing the MBEC for
all the isolates can be found in the supplementary results (S3 Fig).

Plots were also made of the CV values in order to prove that biofilms (viable or otherwise)
were present on the pegs at the time of exposure to AA and the reporter broth. Biofilms were
present on all the test pegs in the MBEC assay and hence the reduction in seeding that we
observed is a true reflection of the effect of the 3 hour AA exposure.

The concentrations of AA that eradicated a pre-formed biofilm ranged from <0.10% to
2.5% (Table 2). In addition to this complete killing of the biofilm, there was statistically signifi-
cant reduction in seeding at all dilutions of AA for 11 organisms (P. aeruginosa, A. baumannii
and E. coli) (Table 2). For the others, the t-test data, and MBEC values read from the graphs,
were largely in agreement (data not shown).
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Fig 2. Graph showing the MBIC results for isolates PS_919 and PS_1586. Optical density on the y axis refers to the average biofilm biomass for isolates
PS_919 and PS_1586 at the range of AA dilutions tested. POS: positive control, NEG: negative (broth only) control. The error bars represent the standard
error, and asterisks denote dilutions with statistically significant reductions in biofilm production according to the t-test.

doi:10.1371/journal.pone.0136190.9002

Discussion

Acetic acid is used (on a case-by-case basis) in our burns unit at a concentration of 2.5% and
has been anecdotally observed to reduce bacterial loads whilst being well tolerated by patients.
Our in vitro study supports these data, with laboratory results showing that AA is capable of
preventing the planktonic and biofilm growth of all twenty-nine isolates at AA dilutions of
0.31% for the MIC and MBIC, and <2.5% for the MBEC (with the majority of biofilms eradi-
cated at <1.25%). Whilst the methodology used in our study does not investigate the physiol-
ogy of every individual cell within a biofilm it is clear the AA has a major impact on both
biofilm formation and viability of mature biofilms.

AA was active against the Gram-positive organisms tested to date, with MICs of 0.16% and
0.31% for the broth MIC, 0.31% for the MBIC and 1.25% for the MBEC, but generally the
Gram-negative isolates were more susceptible. These included those commonly encountered
(e.g. P. aeruginosa and A. baumannii), as well as the multi-drug resistant strains (e.g. those pro-
ducing extended-spectrum beta-lactamases, and the carbapenemase producing Enterobacteria-
ceae). Interestingly, there was no difference in activity against multi-drug resistant organisms
compared to non multi-drug resistant strains. With the ever-limited antibiotic choices for
these organisms, AA is a promising topical therapy option, and an ideal way to conserve use of
critical systemic antibiotics.

Of key interest, AA can also eradicate a pre-formed biofilm, with three hour exposures to
the range of AA dilutions resulting in a statistically significant (p<0.05) reduction in seeding.
The levels of AA for the MBEC were mostly higher than seen for the MBIC; this is not surpris-
ing given that we know bacteria in a biofilm are significantly more antibiotic and biocide
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Fig 3. Graph showing the MBEC results for isolates AB_AYE and MDR_A. Optical density on the y axis refers to the average biofilm seeding for isolates
AB_AYE and MDR_A after 3 hours of exposure to AA at the range of dilutions tested. POS: positive control, NEG: negative (broth only) control. The vertical
line represents the MBEC, the error bars represent the standard error, and asterisks denote dilutions with statistically significant reductions in the seeding of
the biofilm according to the t-test.

doi:10.1371/journal.pone.0136190.g003

resistant than planktonic cells [21]. For some isolates the MBEC and MBIC values were very
similar and on four occasions MBEC values were lower than MBIC values although within one
dilution in each case. This represents the accepted error for MIC experiments indicating it is
unlikely there is a real significant difference in these values. It is however possible this repre-
sents physiological differences in the mature biofilms which may be more susceptible than
actively growing cells to AA for currently unknown reasons.

Although this study has not provided any insight into the mechanism of action of AA, it is
clear that AA concentrations from 5% (pH ~2.3, pKa = 4.75)) to as low as 0.31% (pH ~2.9) are
sufficient to prevent both planktonic growth, and eradicate biofilms formed by a range of
organisms of direct relevance to patients with burns. As expected, the effect of AA was not
dependent on pH alone, with experiments performed using matched pH solutions (pH of 2.9
and 2.4) of hydrochloric (HCI) acid (inorganic) and acetic acid (organic) indicating that at the
same pH, HCl was unable to prevent biofilm growth of two strains of P. aeruginosa (PS_PA01
and PS_1054) and A. baumannii (AB_AYE, AB_C59) whilst AA was effective (S4 Fig). These
findings are consistent with those of Bjarnsholt et al [19] who took 24-hour old cultures of P.
aeruginosa and treated them with 0.5% AA solutions with increasing pH (through the addition
of NaOH). The range of pH of these test solutions was 4.33 to 6.0 and they found complete kill-
ing of all bacteria in the wells when the pH was lower or equal to 4.33 (above pH 5 there were
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only small, non-significant effects). In line with our findings, when the same experiment was
performed with hydrochloric acid (in the exact same range of pH), there was no microbial kill-
ing at all (data not shown).

It has long been known that the toxicity of weak acids towards bacteria such as acetic acid to
cells is not just a consequence of their acidity [27, 28, 29]. They are thought to exert their toxic
effects through a variety of mechanisms. Weak acids can cross bacterial membranes more read-
ily than strong acids, because of the equilibrium between their ionised and non-ionised forms,
the latter of which can freely diffuse cross hydrophobic membranes [30, 31]. A consequence of
this is that they tend to collapse the proton gradients that are necessary for ATP synthesis, as
free anions (acetate in this case) will combine with periplasmic protons pumped out by the
electron transport chain, and carry them back across the membrane without passage through
the F1Fo ATP synthase. However, as the internal pH of the cell (typically around pH 7.6 [32,
33] in neutralophilic bacteria) is higher than that of the weak acid solution outside the cell, the
internalised acetic acid will dissociate, acidifying the cytoplasm, which in turn can cause acid-
induced protein unfolding, membrane, and DNA damage [28, 34]. The anion released by this
process is a separate cause of toxicity, which may be caused by a variety of events, such as
osmotic stress to the cell. The nature of these is known to depend on the particular anion,
though the mechanistic reasons for this are not fully understood; thus, different weak acids at
the same pH can have very different toxic effects on cells [27, 28, 30]. Our results and the recent
results of Bjarnsholt et al. [19] are consistent with and indeed predicted from these previous
findings.

Conclusions

This study demonstrates that AA is a potential alternative to antibiotics and traditional antimi-
crobial dressings for preventing colonisation of burns, and may have a role in the management
of burns in both developed and especially developing countries. Although currently the use of
AA in the clinical setting is limited owing to factors including concerns of tolerability and tox-
icity, we have shown that AA is effective at far lower concentrations than previously reported
[1, 16, 18]. It is reasonable to envisage that there will be lower toxicity with lower concentra-
tions of AA.

Controlled clinical trials in the treatment of burn infections (especially looking at tolerabil-
ity and toxicity) with AA are warranted as this promises to be a cheap and efficacious treatment
option for controlling colonisation and preventing infections in patients with burn wounds. A
clinical trial has been approved for this purpose at our centre and data from this study is being
used to assess the concentrations of AA to test in that trial. Further experimental work should
extend the panel of organisms to be tested to include Gram positive organisms such as S.
aureus and Enterococcus spp., and to test activity of AA on mixed genera biofilms. It is also
pertinent to assess efficacy, tolerability and toxicity of AA in vivo (when used at the lower effec-
tive concentrations reported in this paper) and investigate the likeliness of resistance develop-
ing in bacteria being exposed to AA, although this has not been seen to date in our clinical
experience.

Supporting Information

S1 Fig. MBIC data for all isolates. Panels of isolates as follows; A: P. aeruginosa, B: A. bau-
mannii, C: MDR, D: all other comparators
(TTF)

PLOS ONE | DOI:10.1371/journal.pone.0136190 September 9, 2015 12/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0136190.s001

@’PLOS ‘ ONE

Acetic Acid as an Anti-Biofilm Agent

S2 Fig. Broth OD (graph A), biofilm biomass (graph B) and Biofilm forming units (graph
C) for four A. baumannii strains. NB: Biofilm forming units were calculated by dividing the
A595 of the solubilised CV solution by A600 of the planktonic (broth) phase. Optical density
on the y axis refers to the average quantity of planktonic bacteria (graph A), and the biofilm
biomass (graph B) for all isolates tested at the range of AA dilutions tested. The error bars rep-
resent the standard error.

(TIF)

S3 Fig. MBEC data for all isolates. Panels of isolates as follows; A: P. aeruginosa, B: A. bau-
mannii, C: MDR, D: all other comparators.
(TTF)

$4 Fig. Graph showing the MBIC results for two P. aeruginosa and two A. baumannii iso-
lates tested with hydrochloric acid (HCL) and Acetic acid (AA). Optical density on the y axis
refers to the average biofilm biomass for all isolates tested at the range of acid dilutions tested.
The error bars represent the standard error.

(TIF)
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