
 
 

University of Birmingham

Three-dimensional topology-based analysis
segments volumetric and spatiotemporal
fluorescence microscopy
Panconi, Luca; Tansell, Amy; Collins, Alexander J.; Makarova, Maria; Owen, Dylan M.

DOI:
10.1017/S2633903X23000260

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Panconi, L, Tansell, A, Collins, AJ, Makarova, M & Owen, DM 2024, 'Three-dimensional topology-based
analysis segments volumetric and spatiotemporal fluorescence microscopy', Biological Imaging, vol. 4, e1.
https://doi.org/10.1017/S2633903X23000260

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 15. May. 2024

https://doi.org/10.1017/S2633903X23000260
https://doi.org/10.1017/S2633903X23000260
https://birmingham.elsevierpure.com/en/publications/43566a68-0f99-4c85-997a-918d738f77b4


RESEARCH ARTICLE

Three-dimensional topology-based analysis segments
volumetric and spatiotemporal fluorescence microscopy

Luca Panconi1,2,3, Amy Tansell2,4, Alexander J. Collins5, Maria Makarova6,7 and Dylan M. Owen1,3,4

1Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
2College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
3Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, UK
4School of Mathematics, University of Birmingham, Birmingham, UK
5Department of Chemistry, University of Cambridge, Cambridge, UK
6School of Biosciences, College of Life and Environmental Science, University of Birmingham, Birmingham, UK
7Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham,
UK
Corresponding author: Luca Panconi; Email: lxp609@student.bham.ac.uk

Received: 02 August 2023; Revised: 13 November 2023; Accepted: 01 December 2023

Keywords: fluorescence microscopy; cell segmentation; cell tracking; R; topological data analysis

Abstract

Image analysis techniques provide objective and reproducible statistics for interpreting microscopy data. At
higher dimensions, three-dimensional (3D) volumetric and spatiotemporal data highlight additional properties
and behaviors beyond the static 2D focal plane. However, increased dimensionality carries increased complex-
ity, and existing techniques for general segmentation of 3D data are either primitive, or highly specialized to
specific biological structures. Borrowing from the principles of 2D topological data analysis (TDA), we
formulate a 3D segmentation algorithm that implements persistent homology to identify variations in image
intensity. From this, we derive two separate variants applicable to spatial and spatiotemporal data, respectively.
We demonstrate that this analysis yields both sensitive and specific results on simulated data and can distinguish
prominent biological structures in fluorescence microscopy images, regardless of their shape. Furthermore, we
highlight the efficacy of temporal TDA in tracking cell lineage and the frequency of cell and organelle
replication.

Impact Statement
In this work, we introduce a 3D cell segmentation pipeline for volumetric and spatiotemporal analyses.
Existing cell segmentation methods may be biased by geometric constraints or subjectivity from training data,
and increased dimensionality often brings additional parameterisation. Here, we present extensions of
Topological Boundary Line Estimation using Recurrence Of Neighbouring Emissions (TOBLERONE), a
topological image analysis tool which identifies homological features of the image space without assuming
object geometry.We extend this algorithm to incorporate three dimensions, both spatially and temporally. This
allows for total image, volume and video segmentation using only a single parameter. As such, TOBLERONE
provides a simple framework for segmenting cells and organelles in fluorescence microscopy, operating
without the drawbacks of conventional geometric and machine learning-based analysis methods. All software
has been made open-source and publicly available to support researchers across the fields of cell biology and
bioinformatics.

©TheAuthor(s), 2023. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.
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1. Introduction

Fluorescence microscopy is a core technology in biological research, using chemically specific probes to
fluorescently tag structures of interest and highlight the morphology and behavior of cells(1,2). Advances
in fluorescence microscopy have allowed for volumetric imaging and imaging with temporal resolutions,
producing three-dimensional (3D) scans of cells and live-cell videos(3–6). Fluorescence microscope
systems output image data in which the volumetric components (pixels or voxels) containing fluorescing
objects display a distinctly higher intensity than their background. Image segmentation algorithms can
then separate these objects from the background(6–8). Without these techniques, researchers must
undertake time-consuming manual segmentation and quantification, which can lead to subjective and
irreproducible results(9–11). As such, they are essential for automated and objective analysis of fluores-
cence microscopy data(9).

State-of-the-art segmentation algorithms rely onmachine learning-based approaches, which undertake
supervised learning to interpret patterns in the data corresponding to specific objects(12,13). Thesemethods
have been shown to perform well on 2D data and carry the advantage that they are highly adaptable(14,15).
With the advent of advancedmodels such as SegmentAnything, 2D segmentation formost projects can be
produced with minimal user input(16). However, there is no direct method of applying existing 2D
machine learning algorithms to higher dimensional data sets without completely retraining a new
algorithm(17,18). Advances in convolutional and recurrent neural networks have shown promise for
cellular and biomedical image segmentation, but are yet to attain the accuracy of 2D machine learning-
based segmentation(19,20).

In the absence of supervised learning, a range of classical (non-machine learning-based) methods exist
for 3D image segmentation(21). These are typically primitive, require a suitable degree of parameter
estimation, and rely on simple background-foreground separation techniques, such as thresholding(21,22).
Such parameters are typically tuned automatically for machine learning models, and while parameter
estimation is possible for some classical methods, it is not often built in(23,24). Once the foreground has
been isolated, segmentation must be undertaken by a separate region-based technique, such as the
Watershed algorithm(25,26). All-encompassing algorithms, which achieve true segmentation in a single
instance, typically probe for geometric properties of the objects they are trying to identify(27). This makes
them unsuitable for segmentation of objects with atypical or unpredictable morphologies, as is often seen
in biological data(27).

In this work, we introduce two new algorithms, built on the existing topological data analysis (TDA)
technique TOBLERONE, for segmentation and quantification of 3D volumetric (3DTOB) and spatio-
temporal (tempTOB) data sets(28). Topological decomposition of image intensity variation across
imposed gradient fields has shown promise in both 2D and 3D segmentation of cells and organelles,
especially in fluorescence microscopy(29,30). Here, we devise complete algorithms for volumetric
segmentation in 3D data and dynamic tracking of live-cell data. As topological methodologies, the
TOBLERONE family of algorithms require no training data, are robust to imaging artifacts, can be
extended to an arbitrary number of dimensions, and are invariant to variations in geometry, allowing them
to function regardless of cell or organelle morphologies(28,31–33). Furthermore, the algorithms automat-
ically extract statistics of the volumetric properties of the underlying objects, such as size and position, and
dynamic processes, such as change in the number of objects identified over time.

We apply these novel techniques to simulated spatial 3D and spatiotemporal data sets and compare
sensitivity and specificity with existing 3D image segmentation methods under imposed imaging
artifacts, such as noise and blur. We demonstrate the use of 3DTOB in practice by segmenting scans of
Jurkat T-cells derived from 3D fluorescence microscopy. The algorithm automatically extracts meaning-
ful image statistics to determine the geometric properties of the cells, which agree with existing literature.
We then apply tempTOB in dynamic, experimentally derived live-cell data of Schizosaccharomyces
pombe undergoing nuclear division. We find that the algorithm is capable of tracking both nuclear
division and lineage.
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2. Materials and Methods

2.1. Jurkat T cell culture and labelling

Jurkat T cells (ATCC TIB-152) were grown in RPMI (Sigma-Aldrich, Madison, WI). The culture media
was supplemented with 10% fetal calf serum (FCS) (PAA), 10 mM HEPES (Sigma-Aldrich), 1 mM
sodium pyruvate (Sigma-Aldrich), 2 mM L-glutamine, and antibiotics [50 units penicillin, 50 μg
streptomycin and 100 μg neomycin per mL] (Sigma-Aldrich). Cells were incubated at 37 °C with 5%
CO2. Labeling was done by resuspending 1 mL of cells in a solution of Nuclear Mask DeepRed [1 in
200 dilutions from stock (250× concentrate in DMSO)] (H10294, ThermoFisher) and WGA-AlexaFluor
488 [10 μg/mL concentration] (W11261, ThermoFisher). They were then incubated for 15minutes at 37 °
C before being washed 3x in PBS. For fixation, cells were resuspended in 4% PFA and incubated at 37 °C
for 15minutes, before beingwashed 3x in PBS. 3D stackwas recorded in each color channel using a Zeiss
LSM 900 confocal in confocal scan mode (voxel size: 0.62 × 0.62 × 0.54 μm (xyz)).

2.2. S. pombe growth, strain generation, and imaging

Schizosaccaramyces pombe was grown in YES medium. Media and genetic techniques follow protocols
listed in literature(34). The S. pombe strain expressing Bop1-mCherry was obtained via genetic trans-
formation of wild-type strain using homologous recombination. Plasmids containing mCherry gene and
3’UTR fragment of bop1 gene (SPAP32A8.03c) were constructed via standard molecular biology
techniques. The endogenous bop1 gene was tagged with mCherry maintaining all native regulatory
elements. The transformation was performed using the lithium acetate-based method described in
literature(34). Fluorescent microscopy images were generated using a Zeiss Axiovert 200 M microscope
with a Plan Apochromat 100X, 1.4 NA objective. The microscope was equipped with an UltraView RS-3
confocal system, including a CSU21 confocal optical scanner, a 12-bit digital cooled Hamamatsu Orca-
ER camera (OPELCO, Sterling, VA), and a krypton-argon triple line laser illumination source. Image
stacks were acquired with seven sections spaced 0.5 μm apart, at intervals of 1 minute. The z-stack
maximum projection images were obtained using ImageJ v2.9.0(35). Imaging was conducted on S. pombe
cells placed in sealed growth chambers containing 2% agarose YES medium.

2.3. Data simulation

8-bit stacks were simulated manually in the GIMP raster graphics editor. Stacks varied between 8 and
22 frames. Each frame was 256 by 256 pixels in size, with each pixel’s brightness intensity defined
between 0 and 1. Prominent objects were defined at grayscale intensities between 0.5 and 1 over a
background defined at 0. Further manipulation of each image was performed in ImageJ. Gaussian blur
(with standard deviations σ1 = 0, 5, 10) was applied laterally to each frame (and axially, for volumes), then
overlaid with Gaussian noise (with standard deviations σ2 = 0, 5, 10). To recapitulate experimental results,
all images were subject to simple denoising by Gaussian smoothing proportional to the degree of noise.
Resulting images were normalized to return intensity values to the range of 0 to 1. Five images were
considered over nine image quality conditions for both z- and t-stacks, giving a total of 90 simulated
images. See the Data Availability Statement for all simulations, including variations in image quality.

2.4. Segmentation and tracking software

The TOBLERONE software package v1.1.0 was written in the R programming language v4.2.0 and
employed in the integrated development environment RStudio, version 2022.07.1 + 554, and is available
for use under GNU General Public License v3.0. See Supplementary Material for the code. 3D Simple
Segmentation and 3D Spot Segmentation were undertaken in ImageJ using the 3DSuite plugin
v4.0.93(36). Suitable input parameters were determined iteratively for all classical algorithms. Trackmate
v7.11.1 was applied in ImageJ using pre-defined masks from TOBLERONE to assign track lines(37,38).
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3. Results

3.1. 3D volumetric segmentation by 3D TOBLERONE

The 3D implementation of TOBLERONE takes as input: a stack of images, where each voxel represents
the intensity of fluorescence detected in each volumetric component, and a persistence threshold, τ, which
determines the algorithm’s sensitivity to overlapping objects. The raw output of 3D fluorescence
microscopy provides the image stack, which can be fed directly into 3DTOB. However, depending on
the quality of the images, pre-processing may first be required to normalize brightness intensity and apply
light denoising. This helps to highlight the prominent topological features of the image space so they may
be more easily detected. The algorithm itself exploits the principles of persistent homology, which
constructs a gradient field subject to a pre-defined metric to identify basins of attraction, which typically
signify the existence of an object(39). Persistent homology, like all gradient-based methods, usually
requires the input of a density field, which must be constructed externally. For fluorescence microscopy,
this density can be interpreted as the literal density of photons emitted by fluorescent probes across the
ROI, which is represented in the grayscale image as the intensity of each pixel(40).

The densest regions of the image space are taken to be the origin point for identifiable objects, which
are then constructed iteratively(41). For 3D image analysis, this is done by ordering the intensity of each
pixel across each frame, producing what is known as a filtration scheme(40,42). Objects are identified by
iteratively analyzing each entry in the filtration to determine local maxima, then sequentially attaching
pixels to their neighbors across multiple adjacent frames(43). The brightest pixel of each object is
designated as the root – the source of the object – to which any other pixel may be attached provided
its intensity is no less than τ different from the root’s(44). A series of connected components is gradually
constructed in the image space. If two separate connected components intersect, they may be aggregated
into one provided the difference between the roots is no greater than τ. At the conclusion of the process,
any object whose root has an intensity less than τ is also filtered out to remove background. The result of
the algorithm is a list of separate connected components corresponding to regions of continuous intensity,
which represent fluorescing biological structures. Spatially descriptive statistics are calculated and output
automatically, revealing crucial information about the size, position, and intensity of each structure
identified.

This method builds upon existing planar TDA techniques, with the primary difference being that we
now employ cubical complices, rather than the more commonly used simplicial homology format(45).
This change in homology better lends itself to the coarse data structure of images and stacks. As with its
2D counterpart, the optimal persistence threshold can be iteratively estimated by initializing at τ = 0.5
and altering the threshold until the returned number of connected components (that is, biological
structures) matches the expected number. Persistent homology is relatively stable under small perturba-
tions to the persistence, so minor variations to the persistence threshold will not generally alter the
number of objects or their boundaries. Increasing the threshold will result in greater merging and fewer
connected components while decreasing the threshold will reduce the penalty on segmentation and
output more connected components. This choice of parameter will suffice across multiple data sets
acquired under the same microscope conditions. As such, only one stack is required for parameter
calibration (Figure 1).

3.2. Spatiotemporal segmentation by temporal TOBLERONE

Although structurally similar, spatiotemporal data, represented by videos, denote a vastly different data
type to 3D volumetric data. Segmentation by 3D TOBLERONE is used to identify separate connected
objects in 3D space and, as such, will conglomerate all voxels connected to the initial root into one
object. To employ this on live-cell video data would be inappropriate as it would be unable to track the
splitting (e.g. by mitotic division) or merging (e.g. by vesicle fusion) of objects that were otherwise
distinct. To overcome this drawback, we implement a separate topological segmentation tool for
temporal data, known as tempTOB. This variant still makes use of persistent homology but considers
two spatial dimensions rather than three. Functionally, each frame in the video is considered separately
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and analyzed through standard 2D TOBLERONE. This determines each temporally distinct connected
component and provides a list of spatial roots for each frame. While alternative tracking algorithms,
such as the nearest-neighbor approach, may suffice for the purposes of establishing temporal connect-
ivity, they may not explicitly track lineage without adaptation. Instead, we implement a topological
methodology to avoid this drawback and any additional parameterization these tracking approaches
may bring(46).

Starting with the initial frame, we iterate over each pixel in each object and compare it with the same
pixels in the following frame. If the number of unique roots is unchanged, thenwe assign the spatial root of

a

b

c

Increasing 

Figure 1. Topological representations of a z-stack. (a) Stacks may be binarized by thresholding so that
specific voxels become activated. (b) Each voxel represents a point in 4D grayscale color-space. (c) The
network representation establishes connectivity between neighboring active voxels. Increasing the

persistence threshold permits connection of lower-intensity voxels.
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the spatial object as the new spatiotemporal root of the spatiotemporal object. If we identify two or more
unique roots shared among the same pixels in the following frame, we attach the object whose root has the
brightest intensity to the current spatiotemporal object and create new, distinct components for all other
roots. This allows for a single object in one frame to split into multiple objects in a subsequent frame.
Simultaneously, we record each spatial root identified per frame, if any root is found to be connected to
two separate spatiotemporal objects, then this implies that the objects have merged. As such, we take all
spatiotemporal objects which share this spatial root, and preserve the one with the brightest spatiotem-
poral root, whilst killing off the others. Ultimately, we can use this to track individual objects across
multiple frames and handle splitting andmergingwithout aggregating all connected components into one.
Separate summary statistics are provided for the size, position, intensity, and lifespan of each object as
well as the change in identified objects across frames, allowing for lineage tracing (Figure 2).

3.3. Demonstration with simulated volumetric data

To test the performance of 3D TOBLERONE, we produced a set of simulated ground truth stacks with
varied geometries and topologies (see Supplementary Material). Each stack contained an arbitrary
number of 3D objects of varying intensity, and each image was segmented using 3D TOBLERONE as
well as two alternative segmentation approaches, 3D Simple Segmentation and 3D Spot Segmenta-
tion(36,47,48). To test the impact of image quality, the performance of all algorithms was compared across a
range of image conditions. In particular, spherical Gaussian blur was simulated over each voxel in each
image with standard deviations of σ1 = 0, 5, 10, scaled such that axial and lateral blur were equal. Then,
Gaussian noise was applied with standard deviations of σ2 = 0, 5, 10. This simulated the lateral imaging
artifacts often seen in experimental fluorescence microscopy.We selected this range of artifact parameters
to determine the impact of image quality on segmentation. The algorithm’s sensitivity was quantified as
the fraction of ground-truth foreground pixels correctly labeled as active by the algorithm, while the
specificity was given by the fraction of ground-truth background pixels correctly labeled as inactive.

= 1 = 2 = 3 =

…

…

a

b

c

Figure 2. Topological decompositions of videos, or t-stacks. (a) Videos are comprised of a series of
distinct frames. (b) 2D segmentation establishes connectivity within frames, but not between frames.
(c) Temporal topological segmentation connects components spatially and temporally while tracking
addition or deletion. An example spatiotemporal component (red) is formed from a series of spatial

components.
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To prevent background from skewing sensitivity and specificity, we considered voxels onlywithin a given
interval of each active ground-truth voxel comprising the original object. For 3D volumetric components,
this was set to an 11 by 11 by 11 voxel grid (5 voxels in each direction) to compare the effects of both axial
and lateral imaging artifacts. Additionally, we recorded the number of connected components found by
each algorithm.

On average, TOBLERONE achieved a sensitivity of 0.955 and a specificity of 0.9528 (over the total
45 images). This implies that most active voxels were correctly identified as belonging to an object and
most inactive voxels were correctly considered as part of the background. The statistics surpassed their
counterparts for 3D Spot Segmentation (0.7075 and 0.8862 respectively) andwere on par with 3D Simple
Segmentation (0.9455 and 0.9522 respectively)(36). This suggests that TOBLERONE is capable of
accurately and precisely segmenting objects, even under poor image quality, and can outperform existing
classical segmentation methods. Furthermore, Figure 3e–f highlights the change in sensitivity and
specificity, under the varying levels of noise and blur, on average. Results suggest that 3D TOBLE-
RONE’s performance deteriorates as image quality worsens, and is seemingly more prone to failure with
an increase in blur over noise. However, even at particularly low image quality, 3D TOBLERONE
outperforms its counterparts. Of the techniques used, TOBLERONE had the highest probability to return
the correct number of connected components (0.71 for TOBLERONE, 0.53 for Simple Segmentation,
0.28 for Spot Segmentation). As shown in Figure 3g–j, TOBLERONE can distinguish adjacent objects
without compromising segmentation quality or permitting object loss.

3.4. Demonstration with simulated spatiotemporal data

In addition to the analyses on volumetric simulations, we produced a range of videos with arbitrarily-
shaped simulated objects that displayed dynamic behavior designed to test the capabilities of temporal
TOBLERONE. This included the splitting and merging of objects. Unlike the 3D volumetric case, there
are no pre-existing, classical video segmentation techniques for identifying objects without imposing
specific geometries. That is, no video segmentation algorithm –which does not employ machine learning
or permit arbitrary object morphology – exists for fluorescence microscopy. As such, while there is no
basis to compare performance, we can still quantify the sensitivity and specificity of the algorithm under
different image qualities. As above, we calculate the sensitivity, specificity, and number of connected
components returned. For t-stacks, an 11 by 11 by 3-pixel grid was observed around each active pixel so
that each frame would only be compared to the previous and subsequent frames. The average sensitivity
and specificity for each combination of parameters σ1, σ2 is given in Figure 4d–e. As with its volumetric
counterpart, temporal TOBLERONE experiences a drop in both statistics as image quality is reduced.
However, even at the lowest simulated image quality, the algorithm still achieved an average sensitivity of
0.9485 and average specificity of 0.9053. Additionally, the number of connected components identified
over the entire video was recorded and always matched the number (including splits) in the ground truth
data. This suggests that temporal TOBLERONE can segment dynamic objects and trace splitting or
merging processes, even under poor image quality.

3.5. Demonstration with experimental data

We assess the performance of both methodologies qualitatively on real experimental data. For 3D
volumetric data, non-activated Jurkat T-cells were cultured and labeled with Nuclear Mask DeepRed
and WGA-AlexaFluor 488 before fixation with 4% PFA. A 3D stack was then recorded for each color
channel using a Zeiss LSM 900 confocal microscope in confocal scan mode. These cells typically display
a spherical morphology and float in suspension separately (Figure 5a), making them good candidates for
testing image segmentation. 3D TOBLERONE shows appropriate discrimination against the background
and can easily overcome variations in the morphology of the cells (Figure 5d). Furthermore, in
comparison to 3D Simple Segmentation (Figure 5b) and 3D Spot Segmentation (Figure 5c), TOBLE-
RONE ignores smaller objects arising from imaging artifacts. The algorithm automatically extracts a
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range of spatial statistics, allowing us to quantify the geometric properties of the cells. The available
statistics include centroid coordinates, spread (standard deviation) in x-, y-, and z-directions, minimum,
maximum, and mean intensity, and object volume (with the addition of object birth and death time for
temporal). In this case, we have extracted the distribution of cell volumes (Figure 5e) for all 31 cells found
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Figure 3. Performance on simulated data sets. (a) xyz projection of a simulated z-stack containing cell-
like structures. (b) Segmentation of the structures as identified by 3D TOBLERONE. (c) The same slice of
a simulated stack under decreasing levels of image quality. (d) Slices of the resulting 3D segmentation
from reduced-quality images. (e, f) Volumetric sensitivity and specificity analysis on results of 3D

TOBLERONE. (g) A simulated double helix. Branches between the two main backbone strands have a
lower voxel intensity than the strands themselves. (h) Results of 3D Simple Segmentation on helix data.
The entire structure is returned as one object. (i) Results of 3D Spot Segmentation on helix data. A

significant portion of the object is no longer detected. (j) Results of 3D TOBLERONE on helix data. The
two main backbone strands and each branch between are detected as separate objects.
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and determined that the average volume of a Jurkat T-cell is 1961.6μm3, suggesting an average diameter
of ~15.5 μm (assuming circularity). This is in accordance with existing literature(49–51).

The yeast Schizosaccaramyces pombe, expressing Bop1-mCherry, was cultivated and genetically
modified using standard protocols, with the bop1 gene tagged with mCherry through homologous
recombination(34). Subsequently, images were captured using a Zeiss Axiovert 200 M microscope
equipped with an UltraView RS-3 confocal system, with image stacks obtained at 1-minute intervals.
The S. pombe cells were imaged in sealed growth chambers containing 2% agarose YES medium, and
z-stack maximum projection images were processed using ImageJ. Images were first separated into
distinct channels to distinguish nuclei from cell membranes. Segmentation was conducted on the
underlying nuclear dye channel (taken at 600–710 nm wavelength light in accordance with mCherry
emission spectrum) to discriminate nuclear envelopes from cell plasma membranes and promote a clearer
segmentation result. Analysis on video data shows that temporal TOBLERONE can identify and track
biological structures across multiple frames (Figure 6a–b). In addition, we can isolate instances in which
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Figure 4. (a) A t-stack simulation of one object dividing into two. The topology and morphology of the
objects change over time. (b) 2D segmentation of the t-stack. New, unconnected objects are created in
each frame. (c) Temporal segmentation of the t-stack. Objects are connected across frames and a new
object is created at the moment of splitting. (d, e) Spatiotemporal sensitivity and specificity analysis on
results of temporal TOBLERONE. (f) Diagram of one object splitting into five across several time frames.

(g) Schematic of a lineage tree of the spatiotemporal objects given in (f).
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connectivity was lost among biological structures, brought about by processes such as nuclear division
(Figure 6b). Furthermore, we automatically extract statistics about the dynamic behaviors of the objects
identified, such as the birth and death frame. Results suggest that an additional component was generated
between the 12th and 13th minute of acquisition. From this, we can infer that the progression from
telophase to interphase in the nuclear division of S. pombe can occur in under a minute, in line with
existing reports(52). Furthermore, we apply temporal TOBLERONE to GFP-GOWT1 mouse stem cell
data (Figure 6c), acquired with a Leica TCS SP5 using a Plan-Apochromat 63x/1.4 (oil) objective lens,
available from the Cell Tracking Challenge(53,54). Following pre-processing (Figure 6d), results show
good segmentationwith clear background separation (Figure 6e). This output can be fed directly into track
analysis software (Figure 6f), such as Trackmate, to highlight cell dynamics(37,38). Ultimately, this
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Figure 5. Results on experimental data. (a) 3D visualization of fluorescing Jurkat T-cells. (b) Results of
3D Simple Segmentation on cell data. (c) Results of 3D Spot Segmentation on cell data. (d) Results of 3D
TOBLERONE on cell data. (e) Histogram of cell volumes identified by 3D TOBLERONE, the mean

volume of 1961.6μm3 is signified by a dashed line. (f) Histogram of mean voxel intensity, one of several
summary statistics output by 3D TOBLERONE.
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suggests that topological video analysis may be a viable avenue for tracking cell movement and mitotic
processes.

4. Discussion

Image segmentation is essential for automated and objective analysis of microscopy data. The advent of
topological image analysis techniques allows for general image segmentation that is independent of the
underlying geometry of the fluorescing objects. We have shown here that the principles of TDA can be
extended to three dimensions both volumetrically and spatiotemporally. Applications to simulated data
show that 3D TOBLERONE outperforms existing classical models and produces segmentations that are
quantifiably more precise. Additionally, applications to experimental data reveal qualitative benefits of
employing TDA over pre-existing geometric analysis, allowing for identification of more complex cell
morphologies and more accurate segmentation. This allowed us to quantify the geometric properties of
Jurkat T-cells, and in particular, that they express an average diameter of approximately ~15.5 μm.

Furthermore, we show that temporal TOBLERONE serves as a promising, novel technique for video
decomposition in live-cell fluorescence microscopy. In the absence of alternative, classical video
segmentation techniques, we demonstrate that temporal TOBLERONE alone provides a promising
avenue for video decomposition and analysis in fluorescence microscopy. This allows for generic image
segmentation and quantification of arbitrarily shaped biological structures, at high sensitivity and
specificity, all while incorporating cell tracking across a range of frames. Moreover, we automatically
extract statistics on the dynamic processes of the underlying objects, including the change in number of
objects identified over time. In the context of fluorescence microscopy, this allows for automated
extraction of temporally descriptive statistics such as the proliferation rate of cells or drift.

a

b

0 min 12 min 13 min 20 min

c d e f

Figure 6. (a) Time series data of nuclear division in S. pombe. (b) Spatiotemporal segmentation of nuclei
undergoing division. A nuclear division is recorded at 13 min. (c) Snapshot of GFP-GOWT1 mouse stem
cell data. (d) Pre-processing improves background-foreground contrast. (e) Segmentation results from

temporal TOBLERONE. (f) Track lines derived from applying Trackmate to segmentation.
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TOBLERONE presents a range of benefits over existing segmentation techniques. The runtimes of 3D
and temporal TOBLERONE are on-par with existing 2D machine-learning methods for stacks with high
signal-to-noise ratios. All simulated data sets, each comprised of 256 by 256 pixel images with up to
30 frames each, took no longer than ~2 minute to segment on a single processor(12,13). In addition, both
forms of TOBLERONE can be employed on any generic identifiable structures, not just cells. In the
context of fluorescence microscopy, this could include any arbitrary biological structure that can be
stained with fluorophores, such as organelles, vesicles, and the cytoskeleton(55,56). For video segmenta-
tion, the roles of binarization, segmentation, and tracking will typically be delegated to distinct algorithms
within a pipeline, which itself depends on user preferences and the extent of parameterization. However,
TOBLERONE overcomes this limitation by encompassing all aspects of the pipeline in a single approach.
As TDA techniques, 3DTOB and tempTOB allow for segmentation of arbitrarily shaped structures and
are not impacted by geometric properties such as volume or morphology – as such, no geometric
parameters need to be defined(57). Additionally, cells that display a high degree of between-cell variation
in morphologies can also be segmented. As such, TOBLERONE is highly applicable to data sets with
isolated but highly non-convex biological structures. As a novel cell tracking technique, temporal
TOBLERONE is capable of identifying when objects have split or merged and can therefore trace objects
through connectivity rather than simply assigning each object per frame to the next closest object in
subsequent frames.

To achieve a clean segmentation of an image, pre-processing techniques must usually be implemented
to highlight the distinct topological structures, which can then be identified by TOBLERONE. Addition-
ally, post-processing techniques may be necessary to filter out unwanted structures picked up by the
algorithm, such as dead cells. However, these drawbacks are typical of most image segmentation
algorithms. Each variant of TOBLERONE requires one parameter, which must sometimes be determined
iteratively if image quality is poor. That said, topological features are inherently robust to variations in
intensity in both 2D and 3D data, so a range of persistence thresholds will typically suffice(58,59). It has
been shown that topological segmentation is consistently accurate across varied intensity conditions
provided there is sufficient contrast between the foreground and background(28). As discussed, TOBLE-
RONE is invariant of object morphology, which makes the algorithm extremely generalizable, but can
lead to difficulties when separating densely-packed structures(57,59). However, this typically imposes a
consistent geometry upon cells, which can be exploited by subjecting each image to geometric post-
processing through, for example, the Watershed algorithm, which specializes in isolating convex
structures from binary images(47). The tempTOB approach is not appropriate for data with low temporal
resolution, as objects that are too far apart across framesmay not be connected – in particular, if a cell drifts
more than its own length across one frame. However, this is not common for conventional fluorescence
microscopy.

The primary drawback of TOBLERONE is that the capacity to distinguish adjacent objects brings both
additional computational complexity and greater data storage requirements. Since each object is con-
sidered separately, a distinct data structure must be created for every object found, regardless of the size of
the object. During pre-processing, a contrast sweep discards background pixels by filtering out the lowest
5% of intensities. This greatly improves runtime in images with good contrast, but in cases where signal-
to-noise ratio is high, individual background pixels may be segmented. In these images, there may be a
significant increase in runtime and loss of segmentation quality. In addition, runtime increases quad-
ratically with image dimensions due to the non-linear increase in pixel number. As such, we recommend
sub-setting larger fields of view into smaller, more manageable ROIs (256 × 256 pixels or less where
possible) and using appropriate pre-processing techniques such as smoothing and contrast enhancement.

In summary, we have shown here that 3D extensions of existing topological image analysis techniques
can produce accurate and precise segmentations of images derived from fluorescence microscopy. As a
subset of TDA, these algorithms can probe stacks of images containing arbitrarily shaped biological
structures of any underlying topology. This allows for automated identification and segmentation of
stainable cellular components which is fully reproducible. Furthermore, we can quantify spatial and
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temporal statistics allowing for automated tracking of volumetric and dynamic properties of biological
structures.
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