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Abstract: In the biomedical field, there is a demand for the development of novel approaches for the
investigation of optical epithelial anatomical features with biomimetic materials. These materials are
not only required to replicate structures but also enable dynamic modelling for disease states such as
limbal stem cell deficiency and ageing. In the present study, the effective generation of reversible
wrinkled polydimethylsiloxane (PDMS) substrates was undertaken to mimic the undulating anatomy
of the limbal epithelial stem cell niche. This undulating surface pattern was formed through a dual
treatment with acid oxidation and plasma using an innovatively designed stretching frame. This
system enabled the PDMS substrate to undergo deformation and relaxation, creating a reversible and
tuneable wrinkle pattern with cell culture applications. The crypt-like pattern exhibited a width of
70–130 µm and a depth of 17–40 µm, resembling the topography of a limbal epithelial stem cell niche,
which is characterised by an undulating anatomy. The cytocompatibility of the patterned substrate
was markedly improved using a gelatin methacrylate polymer (GelMa) coating. It was also observed
that these wrinkled PDMS surfaces were able to dictate cell growth patterns, showing alignment in
motile cells and colony segregation in colony-forming cells when using human and porcine limbal
cells, respectively.

Keywords: PDMS; wrinkled surface; reversible; limbal stem cell niches; biomimicry

1. Introduction

A new generation of materials is emerging with more of a focus on mimicking the
biological, topographic, and bioactive features of the native tissue, such as the natural
niche in which stem cells reside. Prominent examples include regenerative periodontal
bioactive materials [1], skin-mimicking hydrogel dressings for advancing wound care [2],
and enhancements for cellular integration in bone structural repairs [3]. In ophthalmology,
biomaterials play a key role both surgically—in the form of stitches—and remedially (as
contact lenses). When attempting to replicate the conditions of the ocular surface, it is
paramount that not only the surface compatibility at the cell–surface interface is considered;
the substrate’s stiffness and matrix replication are vitally important [4]. Biomaterials can
be used to study the effects of changing the topography in relation to the stem cell niche.
These materials can also be incorporated into bioreactor systems to define the role of the
physical environment and stimulate mechanical, chemical, and electrical effects on the stem
cell niche [5–9].

The cornea is the clear and transparent uppermost surface of the front of the eye. The
corneal epithelium has multiple functions, with its primary function being to facilitate
vision by allowing images to be transmitted to the retina at the back of the eye by permitting
the transmission of light into the eye. Secondarily, the cornea, like all epithelia, exerts a
barrier function to prevent infection of the globe. The cornea has a laminated structure
that is comprised of the epithelial layer, the intermediate stroma, Bowman’s layer, and the
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endothelium (in order from the most environmentally exposed layer to the most internal
layer) [10]. The limbal epithelial stem cell (LESC) niche presents as a crypt maintaining
a renewable stem cell pool that can regenerate the growing cornea and facilitate repair
through the expansion of LESCs from the limbus into the corneal epithelium [11]. The LESC
niche is basally and suprabasally contained in the limbus, which is located circumferentially
to the iris as the visible boundary of the sclera and the iris [12] (Figure 1). Within this
circumferential crypt, undulations that are perpendicular to the ‘main’ crypt, are found;
these are the Palisades of Vogt (POVs). As part of the POVs, the epithelial rete peg (ERP)
forms the basal apex of the limbal palisades [13], whilst the palisade ridges (PRs) form the
superior apex of each undulation [14]. In addition to these observations of their features, it
has also been determined that LESCs reside in the basal apex of the crypts formed by the
POVs [15]. These structures form the crypt-in-a-crypt structure that is unique to the limbus.
These palisades segregate the LESCs in an anatomic stem cell niche that prevents the
infiltration of aberrant cells into and out of the limbus and maintains a self-renewing stem
cell pool [16,17]. In addition to the prevention of infiltration, the anatomical segregation of
LESCs serves to ensure the LESC-to-corneal epithelial commitment in a controlled manner
(preventing over-proliferative conditions, such as hyperplasia or cancer) by physically
controlling LESC differentiation via mechano-transductive pathways. In particular, the
YAP pathway is required to maintain the LESC phenotype [18].
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Figure 1. Location and structure of the limbal epithelial stem cell niche. (A) Illustration of the location
and cross-section of the niche, (B) camera image of a human tissue segment with a red arrow denoting
the OCT scan ROI, and (C) a B-scan OCT image with yellow arrows highlighting the ERPs within the
POV crypt structure.

Patterning of culturing substrates has been observed to have a significant impact on
the localization, arrangement, differentiation, and cellular function of cells. The topography
of substrates encompasses an enormous scope of different surfaces, ranging from variants
of micropillar arrays to rough-etched nano-topographies and to wrinkled polymer sub-
strates [19–21]. However, in the case of the limbus, few topographies can match the native
architecture in vivo, which includes grooved and ridged topographies. An example is the
creation of bioengineered limbal crypts that have been grown on moulded micro-ridges
on a RAFT (Real Architecture for 3D Tissues) construct. This model demonstrated a high
proportional yield of LESCs with the limbal stem cell marker p63α [22].

It has been established that static systems can maintain stemness [22,23], but what
is not well defined is the use of dynamic systems in ocular applications. Dynamization
holds great value for disease state modelling and has cross-applications for the prediction
and correlation of glaucoma with limbal degradation [24]. However, to create a dynamic
surface, the structure and the method for the creation of the topography must facilitate
movement and manifest a biologically relevant change. As such, the surface wrinkling
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pattern, with various methods for generating soft polymer wrinkling as reviewed in [21], is
a suitable candidate for the replication of the undulating anatomy of the limbal epithelial
stem cell niche.

In this study, polymer wrinkling was used to replicate the limbal niche architecture.
Polydimethylsiloxane (PDMS) was selected as a bulk material due to its wide use in bioengi-
neering applications [25–27]. PDMS is soft and highly deformable with a Young’s modulus
that can be varied; therefore, it is ideal for use in producing biomimetic wrinkles [28].
Biocompatibility was also a key consideration. The inert surface of PDMS is not cytotoxic,
making it ideal for cell culture, but it must be modified and/or coated with a protein matrix
coating to achieve full cytocompatibility [29,30]. For the actual generation of the wrinkles,
this bulk material must be modified to achieve a stiffness differential; for the surface to
be wrinkled, it must be made at least an order of magnitude stiffer than the bulk material
according to the simple wrinkling model as previously reviewed [21].

In this study, a novel method for generating a reversible wrinkle topography was
defined. Additionally, the aim was to demonstrate a proof of concept in the biomimicry and
modelling of the corneal limbal epithelial stem cell niche using a biomaterial platform that
can dynamically undergo topographical conformational changes. In this endeavour, PDMS
was modified to wrinkle using a dual treatment of acid oxidation and oxygen plasma
exposure to create a biomimetic surface. Cytocompatibility was assured through the use of
a photocured gelatin methacrylate (GelMa) coating.

2. Results and Discussion
2.1. Stretching Frame for Creating a reversible Wrinkle Pattern on PDMS Substrates

First we developed a dynamic stretching platform consisting of a stretching frame
that was specifically designed to both facilitate the treatment of the material treatment and
alternately change the wrinkle pattern on the PDMS substrates. The stainless-steel frame,
which is pictured in Figure 2, served multiple purposes—firstly, to pre-stretch the PDMS
substrate chips (to 20% of the original length) before the respective material treatments.
After the initial surface treatments, the wrinkle pattern remained undetectable whilst the
strain was maintained on the suspended materials. Secondarily, the frame with the treated
PDMS substrate was used to apply the GelMa coating while the substrate was stretched.
The stretch application at this stage ensured that the GelMa coating covered all of the PDMS
culturing surface, including all facets of the wrinkles that were formed after the frame was
removed. Finally, the frame was used in culture with the substrates suspended between
the pins in the “stretched” stages of the dynamic culture and served as a stabilizer for the
PDMS substrate for initial cellular attachment. The frames were designed to be sterilized
with an autoclave and to fit into a normal six-well culture plate. This size was chosen to
facilitate ease of sterile access and manipulation of both the substrate and frame bolts with
sterilised forceps and hex-keys.

2.2. Imaging of the Wrinkled Substrates with Scanning Electron Microscopy

Presented in Figure 3 are scanning electron micrographs for the three different PDMS
treatment processes—from the singular plasma treatment and acid oxidation treatment to
the combinatorial dual treatment. It was observed that there was a definitive difference
in the wrinkle/crypt width among the treatment types. The narrowest features were
found within the plasma-treated group, which exhibited a peak-to-peak crypt width of
4.73 µm ± 1.77 µm, whereas the largest was found in the dual treatment group, which
had a crypt width of 24.85 ± 3.80 µm. The acid-oxidised group was fractionally narrower
than the dual treatment group, but this group presented the greatest magnitude of error.
The plasma-treated group was determined to be the only group that was statistically
significantly different from the dual treatment group (but not the acid-oxidised group),
with a p-value of 0.009, where α = 0.05.
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Figure 3. (A–C) Scanning electron micrographs of (A) acid-oxidised, (B) plasma-treated, and (C) dual-
treated PDMS chips; scale bars are provided. (D) The wrinkle/crypt widths that evolved with
each wrinkling method. Each bar represents a dataset (n = 3) according to its mean and standard
deviation. * denotes statistical significance ascertained using the Games–Howell post hoc test of
one-way ANOVA and α = 0.05.

2.3. Mechanical Properties of the Wrinkled Substrates

The mechanical properties (Young’s modulus) according to the tensile tests of the
wrinkled PDMS substrates are presented in Figure 4. The results showed that the acid
oxidisation and plasma treatment of the surfaces each led to a significant increase in the
Young’s modulus, indicating stiffer substrates. In contrast, dual treatment of the surfaces
significantly lowered the Young’s modulus in comparison with that of the non-treated
surfaces, indicating that there was a softer surface after this treatment. It is proposed that
the combination of the plasma treatment and acid oxidation increased the surface fragility,
resulting in a lower average Young’s modulus. This was supported by the observation of
anti-parallel linear surface fractures in the electron microscopy of the dual-treated surface
(Figure 3C). This was further supported through the proposition of the mode of action and
thickness of stiffening imparted by the different methods of treatment. The acid oxidation
was supposed to permeate deeper during acid immersion, imparting an increase in bulk
stiffness throughout more of the material [31]. During plasma exposure, only the upper
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surface was exposed, and it formed a very fine brittle layer, which was found to be prone to
cracking [32]. In isolation, the plasma treatment conferred a palpable increase in stiffness,
but in combination with a bulk that was pre-stiffened with the acid treatment, the crack
faults became deeper splits, as observed in SEM (Figure 3C), and they penetrate deeply
enough to truncate the results of the tension test, resulting in a lower Young’s modulus
being reported.
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Figure 4. Results of tension tests on 3.3% PDMS chips that were exposed to the different wrinkling
methods. Each bar represents a dataset (n = 3) according to its mean and standard deviation. The
symbols α, β, and γ are used to signify groups that were found to be significantly different from each
other, as ascertained using one-way ANOVA and employing the Games–Howel post hoc test; α, β,
and γ were grouped where p < 0.05.

2.4. Depth Analysis of the Dual-Treated Substrates

We next employed optical coherence tomography (OCT) to examine the cross-sectional
features of the wrinkled surfaces. The OCT imaging of the dual-treated topography when
hydrated revealed the ability of the dual treatment method to produce a repeatable crypt-
like topography with distinct undulations (Figure 5). Additionally, it was demonstrated
that the variation of the curing agent in the formulation of the PDMS substrate resulted in
a change in the crypt dimensions after the dual treatment process. The OCT scans showed
the crypt dimensions in terms of the peak-to-peak width and crypt depth through depth-
resolved imaging. It was found that the respective peak-to-peak widths of the chips formu-
lated with the 3.33% and 2.5% curing agents were 70.9 ± 25.39 µm and 128.2 ± 17.7 µm,
respectively. The depths of the chips formulated with the 3.33% and 2.5% curing agents
were 17.1 ± 4.64 µm and 39.1 ± 10.3 µm, respectively. Student’s t-tests were employed
to assess the statistical significance of the differences between the curing agent concentra-
tions while scrutinising both dimensions. It was ascertained that for both the width and
depth, the curing agent concentrations significantly affected the crypt dimensions; for the
peak–peak crypt width, the p-value was 0.033, and for the crypt depth, the p-value was
0.028, where α = 0.05. It was observed that the decrease in the curing agent concentration
yielded an increase in both crypt width and depth. These crypt dimensions fell close to
those measured in vivo using methods such as confocal microscopy, as established in the
wider literature [13,33,34].
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Figure 5. OCT images of the dual-treated PDMS chips. (A) PDMS substrate formulated with the
3.33% curing agent and (B) PDMS substrate formulated with the 2.5% curing agent; scale bars are
presented in each image. Both images are representative of three replicated samples. (C) Bar chart
describing the wrinkle/crypt dimensions acquired from B-scan OCT images using the mean (n = 3)
and standard deviation of the dataset. * denotes statistical significance as ascertained with Student’s
t-test where α = 0.05.

2.5. OCT of the Dynamization of Dual-Treated Substrates

The wrinkle patterns on the PDMS substrates were then examined through OCT
imaging while following cyclic stretch–release–stretch procedures (Figure 6). First, the
PDMS substrates were subjected to the dual treatment protocol with the stretching frame
in scan 1 (before relaxation); then, the substrates were removed from each stretching
frame in scan 2 (after relaxation); finally, the stretching frame was reapplied to each of the
substrates for the final scan (reapplication of original stretch). While this did not cyclically
load the substrates for multiple cycles continuously, it clearly demonstrated the wrinkled
topography to be reversible after formation.

2.6. Human Primary Limbal Cells Seeded on Static Wrinkled Substrates

We then tested the ability of the wrinkled substrates to support and maintain primary
limbal cells isolated from human limbal regions. Immunocytochemistry was used to
assess the limbal cells’ morphology during culture on the wrinkled surface (Figure 7). The
immunofluorescence of the limbal cells indicated changes in morphology, which could be
attributed to the substrate topography’s influence on the cell shape through physical contact
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as a guidance mechanism. It was observed that the cells cultivated on the substrates adopted
an elongated morphology that was aligned in parallel to the direction of the wrinkle ridges.
In contrast, the monolayer controls on TCP had a multi-spindled morphology that was
attributable to a mesenchymal cell type. The quantification of the alignment of the cells
using ImageJ with the Directionality plugin and the local gradient orientation method
confirmed this further (Supplementary Figure S1). A notable observation was the visible
increase in the expression of the epithelial marker cytokeratin-3 on the wrinkled substrate
compared to the control. The expression of vimentin (mesenchymal/transitional marker)
and nestin (neural/ectodermal marker) did not fluctuate with the surface conditions.
These motile, more fibroblast-like cells more readily conformed to the given topographies,
demonstrating an ability to align in parallel with the direction of propagation of the
wrinkles. The cells appeared to preferentially settle within the troughs of the wrinkles,
altering their morphology from the random and multidirectional star shape to an aligned
elongated shape.
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dual-treated topography.

2.7. Porcine Limbal Epithelial Stem Cells on Static Substrates

We also tested the ability of the substrates to maintain porcine limbal epithelial stem
cells. The porcine limbal epithelial stem cells were isolated and transferred to the substrates
at P0. During the cultivation on the substrates, it was observed that the colonies of cells
adopted a more concentrated and bulbous shape when compared to the colony shape
observed in the monolayer culture (Figure 8). Additionally, it was observed that the
cells cultured on the wrinkled topography maintained their stem cell phenotypes, as
demonstrated by their p63 expression patterns.
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Figure 7. Immunofluorescent staining of primary human limbal cells cultured on static wrinkled
PDMS substrates with the dual treatment and a 15% w/v GelMa coating (3.33% curing agent).
(A) Positive staining for the epithelial marker cytokeratin-3 (green), (B) positive staining for the mes-
enchymal/transitional marker vimentin (green), and (C) positive staining for the neural/ectodermal
marker nestin (green), which is associated with corneal cells. (D–F) Human limbal cells cultured on a
tissue culture plate (TCP) as controls: (D) cytokeratin-3, (E) vimentin, and (F) nestin. The images are
representative of n = 3; all scale bars represent 50 µm in length. Quantification of the directionality is
shown in Supplementary Figure S1.

2.8. Cellular Response to the Reversible Wrinkled Substrate

Human limbal cells showed a strong response to the wrinkle pattern. Hence, this
facilitated the assessment of cellular alignment during dynamic topographic manipulation
that was carried out mid-culture. To test the response of the cellular morphology to
the reversable wrinkled substrate in the dynamic culture, the human limbal cells were
tracked live by using the CellTracker green CMFDA live dye. During the relaxation stages,
the substrates became wrinkled (D3 and 9), and the cells fell into alignment with the
topography, which was evident through the uniformity in cellular elongation and parallel
distribution. During the application of tension, the substrates became flattened (D6 and
12), and the cells adopted a more randomised distribution and less elongated morphology
(Figure 9). The quantification of the alignment of the cells at D3 and D12 using ImageJ with
the Directionality plugin and the local gradient orientation method also clearly confirmed
this (Supplementary Figure S2).
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Figure 8. Immunofluorescent staining of primary porcine LESCs seeded on 2.5% static wrinkled
PDMS with the dual treatment and a 15% w/v GelMa coating (2.5% curing agent). (A) The clustered
colonies showed positive staining for the stem cell marker p63 (red) and the epithelial marker
cytokeratin-3 (green). (A,B) The red ROI demarcates the region where the projection image was cut
and rotated to obtain the XZ projected view, as demonstrated. (C) Control monolayer culture of
porcine LESCs expressing CK3 (green) and (D) porcine LESC control culture expressing p63 (red).
The images are representative of n = 3, and the scale bars are equal to 100 µm.
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morphology on the dual-treated and GelMa-coated substrates (3.33% curing agent), which were
sequentially wrinkled, stretched to be flattened, relaxed, re-wrinkled, and re-flattened once more. The
timeline is representative of three replicates, and the scale bars indicate 100 µm. The arrows indicate
the linear winkle direction. Quantification of the directionality is shown in Supplementary Figure S2.

3. Conclusions

In the present study, a novel reversible wrinkled cell seeding model that mimicked
the native limbal epithelial stem cell niche was explored. A substrate with biomimetic
features, including physiologically relevant crypt dimensions and suitable cytocompat-
ibility, was created. It was demonstrated in preliminary limbal cell cultures that these
wrinkled substrates were able to influence cellular morphology, growth patterns, and
marker expression in static cultures. The model was also demonstrated to have capabilities
for dynamic modelling, thus showing its great promise in the active manipulation of cellu-
lar morphology and growth patterns. The wrinkled PDMS surfaces explored in this study
induced distinctly different cell growth patterns between cell types, showing alignment in
motile cells and colony segregation in colony-forming cells. Thus, the ability to use this
unique substrate system to characterise cell types according to their physical responses
to contact-instructive topography was demonstrated. Some challenges still need to be
addressed, including the isolation of human LESCs from stored tissue and the furthering
of in-depth the characterisation of the cellular effects imparted by the topography and
dynamization. However, this model presents a novel approach to the investigation of
changes in topography with disease and ageing.

4. Materials and Methods
4.1. Preparation of PDMS Substrate

Polydimethylsiloxane (PDMS) was prepared from the two-component elastomer and
curing agent Sylgard 184 kit (Dow Corning, Midland, TX, USA). The PDMS was prepared
in 3.33% and 2.5% curing agent concentrations in elastomer, and it was thoroughly mixed
and cast in 3D-printed chip moulds of fixed dimensions (10 mm wide, 20 mm long, and
0.5 mm deep). The mixture was cured in the moulds in a 65 ◦C oven overnight. After curing,
the PDMS chips were released from the moulds and cooled down for further processing.

4.2. Preparation of the PDMS Substrate with a Reversible Winkle Pattern

To create a reversible wrinkle pattern on the PDMS surface, the flat PDMS chips
were suspended in stretching frames before acid exposure. The stretching frames were
constructed from 316 L stainless steel, and the PDMS chips could be steadily fixed in
the frames. The formation of wrinkles followed 2 procedural approaches, which were
defined as single or dual treatment approaches (Figure 10). The single treatment referred to
the performance of only oxygen plasma treatment or acid oxidation as follows. For acid
oxidation, sulphonitric acid was prepared by mixing a ratio of 3:1 sulphuric:nitric acid,
followed by heat treatment with stirring at 85 ◦C for 1 h. The PDMS chips were exposed
to the prepared sulphonitric acid for 5 s, quenched in 1 M sodium hydroxide solution for
10 s, and then placed in a large water bath for 10 min to wash any un-neutralised chemicals
from the surface/frames before being allowed to dry in air and released. Plasma-treated
substrates were pre-stretched; the acid oxidation steps were omitted, and the substrates
went through plasma exposure immediately before being released.

For the dual treatment approach, the substrates were acid-oxidised as described; they
were retained in low-temperature oxygen plasma (Diener, Ebhausen, Germany) for 10 min
at 10 mbar O2 and 50 W of power. To finally allow the specimen to evolve into a wrinkled
substrate, the treated material was released from the stretching frame.
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4.3. Gelatin Methacrylate (GelMa) Production and Coating

GelMa was prepared to achieve a targeted 100% degree of substitution using 250 bloom
gelatin dissolved in bicarbonate buffer at 55 ◦C with 0.938 mL of methacrylic anhydride
per 100 mL of gelatin solution. The reaction mixture was stirred at 50 ◦C for 1 h before the
reaction was terminated by adjusting the pH to 7.4. The reaction mixture was dialysed
in distilled water for 3 days and then freeze-dried. The dried GelMa was re-constituted
to 10% w/v in PBS and 0.25% w/v of lithium phenyl-2,4,6-trimethylbenzoylphosphinate
(LAP) photo-initiator (Merck, Feltham, UK). Coatings were applied using a spreader on the
substrates, stretched flat on the frames, and then photo-cured using a 405 nm curing lamp
under aseptic conditions for 15 min. The substrates were then rehydrated using PBS and
then sanitized using 70% ethanol for 30 min, followed by 3 washes with sterile PBS. During
IMS sterilization of the GelMa-coated materials, the stretching frames were either replaced
with pre-sterilized units or autoclaved before cell culture.

4.4. Optical Coherence Tomography

B-scans were conducted for the wrinkle-patterned materials using the Thorlabs spec-
tral radar Telestro-II device (Thorlabs, Ely, UK). In the acquisition of the images, which was
controlled through the dedicated Thor-labs OCT software, the pixel-averaging windows
were set to 1 × 1 pixel, meaning that the highest-resolution images for each pixel were
attained. Image field correction was applied to flatten the edges of the image to compensate
for the lens distortion. The deepest clearly resolved depth was 600 µm. For volumetric im-
ages, the 3D mode was used to acquire multiple B-scans throughout a 6× 6 mm acquisition
area (XY).

4.5. Scanning Electron Microscopy

High-resolution imaging of the material surfaces was conducted by using a Hitachi
TM4000 scanning electron microscope (Hitachi, Düsseldorf, Germany). The scanning
parameters were as follows: an accelerating voltage of 15 kV, medium vacuum conditions,
and use of the secondary electron (SE) detector. Before scanning, the samples were air-dried
for at least 24 h before coating them with gold to increase their conductivity. The samples
were sputter-coated with gold with a thickness of approximately 10 nm shortly before
imaging. Statistical significance was determined by undertaking a Games–Howell post hoc
analysis of a one-way ANOVA.

4.6. Tensile Testing

Tensile testing was performed on a Testometric mechanical testing machine (Testo-
metric, Rochdale, UK); it was configured in the tensile arrangement with a 250 Kgf load
cell fitted with PDMS chips suspended using custom suspension pins to fit the holes in the
chips. The strain rate for the tensile tests was set to 0.1 mm/s.
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4.7. Cell Extraction and Culture

Human cadaveric corneas were obtained from a tissue bank (National Health Service
Blood and Transfusion Service, Bristol, UK), and fresh porcine eyeballs were obtained from
a local abattoir (Staffordshire Meat Packers, West Midlands, UK). Limbal regions were
microscopically identified in donor tissues before dissection; the most desirable regions
presented prominent POVs, which were visualized as obvious radial striations. Limbal cells
were extracted from dissected limbus tissue using a two-step enzymatic process. First, the
limbus tissue portions were immersed in 1.2 IU/mL Dispase II for 2 h, and the epithelium
was debrided. The debrided epithelium was then immersed in 1 mg/mL collagenase A
overnight. Enzyme digests were obtained in an incubator maintained at 37 ◦C and 5%
CO2. The digested epithelium was centrifuged once before being plated in DMEM/F12
medium containing 10% FBS, 1% penicillin/streptomycin, 20 mM L-glutamine, 0.1 X ITS
supplement (Gibco, Scotland, UK), 1 µg/mL isoproterenol (Merck, Feltham, UK), 0.4
µg/mL hydrocortisone (Merck, Feltham, UK), and 2.43 µg/mL adenine (Merck, Feltham,
UK). Limbal cells were seeded on the substrates in high-density droplets from passage 0
with isolation overnight (porcine) or immersion when seeded at 30,000/substrate (human).

4.8. Immunofluorescence and Imaging

Immunofluorescent stains were performed at the endpoint of culturing; the culture
medium was fully aspirated and washed with PBS once, then subsequently fixed in 4%
paraformaldehyde for up to 40 min. Fixed substrates were washed twice with PBS and then
permeabilized with Triton-X 0.3% and blocked with 5% BSA. Human cells were stained with
cytokeratin-3 mouse IgG (Abcam, Cambridge, UK) with the corresponding NL493 donkey
anti-mouse IgG (R and D Biosystems, Abingdon, UK) alongside nestin and vimentin
PE-conjugated mouse IgG (R and D Biosystems, UK) and 4′,6-diamidino-2-phenylindole
(DAPI, Thermofisher, Dartford, UK). Porcine cells were stained with cytokeratin-3 mouse
IgG and P63 rabbit IgG (Abcam, UK) with their corresponding donkey NL493 anti-mouse
IgG and NL637 anti-rabbit IgG (R and D Biosystems, UK). The maximum projected images
were captured using an Olympus FL2100 series confocal microscope (Olympus, Tokyo,
Japan) and processed in ImageJ. To test the response of the cellular morphology to the
revisable wrinkled substrate in the dynamic culture, human limbal cells were tracked live
using the CellTracker green CMFDA live dye (ThermoFisher Scientific, UK) according to
the manufacturer’s protocol. The cells were cultured on substrates that were sequentially
wrinkled (Day 3), stretched to be flattened (Day 6), relaxed to the re-wrinkled state (Day
9), and re-flattened once more (Day 12). The cell morphology was imaged using a Leica
MZ10F fluorescent dissecting microscope. Analysis and quantification of the alignment of
the cells cultured on the substrates and in the controlled culture were performed post hoc
using ImageJ with the Directionality plugin and the local gradient orientation method.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels9110915/s1, Figure S1: Figure 1 (Imagej analysis to quantify the
cell alignment on the wrinkled substrates, expressed as the number of features against the orientation
in degrees in comparisonon the control cultures); Figure S2: Figure 1 (Imagej analysis to quantify
the cell alignment on the wrinkled substrates (D3) and flattened substrate (D12), expressed as the
number of features against theorientation in degrees).
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