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It has long been known that a key ingredient for a sheaf representation of a universal 
algebra A consists in a distributive lattice of commuting congruences on A. The 
sheaf representations of universal algebras (over stably compact spaces) that arise 
in this manner have been recently characterised by Gehrke and van Gool (J. Pure 
Appl. Algebra, 2018), who identified the central role of the notion of softness.
In this paper, we extend the scope of this theory by replacing varieties of 
algebras with Barr-exact categories, thus encompassing a number of “non-algebraic” 
examples. Our approach is based on the notion of K-sheaf : intuitively, whereas 
sheaves are defined on open subsets, K-sheaves are defined on compact ones. 
Throughout, we consider sheaves on complete lattices rather than spaces; this allows 
us to obtain point-free versions of sheaf representations whereby spaces are replaced 
with frames.
These results are used to construct sheaf representations for the dual of the category 
of compact ordered spaces, and to recover Banaschewski and Vermeulen’s point-free 
sheaf representation of commutative Gelfand rings (Quaest. Math., 2011).

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Sheaf representations of universal algebras have been investigated since the 1970s, see e.g. [12,13,16,30,46], 
inspired by several results for rings and modules obtained in the 1960s, see e.g. [14,15,26,41]. In particular it 
was observed that, for a universal algebra A, any distributive lattice of pairwise commuting congruences on 
A induces a sheaf representation of A, i.e. a sheaf whose algebra of global sections is isomorphic to A [46]. 
The sheaf representations over stably compact spaces [33] arising in this way were characterised by Gehrke 
and van Gool [21], who recognised the key role of the notion of softness—which originated with Godement’s 
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treatment of homological algebra [24]. A sheaf over a space X is soft if, for all compact saturated1 subsets 
K ⊆ X, every (continuous) local section over K can be extended to a (continuous) global section. In [21], 
a bijection was established between isomorphism classes of soft sheaf representations of an algebra A over 
a stably compact space X, and frame homomorphisms from the co-compact dual frame of X to a frame of 
pairwise commuting congruences on A.

A sheaf representation of an algebra can be regarded as a generalisation of a representation in terms of 
continuous functions. For example, the Gelfand–Naimark theorem [22] states that for every commutative 
unital C∗-algebra A there is an isomorphism

A ∼= C(MaxA,C)

where C(MaxA, C) is the C∗-algebra of all continuous complex-valued functions on the maximal spectrum 
MaxA of A. More precisely, it provides a characterisation of the image of the embedding

A �
∏

m∈MaxA

A/m, a �→ (a/m)m∈MaxA

where each A/m is an isomorphic copy of C. Sheaf representations extend these ideas to a wider class 
of rings—and, more generally, universal algebras—by allowing the factors in the direct product to vary 
“continuously”.

Thus, disregarding the topological constraint of continuity of global sections, sheaf representations of 
universal algebras are akin to embeddings into direct products. From this standpoint, the softness condition 
for sheaves is related to a basic concept of universal algebra, namely that of subdirect representation. In 
fact, any sheaf representation F of a universal algebra A on a space X induces an embedding

ν : A �
∏
x∈X

Fx

where Fx is the stalk of F at x. If F is soft then ν is a subdirect embedding, i.e. for all y ∈ X the composition 
of ν with the product projection 

∏
x∈X Fx � Fy is surjective.

In this article, we generalise Gehrke and van Gool’s characterisation of soft sheaf representations by 
replacing varieties of finitary algebras—in which sheaves take values—with any Barr-exact category. Barr-
exact categories, introduced in [6], are a non-additive generalisation of Abelian categories. Examples of Barr-
exact categories include most “algebraic-like” categories such as varieties of (possibly infinitary) algebras, 
any topos, the category of compact Hausdorff spaces and its opposite category.

This allows us to construct soft sheaf representations of all objects in the category CompOrdop opposite to 
the category of compact ordered spaces and continuous monotone maps. This category can be regarded as 
an extension of the variety DLat of bounded distributive lattices, in the sense that CompOrdop admits a full 
subcategory equivalent to DLat (this follows from Priestley duality between bounded distributive lattices 
and totally order-disconnected compact ordered spaces [42]). The category CompOrdop is Barr-exact and 
even equivalent to a variety of algebras, but not a finitary one.

We hasten to point out that, while the intended application of our results concerns Barr-exact categories, 
we develop the theory more generally for regular categories [6]. Examples of regular categories that are 
not Barr-exact include quasi-varieties of (possibly infinitary) algebras and the category of Boolean (i.e., 
compact, Hausdorff and zero-dimensional) spaces and continuous maps.

Barring some examples and applications, we always work with sheaves over complete lattices. The usual 
notion of a sheaf on a space X is recovered by considering sheaves over the frame of opens of X, but 

1 A subset of a topological space is saturated if it is an intersection of open sets. In a T1 space, all subsets are saturated.
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this approach accommodates also point-free sheaf representations by taking sheaves on possibly non-spatial 
frames. For example, we illustrate how Banaschewski and Vermeulen’s sheaf representation of commutative 
Gelfand rings on compact regular frames [5] can be recovered as a special case of our results.

Our approach crucially relies on the notion of K-sheaf. In the spatial setting, a K-sheaf can be thought 
of as a “sheaf defined on compact saturated subsets” (or equivalently, in the case of T1 spaces, on compact 
subsets) instead of open ones. The concept of K-sheaf essentially originates with Leray’s pioneering work 
on sheaves and sheaf cohomology [34] (see also [17, Chapter IV, §7.B]) and has been fruitfully employed by 
Lurie in the theory of ∞-categories, cf. [35, §7.3.4].

1.1. Outline

In Section 2, we recall the basic definitions and properties pertaining to the theory of regular and Barr-
exact categories. K-sheaves over a complete lattice, with values in a regular category, are introduced in 
Section 3. In Section 4 the notion of softness for K-sheaves is defined and, for any object of a regular 
category, an isomorphism is established between a category of soft K-sheaf representations and a category 
of monotone maps preserving finite infima and arbitrary suprema (Theorem 4.7).

Section 5 contains some background material on domains and algebraic lattices that is needed in Section 6
to show that, under appropriate assumptions, K-sheaves are equivalent to ordinary sheaves (Theorem 6.21). 
This equivalence is then extended to (soft) sheaf representations and leads to our main result, Theorem 6.31. 
Finally, in Section 7, these results are applied to study soft sheaf representations of commutative Gelfand 
rings and of objects in the dual of the category of compact ordered spaces.

1.2. Notation and terminology

A poset P is directed if each of its finite subsets has an upper bound; equivalently, if it is non-empty 
and any two of its elements admit an upper bound. A subset D ⊆ P is said to be directed if it satisfies the 
previous condition with respect to the induced order. The order-dual notion is that of codirected subset.

We often identify a preordered set S with the (small) category whose set of objects is S and such that, 
for all s, t ∈ S, there is exactly one morphism s → t if s ≤ t, and there is no morphism otherwise. More 
generally, categories in which there is at most one morphism between any two objects are identified with 
(possibly large) preorders.

Arrows � and � denote, respectively, monomorphisms and regular epimorphisms. The terminal object 
in a category, if it exists, is denoted by 1.

Whenever C is a category, Cop denotes the opposite category obtained by reversing the direction of 
arrows in C. This applies in particular when C is a poset, e.g. the complete lattice Ω(X) of open subsets of 
a topological space X, ordered by set-theoretic inclusion.

We write Ω for the contravariant functor from the category of topological spaces and continuous maps, 
to the category of frames and their homomorphisms, that sends a continuous map f : X → Y to the frame 
homomorphism Ω(f) := f−1 : Ω(Y ) → Ω(X).

A C-valued presheaf on a poset P is a functor F : P op → C. If p, q ∈ P satisfy p ≤ q, the image under F
of the unique arrow q → p in P op is denoted by Fq,p : F (q) → F (p).

2. Preliminaries on regular categories

We recall some basic definitions and facts concerning regular and Barr-exact categories.
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2.1. Subobjects and quotients

Consider an arbitrary category C and an object A of C. The collection of all monomorphisms in C
with codomain A carries a natural preorder ≤ defined as follows. Given monomorphisms m : S � A and 
n : T � A, set

m ≤ n ⇐⇒ ∃ l. m = n ◦ l
T A

S

n

m
l

(Note that, if it exists, such an l is a monomorphism.) The symmetrization ∼ of the preorder ≤ can be 
characterised explicitly as follows: m ∼ n if, and only if, there exists an isomorphism l such that m = n ◦ l. 
A subobject of A is a ∼-equivalence class of monomorphisms with codomain A, and the collection of all 
subobjects of A is denoted by SubA. The preorder ≤ induces a partial order on SubA, which we denote 
again by ≤. As A may admit a proper class of subobjects, in general SubA is a large poset.

In the same fashion, we can define the (large) poset of quotients of an object A. To this end, we introduce 
a preorder on the class of all regular epimorphisms with domain A. We use again the symbol ≤ for this 
preorder; it will be clear from the context to which (pre)order we are referring. Given regular epimorphisms 
f : A � B and g : A � C, set

f ≤ g ⇐⇒ ∃h. f = h ◦ g
A C

B

g

f
h

(Note that, if it exists, such an h is an epimorphism, but need not be a regular epimorphism unless C admits 
(regular epi, mono) factorisations.) As before, the symmetrization ∼ of the preorder ≤ can be characterised 
explicitly by: f ∼ g if, and only if, there is an isomorphism h such that f = h ◦ g. A quotient of A is a ∼-
equivalence class of regular epimorphisms with domain A, and the collection of all quotients of A is denoted 
by QuoA. The preorder ≤ induces a partial order on QuoA, that we denote again by ≤. Equivalently, 
QuoA can be identified with the poset of regular subobjects of A in the opposite category Cop.

We will often work with the category

RegEpiA

whose objects are regular epimorphisms in C with domain A. For any two regular epimorphisms f : A � B

and g : A � C, an arrow f → g in RegEpiA is an arrow h : B → C in C such that h ◦f = g. In other words, 
RegEpiA is a full subcategory of the coslice category A/C. Note that, since each object of RegEpiA is an 
epimorphism in C, the category RegEpiA is a (large) preorder. The poset reflection of RegEpiA coincides 
with the opposite of QuoA.

2.2. Regular categories

Definition 2.1. A category C is regular if it satisfies the following conditions:

(i) C has finite limits.
(ii) C has (regular epi, mono) factorisations, i.e. every arrow f in C can be written as f = m ◦ e where e

is a regular epimorphism and m a monomorphism.
(iii) Regular epimorphisms in C are stable under pullbacks along any morphism.
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Note that, because every regular epimorphism is a strong epimorphism, for every commutative square

A B

C D

there exists a (unique) diagonal filler, i.e. an arrow B → C making the ensuing triangles commute. Although 
we shall not need this fact, let us mention that in any regular category the strong and regular epimorphisms 
coincide; see e.g. [6, Proposition 1.4, p. 129].

Some useful consequences of the axioms for a regular category are collected in the following lemma; 
these properties rely on the fact that the (regular epi, mono) factorisation system in a regular category is 
orthogonal, proper and stable. Cf. e.g. [19] or [20, §1.5].

Lemma 2.2. The following statements hold in any regular category C:

(a) The composition of regular epimorphisms is again a regular epimorphism.
(b) If f ◦ g is a regular epimorphism, then so is f .
(c) Any pullback square consisting entirely of regular epimorphisms is also a pushout square.

Proof. For items (a) and (b), see [6, Propositions 1.10 and 1.11, p. 133]. Item (c) follows from (the dual of) 
the main result of [43] (cf. also [20, §1.565] or [11, Remark 5.3]). �

Whenever A is an object of a regular category C, the preorder RegEpiA admits finite infima. Just observe 
that an infimum of a finite set of regular epimorphisms

{fi : A � Bi | i ∈ I}

is given by the (regular epi, mono) factorisation of the induced morphism A →
∏

i∈I Bi.
RegEpiA has also a minimum, namely the identity of A; in fact, A � B is a minimum in RegEpiA if, 

and only if, it is an isomorphism. However, non-empty suprema in RegEpiA may fail to exist. For the next 
lemma, recall that the pushout of a regular epimorphism—if it exists—is again a regular epimorphism.

Lemma 2.3. Let C be a regular category, A an object of C, and f : A � B and g : A � C regular epimor-
phisms. Then f and g admit a supremum in RegEpiA if, and only if, they admit a pushout in C.

A B

C H

f

g η1

η2 �
(1)

In that case, the composite η1 ◦ f = η2 ◦ g is a supremum of f and g.

Proof. Suppose that the diagram in eq. (1) is a pushout. By item (a) in Lemma 2.2, h := η1 ◦ f (= η2 ◦ g) 
is an element of RegEpiA that is above f and g, and the universal property of the pushout readily implies 
that h is a supremum of f and g.

For the converse direction, assume f and g admit a supremum h : A � H in RegEpiA. In particular, as 
h is above f and g, there exist morphisms η1 : B → H and η2 : C → H such that η1 ◦ f = h = η2 ◦ g. Hence 
the following square commutes:
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A B

C H

f

g η1

η2

Note that η1, η2 are regular epimorphisms by item (b) in Lemma 2.2. We claim that the square above is a 
pushout. Consider morphisms σ1 : B → J and σ2 : C → J such that σ1 ◦ f = σ2 ◦ g, and let (e, m) be the 
(regular epi, mono) factorisation of σ1 ◦ f = σ2 ◦ g. Then there are diagonal fillers τ1 and τ2 as displayed 
below.

A B

K J

f

e τ1 σ1

m

A C

K J

g

e σ2τ2

m

Hence, e is above f and g in RegEpiA. Since h is a supremum of f and g, there exists a morphism ξ : H → K

satisfying e = ξ ◦ h. Because f and g are epimorphisms, we see that the following diagram commutes.

A B

C H

K

f

g η1

τ1η2

τ2

ξ

The composite morphism m ◦ ξ : H → J then satisfies (m ◦ ξ) ◦ η1 = σ1 and (m ◦ ξ) ◦ η2 = σ2. As η1 (or, 
equivalently, η2) is an epimorphism, it follows that m ◦ ξ is the unique arrow with this property. �
Remark 2.4. With regards to the previous lemma, a closely related fact was proved by Burgess and Caicedo, 
cf. [10, Proposition 10].

The following is a consequence of Lemma 2.3 and the preceding discussion:

Corollary 2.5. Let C be a regular category admitting pushouts. For any object A of C, its poset of quotients 
QuoA is a (possibly large) bounded lattice.

2.3. Barr-exact categories

Let C be a regular category and let A be an object of C. A subobject 〈p1, p2〉 : R � A × A is called a 
relation on A, and it is an equivalence relation provided it satisfies the following three properties:

Reflexivity. There exists an arrow d : A → R in C making the following diagram commute:

A R

A×A

d

〈1A,1A〉 〈p1,p2〉

Symmetry. There exists an arrow s : R → R in C making the following diagram commute:

R R

A×A

s

〈p2,p1〉 〈p1,p2〉
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Transitivity. For any pullback diagram in C as on the left-hand side below, there exists an arrow 
t : P → R such that the rightmost diagram commutes:

P R

R A

π2

π1
�

p1

p2

P R

A×A
〈p1◦π1,p2◦π2〉

t

〈p1,p2〉

Example 2.6. If C is a variety of algebras then an equivalence relation on an algebra A, in the sense above, 
coincides with the usual notion of congruence.

With any arrow f : A → B in C we can associate a relation on A, known as the kernel pair of f . This is 
obtained by taking the pullback of f along itself:

R A

A B

p1

p2
�

f

f

The kernel pair ker f := 〈p1, p2〉 is a relation on A. Just recall that the pullback of f along itself can 
equivalently be computed as the equaliser of the pair of parallel arrows f ◦ π1, f ◦ π2 : A × A ⇒ B, where 
π1, π2 : A ×A ⇒ A are the product projections. In fact, ker f is always an equivalence relation on A.

The collection EquivA of all equivalence relations on A carries a natural partial order, induced by the or-
der of Sub (A×A). The following is an immediate consequence of [6, Propositions 5.3 and 5.4, pp. 156–157].

Lemma 2.7. Let C be a regular category and let A be an object of C. Then

ker : (QuoA)op → EquivA

is an order embedding between (large) posets.

The equivalence relations in the image of the map ker: (QuoA)op → EquivA are called effective. In 
general, there may be equivalence relations on A that are not effective. This leads us to the following 
notion, first introduced in [6].

Definition 2.8. A Barr-exact category is a regular category in which every equivalence relation is effective.

Example 2.9. Any variety of (possibly infinitary) algebras, with morphisms all the homomorphisms, is a 
Barr-exact category. The category of compact Hausdorff spaces and continuous maps is Barr-exact and, 
more generally, so is any category that is monadic over the category of sets. Any (elementary) topos is in 
particular a Barr-exact category.

Remark 2.10. As a consequence of Lemma 2.7, a regular category is Barr-exact precisely when the map 
ker : (QuoA)op → EquivA is an order isomorphism for all objects A.

Remark 2.11. Suppose that C is a regular category admitting coequalisers of equivalence relations. Then, 
for every object A of C, the map ker : (QuoA)op → EquivA has a left inverse

coeq : EquivA → (QuoA)op

sending an equivalence relation 〈p1, p2〉 : R � A ×A to the coequaliser of p1 and p2. Hence, (QuoA)op is a 
retract of EquivA in the category of (large) posets and monotone maps.
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3. K-sheaves

As mentioned in the Introduction, K-sheaves can be regarded as “sheaves defined on compact saturated 
subsets”. To make this intuition more precise, consider a sheaf of sets on a topological space X, i.e. a presheaf

F : Ω(X)op → Set

satisfying the patch property: for every set {Ui | i ∈ I} ⊆ Ω(X) of open subsets of X and every tuple 
(si)i∈I ∈

∏
i∈I F (Ui), if for all i, j ∈ I we have FUi,Ui∩Uj

(si) = FUj ,Ui∩Uj
(sj), then there exists a unique 

s ∈ F (
⋃

i∈I Ui) such that F⋃
i∈I Ui,Uj

(s) = sj for all j ∈ I.
Sheaves on X can be also described as étale spaces over X, i.e. local homeomorphisms

p : E → X.

In fact, any étale space induces a sheaf Ω(X)op → Set that sends U ∈ Ω(X) to the set of local sections
of p over U , i.e. the continuous maps s : U → E such that p ◦ s = idU . The functorial action is given by 
restricting local sections to open subsets of their domains. Conversely, a sheaf F induces an étale space 
p : EF → X where EF is obtained by “gluing together” the stalks of F , and the map p contracts the stalk 
of F at a point x ∈ X to x. These assignments yield an equivalence between the category of sheaves of sets 
over X and the category of étale spaces over X. See e.g. [37, Corollary II.6.3].

If V is any variety of finitary algebras, we can consider the categories of internal V-algebras in the toposes 
of Set-valued sheaves over X and of étale spaces over X, respectively. This yields an equivalence between 
sheaves of V-algebras over X (that is, presheaves Ω(X)op → V satisfying the patch property) and étale 
spaces of V-algebras over X; cf. e.g. [37, §II.7].

Now, let F : Ω(X)op → Set be a sheaf with corresponding étale space p : E → X. An advantage of the 
latter formulation is that we can consider sections of p over arbitrary subsets of X, not just the open ones. 
Thus, we can associate to any compact saturated subset K ⊆ X the set G(K) of local sections of p over K. 
This induces a presheaf G over the poset of compact saturated subsets of X ordered by inclusion. If X is 
nice enough (e.g., it is locally compact), the sheaf F can be recovered from G via the isomorphism

F (U) ∼= lim
K⊆U

G(K)

where K ranges over the compact saturated sets contained in U . See e.g. [21, Lemma 3.4]. The notion 
of K-sheaf introduced in Definition 3.3 below captures precisely the properties of the presheaf G, as will 
become clear in Section 6.

Throughout this section, we fix an arbitrary regular category C, an object A of C, and a complete lattice P . 
The latter can be thought of as the lattice of closed subsets of a compact Hausdorff space or, more generally, 
the lattice of compact saturated subsets of a stably compact space (see Example 5.12 for a definition).

The following notion, along with the functor γ∗ defined in eq. (2) below, will play a central role in the 
remainder of the paper.

Definition 3.1. The canonical representation of A is the functor

γ : RegEpiA → C

sending a regular epimorphism A � B to its codomain (i.e., γ is the restriction of the codomain functor 
A/C → C).
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Remark 3.2. The name “canonical representation” stems from the observation that, under certain conditions, 
the poset reflection of RegEpiA can be thought of as the opposite of the poset of compact saturated subsets 
of a space X, and γ(k) as the set of local sections over k of a sheaf over X whose object of global sections 
is isomorphic to A.

The functor category [P op, RegEpiA] can be identified with the large preorder of monotone maps P op →
RegEpiA, with respect to the pointwise preorder. The canonical representation of A induces a “direct image” 
functor γ∗ given by post-composing with γ:

γ∗ : [P op,RegEpiA] → [P op,C]

H �→ γ ◦H

RegEpiA C

P op

γ

H γ∗H
(2)

A morphism α : H ⇒ J in [P op, RegEpiA] is sent by γ∗ to the horizontal composition of natural transfor-
mations idγα : γ∗H ⇒ γ∗J .

In this section we shall see that order-theoretic properties of the monotone map H : P op → RegEpiA
correspond to certain sheaf-like properties—made precise in the following definition—of the associated 
presheaf γ∗H : P op → C.

Definition 3.3. A C-valued K-sheaf over P is a functor F : P op → C satisfying the following properties:

(K1) F (⊥) is a subterminal object of C, i.e. the unique arrow F (⊥) → 1 is monic.
(K2) For all p, q ∈ P , the following is a pullback square in C:

F (p ∨ q) F (p)

F (q) F (p ∧ q)

Fp∨q,p

Fp∨q,q

�
Fp,p∧q

Fq,p∧q

(K3) F preserves directed colimits. I.e., for all codirected subsets D ⊆ P , the cocone (Fp,
∧

D : F (p) →
F (

∧
D))p∈D is a colimit of the restriction of F to D.

We let ShK(P, C) denote the full subcategory of [P op, C] defined by the K-sheaves.

Remark 3.4. The definition of K-sheaf given above is a slight variant of the homonymous notion introduced 
by Lurie [35, Definition 7.3.4.1]. In [35], C is an ∞-category and P is the lattice of compact subsets of 
a locally compact Hausdorff space. Note that Lurie requires F (⊥) to be a terminal object of C, whereas 
we relax this condition by replacing “terminal” with “subterminal”. We do this so that Corollary 4.8 below 
(which generalises the main result of [21] for varieties of finitary algebras) holds for all objects of C, including 
those objects A such that the unique morphism A → 1 is not a regular epimorphism. E.g., if C is the variety 
of semigroups and A is the empty semigroup, i.e. the initial object of C, the unique morphism A → 1 is not 
a regular epimorphism.

We shall also consider the following variant of condition (K2):
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(K4) For all p, q ∈ P , the following is a pushout square in C:

F (p ∨ q) F (p)

F (q) F (p ∧ q)

Fp∨q,p

Fp∨q,q Fp,p∧q

Fq,p∧q
�

Proposition 3.5. Let H : P op → RegEpiA be a monotone map. The following statements hold:

(a) H preserves the infimum of the empty set2 if and only if γ∗H satisfies (K1).
(b) H preserves binary infima if and only if, for all p, q ∈ P , the following mediating morphism is monic:

γ∗H(p ∨ q) → γ∗H(p) × γ∗H(q).

(c) H preserves binary suprema if and only if γ∗H satisfies (K4).
(d) H preserves directed suprema if and only if γ∗H satisfies (K3).

Proof. Consider an arbitrary finite set {pi | i ∈ I} ⊆ P . We claim that H(
∨

i∈I pi) is an infimum of 
{H(pi) | i ∈ I} if, and only if, the induced mediating morphism

γ∗H

(∨
i∈I

pi

)
→

∏
i∈I

γ∗H(pi)

is monic. Items (a) and (b) then follow at once by letting {pi | i ∈ I} be the empty set and any two-element 
set, respectively. Recall that an infimum t : A � B of {H(pi) | i ∈ I} is obtained by taking the (regular epi, 
mono) factorisation of the arrow A →

∏
i∈I γ∗H(pi) whose composition with the ith projection is H(pi). 

Thus, H(
∨

i∈I pi) is an infimum of {H(pi) | i ∈ I} precisely when it is above t. Consider the following 
commutative square.

A B

γ∗H(
∨

i∈I pi)
∏

i∈I γ∗H(pi)

H(
∨

i∈I pi)

t

If the bottom horizontal arrow is monic, there is a diagonal filler B → γ∗H(
∨

i∈I pi), showing that H(
∨

i∈I pi)
is above t. Conversely, if H(

∨
i∈I pi) is above t there is h : B → γ∗H(

∨
i∈I pi) making the upper triangle 

commute, and such an h is necessarily a regular epimorphism. Using the fact that the outer square commutes 
and t is an epimorphism, we see that the lower triangle must also commute. It follows that h is also monic, 
hence an isomorphism, and so the bottom horizontal arrow is monic.

For item (c), note that H preserves binary suprema if and only if, for all p, q ∈ P , H(p ∧q) is a supremum 
of H(p) and H(q). In turn, by Lemma 2.3, this is equivalent to saying that the left-hand diagram below is 
a pushout in C.

2 That is, H sends the greatest element of P op (equivalently, the least element ⊥ of P ) to a maximum in RegEpiA. Similarly for 
the following items.



M. Abbadini, L. Reggio / Journal of Pure and Applied Algebra 227 (2023) 107413 11
A γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q) γ∗Hp,p∧q

γ∗Hq,p∧q
�

A

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q)

H(p∨q)

H(p)

H(q)
γ∗Hp∨q,q

γ∗Hp∨q,p

Both H(p) and H(q) factor through the regular epimorphism

H(p ∨ q) : A � γ∗H(p ∨ q),

as depicted in the rightmost diagram above. Hence the leftmost diagram above is a pushout precisely when 
γ∗H satisfies (K4).

For item (d), let D be a codirected subset of P . We must show that H(
∧
D) is a supremum of {H(p) |

p ∈ D} if, and only if, the cocone

(γ∗Hp,
∧

D : γ∗H(p) → γ∗H(
∧

D))p∈D (3)

is a colimit of the restriction of γ∗H to D. Suppose the latter is a colimit cocone. Clearly, H(
∧
D) is above 

H(p) for all p ∈ D, so assume that f : A � B is an element of RegEpiA that is above H(p) for all p ∈ D. 
That is, for each p ∈ D there is gp : γ∗H(p) → B such that gp ◦H(p) = f . Then (gp : γ∗H(p) → B)p∈D is a 
compatible cocone over the diagram given by the restriction of γ∗H to D. Just observe that, for all p, q ∈ D

such that p ≤ q,

gp ◦ γ∗Hq,p ◦H(q) = gp ◦H(p) = f = gq ◦H(q)

and so gp ◦ γ∗Hq,p = gq because H(q) is an epimorphism. Hence there is a unique arrow j : γ∗H(
∧

D) → B

satisfying j ◦ γ∗Hp,
∧

D = gp for all p ∈ D. We then see that f is above H(
∧
D) because, if p is an arbitrary 

element of D,

j ◦H(
∧

D) = j ◦ γ∗Hp,
∧

D ◦H(p) = gp ◦H(p) = f.

Therefore, H(
∧
D) is a supremum of {H(p) | p ∈ D}.

Conversely, suppose that H(
∧
D) is a supremum of {H(p) | p ∈ D} and consider a compatible cocone 

(hp : γ∗H(p) → B)p∈D over the diagram given by the restriction of γ∗H to D. Fix an arbitrary p ∈ D and 
take the (regular epi, mono) factorisation of hp ◦H(p), as depicted in the following diagram.

A γ∗H(p)

C B

H(p)

f hp

m

(4)

This yields f ∈ RegEpiA. Note that, because D is codirected, f does not depend on the choice of p. To see 
this, pick another q ∈ D. As D is codirected, there is r ∈ D that is below p and q. So,

hr ◦H(r) = hr ◦ γ∗Hp,r ◦H(p) = hp ◦H(p)

and, by a similar reasoning, hr ◦ H(r) = hq ◦ H(q). Thus, hp ◦ H(p) = hq ◦ H(q). Now, observe that the 
square in eq. (4) admits a diagonal filler γ∗H(p) → C. Because p ∈ D was chosen arbitrarily, it follows that 
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f is above H(p) for all p ∈ D. Since H(
∧
D) is a supremum of {H(p) | p ∈ D}, there is j : γ∗H(

∧
D) → C

such that j ◦H(
∧
D) = f . The composite m ◦ j : γ∗H(

∧
D) → B satisfies

m ◦ j ◦ γ∗Hp,
∧

D ◦H(p) = m ◦ j ◦H(
∧

D) = m ◦ f = hp ◦H(p)

and so m ◦ j ◦ γ∗Hp,
∧

D = h(p) because H(p) is an epimorphism. In other words, m ◦ j is a morphism from 
the cocone in eq. (3) to the cocone (hp : γ∗H(p) → B)p∈D. Finally, observe that m ◦ j is the unique such 
morphism, for if n : γ∗H(

∧
D) → B is another morphism of cocones then, for all p ∈ D,

n ◦ γ∗Hp,
∧

D = hp = m ◦ j ◦ γ∗Hp,
∧

D

entails n = m ◦j because γ∗Hp,
∧

D is an epimorphism (just note that γ∗Hp,
∧

D◦H(p) = H(
∧

D)). Therefore, 
the cocone in eq. (3) is a colimit of the restriction of γ∗H to D. �

Given relations

〈r1, r2〉 : R � A×A and 〈s1, s2〉 : S � A×A

on A, we can define their composition R ◦ S as follows. Consider the following equaliser diagram:

U R× S A.u
r2◦πR

s1◦πS

Then the (regular epi, mono) factorisation of the morphism

〈r1 ◦ πR ◦ u, s2 ◦ πS ◦ u〉 : U → A×A

yields the composite relation U � R ◦ S � A ×A. See e.g. [20, §1.56].
A classical result of universal algebra states that, for any two congruences ϑ1, ϑ2 on an algebra, the 

composite ϑ1 ◦ ϑ2 is a congruence if, and only if, ϑ1 and ϑ2 commute (i.e. ϑ1 ◦ ϑ2 = ϑ2 ◦ ϑ1). In our setting, 
congruences correspond to effective equivalence relations. If the composition of two effective equivalence 
relations ker f and ker g is an effective equivalence relation, ker f and ker g commute (i.e. ker f ◦ ker g =
ker g◦ker f). Conversely, if ker f and ker g commute, their composition ker f ◦ker g is an equivalence relation; 
however, ker f ◦ ker g need not be effective. This leads us to the following notion:

Definition 3.6. Let f, g ∈ RegEpiA. We say that f and g ker-commute if the relations ker f and ker g
commute and their composition is an effective equivalence relation.

Remark 3.7. If C is Barr-exact, two regular epimorphisms f, g ∈ RegEpiA ker-commute precisely when the 
relations ker f and ker g commute. In fact, Barr-exact categories coincide with the regular categories in 
which the composition of any pair of commuting effective equivalence relations is an effective equivalence 
relation [10, Theorem 17].

To state the next lemma, we recall the following terminology from [8] (cf. also [11]). In any regular 
category, a regular pushout is a commutative diagram of regular epimorphisms

B C
f

g h

i
D E
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such that the unique mediating morphism from B to the pullback of h along i is a regular epimorphism. 
(This nomenclature is justified by virtue of the fact that any regular pushout in a regular category is a 
pushout [8, p. 118].) For a proof of the next result, cf. [10, Lemma 9 and Propositions 10 and 12].

Lemma 3.8. The following statements are equivalent for all f, g ∈ RegEpiA:

(1) f and g ker-commute.
(2) f and g admit a supremum h in RegEpiA and ker f ◦ ker g = kerh.
(3) The pushout in C of f along g exists and is a regular pushout.

Remark 3.9. With regards to the previous result, a related fact was proved by Fay in [18], motivated by an 
earlier unpublished version of [10] whose main results were announced in [9].

Lemma 3.10. Let H : P op → RegEpiA be a monotone map. The following statements are equivalent:

(1) H preserves binary infima and binary suprema, and its image consists of pairwise ker-commuting ele-
ments.

(2) γ∗H : P op → C satisfies (K2).

Proof. Assume that 1 holds and consider the following commutative diagram, where χ is the unique medi-
ating morphism induced by the universal property of the pullback (recall that every arrow in the image of 
γ∗H is a regular epimorphism).

γ∗H(p ∨ q)

P γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

γ∗Hp∨q,p

γ∗Hp∨q,q

χ

p1

p2

�
γ∗Hp,p∧q

γ∗Hq,p∧q

(5)

The composite

γ∗H(p ∨ q) P γ∗H(p) × γ∗H(q)χ 〈p1,p2〉

coincides with the pairing of γ∗Hp∨q,p and γ∗Hp∨q,q. As H preserves binary infima, the latter pairing is a 
monomorphism by item (b) in Proposition 3.5, and so χ is monic. On the other hand, because H preserves 
binary suprema, the outer diagram in eq. (5) is a pushout by item (c) in Proposition 3.5. Thus, the diagram 
obtained by precomposing with the (regular) epimorphism H(p ∨ q) : A � γ∗H(p ∨ q) is also a pushout:

A γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q) γ∗Hp,p∧q

γ∗Hq,p∧q
�

The unique arrow A → P induced by the universal property of the pullback coincides with χ ◦H(p ∨ q)
and is a regular epimorphism by Lemma 3.8, since H(p) and H(q) ker-commute. It follows from item (b)
in Lemma 2.2 that χ is a regular epimorphism, hence an isomorphism. Thus the outer diagram in eq. (5) is 
a pullback, i.e. γ∗H satisfies (K2).
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Conversely, suppose that 2 holds and fix arbitrary elements p, q ∈ P . As γ∗H satisfies (K2), the following 
is a pullback square.

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

γ∗Hp∨q,p

γ∗Hp∨q,q

�
γ∗Hp,p∧q

γ∗Hq,p∧q

(6)

The pairing of γ∗Hp∨q,p and γ∗Hp∨q,q is then an equaliser of the arrows

γ∗H(p) × γ∗H(q) γ∗H(p) γ∗H(p ∧ q)
γ∗Hp,p∧q

and

γ∗H(p) × γ∗H(q) γ∗H(q) γ∗H(p ∧ q),
γ∗Hq,p∧q

where the first morphisms in the two compositions are the appropriate product projections. In particular, 
the mediating morphism

γ∗H(p ∨ q) → γ∗H(p) × γ∗H(q)

given by the pairing of γ∗Hp∨q,p and γ∗Hp∨q,q is monic. It follows from item (b) in Proposition 3.5 that H
preserves binary infima. Moreover, the square in eq. (6) is a pushout by item (c) in Lemma 2.2, and so an 
application of item (c) in Proposition 3.5 shows that H preserves binary suprema. Finally, in order to prove 
that H(p) and H(q) ker-commute, consider the following commutative diagram.

A

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q)

H(p∨q)

γ∗Hp∨q,p

γ∗Hp∨q,q

�
γ∗Hp,p∧q

γ∗Hq,p∧q

The inner square is a pushout, and the morphism H(p ∨ q) : A � γ∗H(p ∨ q) is an epimorphism (in fact, 
a regular epimorphism). Therefore, the outer square is a pushout. Since the inner square is a pullback and 
the morphism H(p ∨ q) : A � γ∗H(p ∨ q) is a regular epimorphism, we see that the outer square is a regular 
pushout. Therefore, H(p) and H(q) ker-commute by Lemma 3.8. �

We thus obtain a characterisation of those monotone maps H : P op → RegEpiA such that the presheaf 
γ∗H : P op → C is a K-sheaf.

Theorem 3.11. Consider a monotone map H : P op → RegEpiA. The following statements are equivalent:

(1) H preserves finite infima and non-empty suprema, and its image consists of pairwise ker-commuting 
elements.

(2) γ∗H : P op → C is a K-sheaf.
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Proof. In view of items (a) and (d) in Proposition 3.5, combined with Lemma 3.10, γ∗H satisfies (K1)–(K3)
if, and only if, H preserves finite infima and non-empty suprema and its image consists of pairwise ker-
commuting elements. Just observe that H preserves non-empty suprema precisely when it preserves binary 
and directed suprema. �
Corollary 3.12. Consider a monotone map H : P op → RegEpiA. The following statements are equivalent:

(1) H preserves finite infima and arbitrary suprema, and its image consists of pairwise ker-commuting 
elements.

(2) γ∗H : P op → C is a K-sheaf and H(�) is an isomorphism.

Proof. This is an immediate consequence of Theorem 3.11. Just observe that H preserves the supremum of 
the empty set if, and only if, H(�) : A → γ∗H(�) is a minimum in RegEpiA, i.e. an isomorphism in C. �
4. Soft K-sheaf representations

As in the previous section, we fix a regular category C, an object A of C, and a complete lattice P .
To start with, we introduce the concept of softness for presheaves. Note that, by item (b) in Lemma 2.2, all 

arrows in the image of the canonical representation γ : RegEpiA → C are regular epimorphisms. Therefore, 
this property is inherited by all presheaves of the form γ∗H with H ∈ [P op, RegEpiA]. The following 
observation is straightforward:

Lemma 4.1. The following statements are equivalent for any presheaf F ∈ [P op, C]:

(1) F�,p : F (�) → F (p) is a regular epimorphism for all p ∈ P .
(2) Fq,p : F (q) → F (p) is a regular epimorphism for all p, q ∈ P with p ≤ q.

Proof. Clearly, 2 implies 1. Conversely, suppose 1 holds and let p, q ∈ P satisfy p ≤ q. By functoriality of 
F we have Fq,p ◦ F�,q = F�,p, which is a regular epimorphism. It follows from item (b) in Lemma 2.2 that 
Fq,p is a regular epimorphism. �
Definition 4.2. A presheaf P op → C is said to be soft if it satisfies either of the equivalent conditions 
in Lemma 4.1.

Remark 4.3. By item (c) in Lemma 2.2, any soft K-sheaf satisfies (K4).

Next, we look at those K-sheaves P op → C which allow us to recover A, up to isomorphism, as the object 
of global sections.

Definition 4.4. A K-sheaf representation of A over P is a pair (F, ϕ) where F : P op → C is a K-sheaf and 
ϕ : A → F (�) is an isomorphism in C. If F is soft, we call (F, ϕ) a soft K-sheaf representation of A over P .

Denote by

ShA
K(P,C)

the category of K-sheaf representations of A over P . The objects of ShA
K(P, C) are K-sheaf representations 

(F, ϕ) of A over P , and a morphism (F, ϕ) → (G, ψ) is a natural transformation α : F ⇒ G satisfying 
α� ◦ ϕ = ψ. The full subcategory of ShA

K(P, C) defined by the soft K-sheaf representations is denoted by

s-ShA
K(P,C).
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Lemma 4.5. The following statements hold:

(a) For any two objects (F, ϕ), (G, ψ) ∈ ShA
K(P, C), if (F, ϕ) is a soft K-sheaf representation, there is at 

most one morphism (F, ϕ) → (G, ψ) in ShA
K(P, C).

(b) s-ShA
K(P, C) is a (large) preorder.

Proof. For item (a), consider any two arrows α, β : (F, ϕ) ⇒ (G, ψ) in ShA
K(P, C) such that F is soft. We 

claim that αp = βp for all p ∈ P , and so α = β. For every p ∈ P , we have

αp ◦ F�,p ◦ ϕ = G�,p ◦ α� ◦ ϕ Naturality of α

= G�,p ◦ ψ
= G�,p ◦ β� ◦ ϕ
= βp ◦ F�,p ◦ ϕ. Naturality of β

Since ϕ is an isomorphism, and F�,p is an epimorphism because F is soft, we get αp = βp.
Item (b) is an immediate consequence of item (a). �

Proposition 4.6. Let (F, ϕ) ∈ s-ShA
K(P, C) and define the monotone map

HF : P op → RegEpiA, p �→ (A ϕ−→ F (�) F�,p−−−→ F (p)).

The following statements hold:

(a) γ∗HF = F .
(b) HF preserves finite infima and arbitrary suprema, and its image consists of pairwise ker-commuting 

elements.

Proof. For item (a), note that an arrow p → q in P is sent by γ∗HF to the unique arrow h : F (q) → F (p)
in C such that the following diagram commutes.

A

F (q) F (p)

HF (q) HF (p)

h

It follows that h = Fq,p, and so γ∗HF = F , because

Fq,p ◦HF (q) = Fq,p ◦ F�,p ◦ ϕ = F�,p ◦ ϕ = HF (p).

As HF (�) = ϕ is an isomorphism, item (b) follows from item (a) combined with Corollary 3.12. �
The following is our main result concerning soft K-sheaf representations of objects of regular categories. 

Recall that P denotes an arbitrary complete lattice, and A an object of a regular category C.

Theorem 4.7. Let M be the (large) sub-preorder of [P op, RegEpiA] consisting of those maps that preserve 
finite infima and arbitrary suprema, and whose images consist of pairwise ker-commuting elements. The 
functor γ∗ : [P op, RegEpiA] → [P op, C] in eq. (2) induces an isomorphism

M ∼= s-ShA
K(P,C).
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Proof. Define the functor

Ξ: M → s-ShA
K(P,C), H �→ (γ∗H,H(�)).

An arrow α : H ⇒ J in M is sent to γ∗α. By Corollary 3.12, the presheaf γ∗H is a (soft) K-sheaf and H(�)
is an isomorphism in C. Thus, (γ∗H, H(�)) is a soft K-sheaf representation of A. If α : H ⇒ J is an arrow 
in M then α� ◦H(�) = J(�) in C, and so (γ∗α)� ◦H(�) = J(�). Therefore, the functor Ξ is well-defined.

In view of item (b) in Lemma 4.5, Ξ is a functor between (large) preorders, i.e. a monotone map. We claim 
that Ξ is an isomorphism of categories, i.e. an order isomorphism. To show that Ξ is an order embedding, we 
must prove that there is an arrow H ⇒ J in M whenever there is an arrow δ : (γ∗H, H(�)) → (γ∗J, J(�))
in s-ShA

K(P, C). For all p ∈ P we have a commutative diagram as displayed below.

A

γ∗H(�) γ∗J(�)

γ∗H(p) γ∗J(p)

H(�) J(�)

(γ∗δ)�

γ∗H�,p γ∗J�,p

(γ∗δ)p

Just observe that the triangle commutes because δ is a morphism of soft K-sheaf representations, and the 
rectangle commutes by naturality of γ∗δ. The composites

γ∗H�,p ◦H(�) and γ∗J�,p ◦ J(�)

coincide with H(p) and J(p), respectively. This shows that H(p) is below J(p) for all p ∈ P , so there is an 
arrow H ⇒ J in M.

Next, we show that Ξ is surjective, hence an order isomorphism. Fix an arbitrary (F, ϕ) ∈ s-ShA
K(P, C) and 

consider the monotone map HF : P op → RegEpiA defined in Proposition 4.6. Then HF ∈ M by item (b) in 
Proposition 4.6, so we can consider its image Ξ(HF ) = (γ∗HF , HF (�)). In view of item (a) in Proposition 4.6
we have γ∗HF = F . Moreover HF (�) = ϕ, showing that Ξ(HF ) = (F, ϕ). �

The isomorphism of categories M ∼= s-ShA
K(P, C) in Theorem 4.7 can be equivalently understood as an 

order isomorphism between (large) preorders, which in turn induces an order isomorphism between the 
corresponding poset reflections. We state this observation in the following corollary in the special case of 
Barr-exact categories, where quotients can be replaced with equivalence relations. Let us write �s-ShA

K(P, C)�
for the poset reflection of s-ShA

K(P, C); the objects of �s-ShA
K(P, C)� are isomorphism classes of soft K-sheaf 

representations of A over P .

Corollary 4.8. Assume C is Barr-exact. Let N be the (large) sub-poset of [P op, EquivA] consisting of those 
maps that preserve finite infima and arbitrary suprema, and whose images consist of pairwise commuting 
equivalence relations. There is an order isomorphism

N ∼= �s-ShA
K(P,C)�.

Proof. It follows at once from Theorem 4.7 that there is an order isomorphism

�M� ∼= �s-ShA
K(P,C)�

between the poset reflections of M and s-ShA
K(P, C), respectively. So, it suffices to show that �M� ∼= N. 

The poset reflection �RegEpiA� of RegEpiA coincides with the opposite of QuoA. If C is Barr-exact, 
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the map ker : (QuoA)op → EquivA is an order isomorphism (see Remark 2.10), and so �RegEpiA� is 
isomorphic to EquivA. Thus, the poset reflection of [P op, RegEpiA] is isomorphic to [P op, EquivA]. This 
isomorphism restricts to an isomorphism between �M� and N because, under the isomorphism between 
�RegEpiA� and EquivA, the (isomorphism classes of) ker-commuting elements of RegEpiA correspond to 
commuting elements of EquivA. �
Remark 4.9. If we required that F (⊥) be a terminal object in the definition of K-sheaf, then Corollary 4.8
(as well as Theorem 4.7) would no longer be true. Just observe that, if C = Set and A = ∅, then both 
EquivA and [P op, Equiv(A)] are one-element posets, and thus so is N. By Corollary 4.8, there is exactly one 
(isomorphism class of) soft K-sheaf representation of A over P , given by the constant functor F : P op → Set
defined by F (p) = ∅ for all p ∈ P . But F (⊥) = ∅ is a proper subterminal object in Set.

Remark 4.10. Suppose that the category C is well-powered, i.e. SubA is a set—as opposed to a proper 
class—for all objects A of C. Then EquivA is a small poset, and the isomorphism in Corollary 4.8 is an 
isomorphism between small posets. This is the case, for example, when C is Set or a variety of (possibly 
infinitary) algebras.

5. Domains and continuous lattices

In this brief interlude, we shall recall some basic material concerning domains and continuous lattices 
that will be needed in Section 6. For a more thorough treatment, the reader can consult e.g. [23].

Let P be a poset. The way-below relation on P , denoted by �, is defined as follows: for all x, y ∈ P , 
x � y precisely when, for all directed subsets D ⊆ P admitting a supremum 

∨
D in P , if y ≤

∨
D there is 

d ∈ D such that x ≤ d.

Remark 5.1. If P is a complete lattice and x, y ∈ P , then x � y if and only if, for all subsets Y ⊆ P , 
whenever y ≤

∨
Y there is a finite subset X ⊆ Y such that x ≤

∨
X.

Example 5.2. Recall that a topological space is locally compact if each of its points admits a compact 
neighbourhood. Let X be a locally compact space and consider its frame of opens Ω(X). For all U, V ∈ Ω(X), 
U � V if and only if there is a compact subset C ⊆ X such that U ⊆ C ⊆ V .

Definition 5.3. For any poset P , we shall say that:

• P is a directed complete partially ordered set (dcpo, for short) if every directed subset D ⊆ P has a 
supremum in P ;

• P is continuous if, for all x ∈ P , the set

↓↓x := {y ∈ P | y � x}

is directed and x =
∨

↓↓x.

A dcpo that is continuous is called a domain. A continuous lattice is a domain that is complete as a lattice.

Remark 5.4. Whenever the poset P has a least element ⊥, we have ⊥ � x for all x ∈ P . Moreover, for 
all x, y, z ∈ P such that the supremum x ∨ y exists in P , x � z and y � z entail x ∨ y � z, see e.g. [23, 
Proposition I-1.2(iii)]. It follows that, whenever P has all finite suprema, the set ↓↓x is directed for all x ∈ P .

Example 5.5. For a locally compact space X, its frame of opens Ω(X) is a continuous lattice. See e.g. [23, 
p. 56].
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Definition 5.6. Let U be an upwards closed subset of a dcpo P . We say that U is Scott-open if, for all 
directed subsets D ⊆ P , 

∨
D ∈ U entails D ∩ U �= ∅.

Recall that a filter on a poset P is an upwards closed subset of P that is codirected (in particular, 
non-empty). Write

Filt(P )

for the poset of filters on P , partially ordered by inclusion. Filt(P ) is a dcpo, and is a complete lattice 
whenever P has binary suprema and a top element. A filter on a dcpo that is Scott-open as an upwards 
closed subset is called a Scott-open filter. The set of all Scott-open filters on a dcpo P is denoted by

σFilt(P )

and regarded as a sub-poset of Filt(P ). The poset σFilt(P ) is often referred to as the Lawson dual of P ; 
it is always a dcpo, with directed suprema given by set-theoretic unions, and is a domain whenever P is a 
domain (see e.g. [23, Theorem II-1.17]). Further, if P admits finite infima, σFilt(P ) has finite infima given 
by set-theoretic intersections.

We now recall some basic properties of Scott-open filters on a domain. To this end, for any element x of 
a poset P , set ↑x := {y ∈ P | x ≤ y}.

Lemma 5.7. Let L be a domain. The following statements hold:

(a) For all x, y ∈ L, y � x precisely when there is k ∈ σFilt(L) such that x ∈ k ⊆ ↑ y.
(b) For all x ∈ L and all k ∈ σFilt(L), if x ∈ k there is y � x such that y ∈ k.
(c) For all k, l ∈ σFilt(L), l � k precisely when there is x ∈ k such that l ⊆ ↑x.
(d) For all x ∈ L and all k ∈ σFilt(L), if x ∈ k there is l � k such that x ∈ l.
(e) For all x ∈ L, the set {k ∈ σFilt(L) | x ∈ k} is codirected.

Proof. The left-to-right implication in item (a) follows from [23, Proposition I-3.3(i)], while the converse is 
a consequence of the definition of Scott-open filter. For items (b) and (c), see e.g. Proposition II-1.10(i) and 
Theorem II-1.17(ii), respectively, in [23].

For item (d), let x ∈ L and k ∈ σFilt(L) satisfy x ∈ k. By item (b), there is y � x such that y ∈ k. Thus, 
in view of item (a), there exists l ∈ σFilt(L) such that x ∈ l ⊆ ↑ y. Since y ∈ k and l ⊆ ↑ y, by item (c) we 
get l � k.

Finally, let us prove item (e). Let S be a finite subset of {k ∈ σFilt(L) | x ∈ k}. For each l ∈ S, pick 
yl ∈ l such that yl � x (existence is guaranteed by item (b)). Since L is a domain, the set ↓↓x is directed and 
thus there is y ∈ ↓↓x such that yl ≤ y for all l ∈ S. By item (a), there is k ∈ σFilt(L) such that x ∈ k ⊆ ↑ y. 
For every l ∈ S we have k ⊆ ↑ y ⊆ ↑ yl ⊆ l. Therefore, k is a lower bound of S. �
Remark 5.8. Items (d) and (e) in Lemma 5.7 can be strengthened to the effect that, for every element x of a 
domain L, the set U(x) := {k ∈ σFilt(L) | x ∈ k} is a Scott-open filter on σFilt(L). In fact, the Scott-open 
filters on σFilt(L) are precisely those of the form U(x), for x ∈ L, and the map U(−) : L → σFilt(σFilt(L))
is an order isomorphism. These observations are at the base of the Lawson Duality Theorem of Domains 
[23, Theorem IV-2.14]. For a proof of the properties mentioned above, cf. [23, §IV-2].

Given a subset S of a poset L, set ↓↓S :=
⋃

{↓↓x | x ∈ S}.

Lemma 5.9. Let L be a domain. For all directed subsets D ⊆ L, ↓↓D = ↓↓
∨

D.
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Proof. The inclusion ↓↓D ⊆ ↓↓
∨

D is immediate because x � y ≤ z implies x � z. For the converse inclusion 
just recall that, in a continuous poset, x �

∨
D implies the existence of d ∈ D such that x � d, see e.g. 

[23, Theorem I-1.9]. �
We record for future reference the following fact, which is known as Wilker’s condition when L = Ω(X)

for a locally compact space X (cf. [31] or [21, Lemma 2.3]).

Lemma 5.10. Let L be a continuous lattice. For all x, y ∈ L and l ∈ σFilt(L) such that x ∨ y ∈ l, there are 
k, k′ ∈ σFilt(L) such that x ∈ k, y ∈ k′ and k ∧ k′ ⊆ l.

Proof. Let J := ↓↓x ∪ ↓↓ y. Since ↓↓x ⊆ J and L is continuous, we get

x =
∨

↓↓x ≤
∨

J.

Similarly, y ≤
∨

J and thus x ∨ y ≤
∨
J . As l is upwards closed, 

∨
J ∈ l. Now, because l is a Scott-open 

filter, there exists a finite subset I ⊆ J such that 
∨
I ∈ l; since ↓↓x and ↓↓ y are closed under finite suprema 

by Remark 5.4, there are x′ ∈ ↓↓x and y′ ∈ ↓↓ y such that

x′ ∨ y′ =
∨

I ∈ l.

In view of item (a) in Lemma 5.7, there are k, k′ ∈ σFilt(L) such that

x ∈ k ⊆ ↑x′ and y ∈ k′ ⊆ ↑ y′.

The Scott-open filters k, k′ then satisfy the desired property. Just note that, if z ∈ L belongs to both k and 
k′, then x′ ≤ z and y′ ≤ z entail x′∨y′ ≤ z. As x′∨y′ ∈ l and the latter is upwards closed, we get z ∈ l. �

Given a topological space X, let K(X) denote the poset of compact saturated subsets of X, ordered by 
inclusion (recall that a set is saturated if it is an intersection of opens). The Hofmann–Mislove theorem 
states that, for any sober space X (i.e., one in which every irreducible closed subset is the closure of a 
unique point), the monotone map

Φ: K(X)op → σFilt(Ω(X)), Φ(K) := {U ∈ Ω(X) | K ⊆ U}

is an order isomorphism. Its inverse sends a Scott-open filter of open sets to its intersection. See e.g. [23, 
Theorem II-1.20].

Even when P is a continuous lattice, σFilt(P ) need not be complete (equivalently, a continuous lattice) 
because it may fail to admit binary suprema. Thus, we shall now focus on a class of continuous lattices 
whose posets of Scott-open filters are complete.

Definition 5.11. The way-below relation � in a continuous lattice L with top element � is said to be 
multiplicative provided that � � � and, for all x, y, z ∈ L, x � y and x � z entail x � y ∧ z.

A continuous lattice whose way-below relation is multiplicative is called a stably continuous lattice. If 
L is a stably continuous lattice then so is σFilt(L), see e.g. [28, §VII.2.12]. In this case, the supremum of 
Scott-open filters U, V is given by ↑ {u ∧ v | u ∈ U, v ∈ V }.

Example 5.12. For a T0 space X, its frame of opens Ω(X) is a stably continuous lattice if and only if X
is stably compact, i.e. T0, compact, locally compact, coherent3 and sober. See e.g. [23, Proposition VI-7.3]. 

3 A topological space is coherent if the intersection of any two compact saturated subsets is compact.
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Stably compact spaces generalise both compact Hausdorff spaces and spectral spaces, and are tightly related 
to compact ordered spaces, cf. Section 7.1.

6. K-sheaves and Ω-sheaves

Throughout this section, we fix an arbitrary domain L. There are order embeddings

Lop Filt(L) σFilt(L),λ κ

where λ sends x ∈ L to the principal filter ↑x, and κ is the inclusion of Scott-open filters on L into filters 
on L. Let F be the union of the images of λ and κ. We regard F as a sub-poset of Filt(L) and, with a slight 
abuse of notation, write again λ : Lop � F and κ : σFilt(L) � F for the obvious co-restrictions. The latter 
order embeddings will be regarded as functors between small (posetal) categories.

In the first part of this section we only assume that C is a bicomplete (i.e., complete and cocomplete) 
category. The functors λ, κ induce “restriction” functors

[F ,C] [Lop,C]λ∗
and [F ,C] [σFilt(L),C]κ∗

given by precomposing with λ and κ, respectively. As Lop and σFilt(L) are small categories and C is 
bicomplete, any functor G in [Lop, C] admits a left Kan extension Lanλ G along λ, and any functor F in 
[σFilt(L), C] admits a right Kan extension Ranκ F along κ. These Kan extensions are computed pointwise 
and determine two adjunctions as displayed below (see e.g. [36, §X.3]):

[F ,C] [Lop,C]

[F ,C] [σFilt(L),C].

λ∗

�
Lanλ

κ∗
�

Ranκ

Let η, ε be the unit and counit, respectively, of the adjunction Lanλ � λ∗, and η̃, ̃ε the unit and counit, 
respectively, of the adjunction κ∗ � Ranκ.

As λ and κ are order embeddings (hence, fully faithful), these adjunctions fix all objects of [Lop, C]
and [σFilt(L), C], respectively. This is the content of the next lemma, which holds more generally for Kan 
extensions along fully faithful functors, cf. [32, Proposition 4.23].

Lemma 6.1. The following statements hold:

(a) The unit η of the adjunction Lanλ � λ∗ is a natural isomorphism, i.e. for all G ∈ [Lop, C], ηG : G ∼=
λ∗ Lanλ G.

(b) The counit ε̃ of the adjunction κ∗ � Ranκ is a natural isomorphism, i.e. for all F ∈ [σFilt(L), C], 
ε̃F : κ∗ Ranκ F ∼= F .

Remark 6.2. Recall that, given any adjunction, the right adjoint is fully faithful precisely when the counit 
is a natural isomorphism. A dual statement holds for left adjoint functors and units. Therefore, Lemma 6.1
amounts to saying that the functors Ranκ and Lanλ are fully faithful.

Composing the two adjunctions above, we obtain the following pair of adjoint functors:

[σFilt(L),C] [Lop,C].
λ∗ Ranκ

�
∗

(7)

κ Lanλ
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In Proposition 6.9 below we shall characterise the objects that are fixed by the unit and counit of this 
adjunction, thus obtaining an equivalence between the full subcategories defined by the fixed objects. By 
further restricting this equivalence, in Theorem 6.21 we will relate the notion of K-sheaf to the usual notion 
of sheaf.

Remark 6.3. We provide explicit descriptions of the adjoint functors in eq. (7). These are easy consequences 
of the formulas for pointwise Kan extensions, cf. [36, §X.5]. For all G : Lop → C and k ∈ σFilt(L),

(κ∗ Lanλ G)(k)

is the directed colimit in C of the restriction of G to k (regarded as a subset of L). If k, l ∈ σFilt(L) are 
such that k ⊆ l, the corresponding arrow

(κ∗ Lanλ G)(k) → (κ∗ Lanλ G)(l)

is the mediating morphism induced by the universal (colimit) property of (κ∗ Lanλ G)(k).
On the other hand, for all F : σFilt(L) → C and x ∈ L,

(λ∗ Ranκ F )(x)

is the codirected limit in C of the restriction of F to {k ∈ σFilt(L) | x ∈ k}. Note that the latter set is 
codirected by item (e) in Lemma 5.7. Given x, y ∈ L with x ≤ y, the corresponding morphism

(λ∗ Ranκ F )(y) → (λ∗ Ranκ F )(x)

is the one induced by the universal (limit) property of (λ∗ Ranκ F )(x).

Remark 6.4. Assume that X is a sober space. By the Hofmann–Mislove theorem, we have an isomorphism 
σFilt(Ω(X)) ∼= K(X)op. Hence, for any sheaf of sets G : Ω(X)op → Set over X, κ∗ Lanλ G can be identified 
with a presheaf K(X)op → Set. For any point x ∈ X, the up-set ↑x of x in the specialization order of X is 
a compact saturated subset of X. In view of Remark 6.3, the value of κ∗ Lanλ G at ↑x is

(κ∗ Lanλ G)(↑x) ∼= colim
↑x⊆U∈Ω(X)

G(U) ∼= colim
x∈U∈Ω(X)

G(U),

which is precisely the stalk of G at x. A similar remark applies when Set is replaced with any variety of 
algebras.

Lemma 6.5. Consider a functor F : L → C. The following statements are equivalent:

(1) F preserves directed colimits.
(2) For all x ∈ L, the cocone (Fy,x : F (y) → F (x))y∈↓↓ x is a (directed) colimit of the restriction of F to ↓↓x.

Proof. Because L is continuous, for all x ∈ L the set ↓↓x is directed and x =
∨

↓↓x. Hence, 2 is an immediate 
consequence of 1.

Conversely, suppose that 2 holds and fix an arbitrary directed set D ⊆ L. We must show that the cocone

(Fy,
∨

D : F (y) → F
(∨

D
)
)y∈D

is a colimit of the restriction of F to D. Let (ϕy : F (y) → A)y∈D be a compatible cocone over the restriction 
of F to D. For each z ∈ ↓↓D, let ψz : F (z) → A denote the composite ϕyz

◦ Fz,yz
, where yz is any element 



M. Abbadini, L. Reggio / Journal of Pure and Applied Algebra 227 (2023) 107413 23
of D such that z � yz: since D is directed and the cocone (ϕy : F (y) → A)y∈D is compatible, ψz does not 
depend on the choice of yz. It is not difficult to see that (ψz : F (z) → A)z∈↓↓D is a compatible cocone over 
the restriction of F to ↓↓D. As ↓↓D = ↓↓

∨
D by Lemma 5.9, it follows from 2 that there is a unique arrow 

η : F (
∨

D) → A such that ψz = η ◦ Fz,
∨

D for all z ∈ ↓↓D.
We claim that η is the unique arrow such that ϕy = η ◦ Fy,

∨
D for all y ∈ D, thus showing that 

(Fy,
∨

D : F (y) → F (
∨

D))y∈D is a colimit cocone. To this end, fix an arbitrary y ∈ D. Applying 2 again, we 
have that the cocone (Fz,y : F (z) → F (y))z∈↓↓ y is a colimit of the restriction of F to ↓↓ y. Using the universal 
property of the latter colimit, we see that ϕy must coincide with the composite

F (y) F (
∨

D) A.
Fy,

∨
D η

Just observe that, for all z ∈ ↓↓ y,

ϕy ◦ Fz,y = ϕyz
◦ Fz,yz

= ψz = η ◦ Fz,
∨

D.

Clearly, η is unique with respect to this property. �
It is useful to record the dual version of the previous lemma:

Lemma 6.6. Consider a functor F : Lop → C. The following statements are equivalent:

(1) F preserves codirected limits.
(2) For all x ∈ L, the cone (Fx,y : F (x) → F (y))y∈↓↓ x is a (codirected) limit of the restriction of F to ↓↓x.

Proof. This follows by applying Lemma 6.5 to the functor F op : L → Cop. �
Now, denote by

ω- lim[Lop,C]

the full subcategory of [Lop, C] defined by the functors preserving codirected limits, and by

ω- colim[σFilt(L),C]

the full subcategory of [σFilt(L), C] defined by the functors preserving directed colimits.

Lemma 6.7. The following statements hold:

(a) For all G ∈ [Lop, C], the functor κ∗ Lanλ G belongs to ω- colim[σFilt(L), C].
(b) For all F ∈ [σFilt(L), C], the functor λ∗ Ranκ F belongs to ω- lim[Lop, C].

Proof. For item (a), fix an arbitrary k ∈ σFilt(L). In view of Lemma 6.5, it suffices to prove that the cocone 
(Gl,k : (κ∗ Lanλ G)(l) → (κ∗ Lanλ G)(k))l∈↓↓ k is a colimit of the restriction of κ∗ Lanλ G to ↓↓ k. Note that, 
since σFilt(L) is continuous, we have k =

⋃
↓↓ k. Therefore, using Remark 6.3 twice, we have

(κ∗ Lanλ G)(k) ∼= colim
x∈k

G(x) ∼= colim
l�k, x∈l

G(x) ∼= colim
l�k

colim
x∈l

G(x) ∼= colim
l�k

(κ∗ Lanλ G)(l).

This slick proof does not show that the cocone above is a colimit cocone, although this could be deduced 
by checking how the colimit cocones are modified under the chain of isomorphisms. We now give a detailed 
proof that follows precisely this intuition.
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To start with, observe that κ∗ is left adjoint and so it preserves colimits. Thus, it is enough to show that 
the cocone

(Gl,k : Lanλ G(l) → Lanλ G(k))l∈↓↓ k (8)

is a colimit of the restriction of Lanλ G to ↓↓ k. Let (ϕl : Lanλ G(l) → A)l∈↓↓ k be a compatible cocone over 
the restriction of Lanλ G to ↓↓ k. Because k =

⋃
↓↓ k, for all x ∈ k there is l ∈ σFilt(L) such that l � k and 

x ∈ l. Hence, for each x ∈ k, we obtain an arrow

ϕx : Lanλ G(↑x) → A

by composing ϕl : Lanλ G(l) → A with G↑x,l : Lanλ G(↑x) → Lanλ G(l). Note that the definition of ϕx does 
not depend on the choice of l because ↓↓ k is directed, and the family {ϕx : Lanλ G(↑x) → A | x ∈ k} forms 
a compatible cocone over the restriction of Lanλ G to k. The colimit of the latter diagram is Lanλ G(k), so 
there is a unique mediating morphism μ : Lanλ G(k) → A such that ϕx = μ ◦G↑ x,k for all x ∈ k. We claim 
that ϕl = μ ◦Gl,k for all l � k. Fix an arbitrary Scott-open filter l ∈ ↓↓ k. By item (c) in Lemma 5.7, there 
is x ∈ k such that l ⊆ ↑x and thus Gl,k factors through G↑x,k. We get

μ ◦Gl,k = μ ◦G↑x,k ◦Gl,↑ x = ϕx ◦Gl,↑ x,

which in turn coincides with ϕl by construction. Further, it is not difficult to see that μ is the unique 
morphism satisfying ϕl = μ ◦ Gl,k for all l � k. Hence, the cocone in eq. (8) is a colimit of the restriction 
of Lanλ G to ↓↓ k.

Now, for item (b), fix an arbitrary x ∈ L. In view of Lemma 6.6, it suffices to prove that the cone 
(Fx,y : (λ∗ Ranκ F )(x) → (λ∗ Ranκ F )(y))y∈↓↓ x is a limit of the restriction of λ∗ Ranκ F to ↓↓x. By item (b)
in Lemma 5.7, we have

{l ∈ σFilt(L) | x ∈ l} = {l ∈ σFilt(L) | ∃y ∈ L such that y � x and y ∈ l}.

Using Remark 6.3 twice, we get

(λ∗ Ranκ F )(x) ∼= lim
x∈l

F (l) = lim
y�x

lim
y∈l

F (l) = lim
y�x

(λ∗ Ranκ F )(y),

where l ∈ σFilt(L). Reasoning along the same lines as before, it is possible to give a direct proof that the 
cone above is a limit cone; we leave the details to the reader. �

As a consequence of Lemma 6.7, every object of [Lop, C] that is fixed by the unit of the adjunction 
in eq. (7) belongs to ω- lim[Lop, C], and every object of [σFilt(L), C] that is fixed by the counit belongs to 
ω- colim[σFilt(L), C]. The next lemma will imply that the converse implications hold as well.

Recall that η̃ is the unit of the adjunction κ∗ � Ranκ and ε is the counit of Lanλ � λ∗. Intuitively, for all 
functors F : F → C, η̃F is an isomorphism precisely when, if we first restrict F along κ∗ and then extend 
along Ranκ, we recover F up to a natural isomorphism. A similar remark applies to the case where εF is 
an isomorphism.

Lemma 6.8. The following conditions are equivalent for all functors F ∈ [F , C]:

(1) κ∗F ∈ ω- colim[σFilt(L), C] and η̃F is an isomorphism.
(2) λ∗F ∈ ω- lim[Lop, C] and εF is an isomorphism.
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Proof. Let us prove that 1 implies 2. Fix an arbitrary functor F : F → C such that κ∗F preserves di-
rected colimits and η̃F is an isomorphism. By item (b) in Lemma 6.7 applied to κ∗F , we have that 
λ∗ Ranκ κ

∗F preserves codirected limits. In view of the isomorphism λ∗(η̃F ) : λ∗F ∼= λ∗ Ranκ κ
∗F , we get 

λ∗F ∈ ω- lim[Lop, C].
Next, we show that εF is an isomorphism. That is, for all ϕ ∈ F ,

(εF )ϕ : (Lanλ λ
∗F )(ϕ) → F (ϕ)

is an isomorphism. By the formula for pointwise left Kan extensions (cf. [36, §X.5]), (εF )ϕ can be identified 
with the unique mediating morphism

colim
↑ x⊆ϕ

F (↑x) → F (ϕ)

for x ∈ L. If ϕ belongs to the image of λ (i.e., ϕ is a principal filter) then this mediating morphism is clearly 
an isomorphism. Hence it remains to prove that, for all k ∈ σFilt(L), the following arrow is an isomorphism:

colim
x∈k

F (↑x) → F (k).

Let {ψx : F (↑x) → A | x ∈ k} be a compatible cocone in C over the restriction of F to {↑x | x ∈ k}. By 
item (c) in Lemma 5.7, whenever two Scott-open filters k and k′ satisfy k′ � k, there is x ∈ k such that 
k′ ⊆ ↑x. Hence, for every k′ ∈ ↓↓ k we obtain a morphism

ϕk′ : F (k′) → A

by composing Fk′,↑x : F (k′) → F (↑x) with ψx : F (↑x) → A. Note that the definition of ϕk′ does not depend 
on the choice of x because k is codirected, and {ϕk′ : F (k′) → A | k′ � k} is a compatible cocone over 
the restriction of κ∗F to ↓↓ k (recall that, for all l ∈ σFilt(L), κ∗F (l) = F (l)). As κ∗F preserves directed 
colimits, we have

κ∗F (k) ∼= colim
k′�k

κ∗F (k′).

More precisely, the cocone (Fk′,k : κ∗F (k′) → κ∗F (k))k′∈↓↓ k is a colimit of the restriction of κ∗F to ↓↓ k. Thus, 
there is a unique mediating morphism μ : F (k) → A satisfying ϕk′ = μ ◦ Fk′,k for all k′ � k. It remains to 
show that μ satisfies ψx = μ ◦ F↑ x,k for all x ∈ k and is unique with this property. Fix an arbitrary x ∈ k. 
By item (d) in Lemma 5.7 there is k′ � k such that x ∈ k′. It follows that F↑ x,k = Fk′,k ◦ F↑ x,k′ and so

μ ◦ F↑ x,k = μ ◦ Fk′,k ◦ F↑ x,k′ = ϕk′ ◦ F↑ x,k′ ,

which coincides with ψx. To deduce that μ is unique with this property, it is enough to note that any ν
satisfying ψx = ν ◦ F↑ x,k for all x ∈ k must satisfy ϕk′ = ν ◦ Fk′,k for all k′ � k. Just observe that, as 
mentioned above, k′ � k entails the existence of x ∈ k such that k′ ⊆ ↑x. Thus,

ν ◦ Fk′,k = ν ◦ F↑ x,k ◦ Fk′,↑x = ψx ◦ Fk′,↑x = ϕk′ .

To show that 2 implies 1, suppose that F : F → C is such that λ∗F preserves codirected limits and εF is 
an isomorphism. Item (a) in Lemma 6.7 applied to λ∗F shows that κ∗ Lanλ λ

∗F preserves directed colimits. 
Because κ∗ Lanλ λ

∗F is naturally isomorphic to κ∗F via κ∗(εF ), we see that κ∗F ∈ ω- colim[σFilt(L), C].
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It remains to prove that η̃F is an isomorphism. That is, for all ϕ ∈ F ,

(η̃F )ϕ : F (ϕ) → (Ranκ κ
∗F )(ϕ)

is an isomorphism. In view of the formula for pointwise right Kan extensions, (η̃F )ϕ can be identified with 
the unique mediating morphism

F (ϕ) → lim
ϕ⊆k

F (k)

for k which ranges over σFilt(L). If ϕ belongs to the image of κ (i.e., ϕ is a Scott-open filter) then this 
mediating morphism is clearly an isomorphism. Hence it suffices to prove that, for all x ∈ L, the following 
arrow is an isomorphism:

F (↑x) → lim
x∈k

F (k).

Let {ψk : A → F (k) | x ∈ k} be a compatible cone in C over the restriction of F to {k ∈ σFilt(L) | x ∈ k}. 
Fix an arbitrary y � x. By item (a) in Lemma 5.7, there is a Scott-open filter k such that x ∈ k ⊆ ↑ y. 
Hence we can define an arrow

ϕy : A → F (↑ y)

as the composition of ψk : A → F (k) and the restriction map Fk,↑ y : F (k) → F (↑ y). Note that the definition 
of ϕy does not depend on the choice of k because ↓↓x is directed, and the family {ϕy : A → F (↑ y) | y � x}
forms a compatible cone over the restriction of F to {↑ y | y ∈ ↓↓x}. As λ∗F preserves codirected limits, we 
have λ∗F (x) ∼= limy�x λ

∗F (y) and so F (↑x) ∼= limy�x F (↑ y). Thus the compatible cone above induces a 
unique arrow μ : A → F (↑x) such that ϕy = F↑ x,↑ y ◦ μ for all y � x. It remains to prove that μ satisfies 
ψk = F↑x,k ◦ μ for all Scott-open filters k containing x and is unique with this property. Fix an arbitrary 
k ∈ σFilt(L) such that x ∈ k. By item (b) in Lemma 5.7 there is y � x such that y ∈ k. In particular, 
↑x ⊆ ↑ y ⊆ k and therefore

F↑ x,k ◦ μ = F↑ y,k ◦ F↑ x,↑ y ◦ μ = F↑ y,k ◦ ϕy,

which coincides with ψk. To see that μ is unique with this property, it suffices to note that any ν satisfying 
ψk = F↑x,k ◦ ν for all k ∈ σFilt(L) such that x ∈ k must satisfy ϕy = F↑ x,↑ y ◦ ν for all y � x. Just recall 
that, as pointed out above, whenever y � x there is k ∈ σFilt(L) satisfying ↑x ⊆ k ⊆ ↑ y. Hence,

F↑ x,↑ y ◦ ν = Fk,↑ y ◦ F↑ x,k ◦ ν = Fk,↑ y ◦ ψk = ϕy. �
Recall that L is an arbitrary domain and C is a bicomplete category. The next proposition provides a 

description of the objects that are fixed by the adjunction in eq. (7).

Proposition 6.9. The adjoint pair of functors

[σFilt(L),C] [Lop,C]
λ∗ Ranκ

�
κ∗ Lanλ

restricts to an equivalence ω- colim[σFilt(L), C] � ω- lim[Lop, C].
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Proof. Denote by F1 the full subcategory of [F , C] defined by those functors F such that λ∗F ∈ ω- lim[Lop, C]
and εF is an isomorphism. We claim that the adjunction

Lanλ � λ∗ : [F ,C] → [Lop,C]

restricts to an equivalence between F1 and ω- lim[Lop, C].
By definition of F1, λ∗ restricts to a functor F1 → ω- lim[Lop, C]. To see that Lanλ restricts to a functor 

ω- lim[Lop,C] → F1, consider an arbitrary G ∈ ω- lim[Lop, C]. Then ηG : G ∼= λ∗ Lanλ G by item (a) in 
Lemma 6.1, and so we see that λ∗ Lanλ G belongs to ω- lim[Lop, C]. Furthermore, using again the fact that 
η is a natural isomorphism, it follows from the triangle identities for adjunctions that ε Lanλ is a natural 
isomorphism. In particular, εLanλ G is an isomorphism. Hence, Lanλ G ∈ F1.

This shows that the adjunction Lanλ � λ∗ restricts to an adjunction between F1 and ω- lim[Lop, C]. In 
turn, the latter adjunction is an equivalence because all objects of F1 are fixed by definition, and all objects 
of ω- lim[Lop, C] are fixed by item (a) in Lemma 6.1.

Now, let F2 be the full subcategory of [F , C] defined by those functors F such that κ∗F ∈
ω- colim[σFilt(L), C] and η̃F is an isomorphism. By similar reasoning to the one above, the adjunction 
κ∗ � Ranκ : [σFilt(L), C] → [F , C] restricts to an equivalence between ω- colim[σFilt(L), C] and F2.

Finally, the statement follows by noting that F1 = F2 by Lemma 6.8. �
Suppose for a moment that C is a bicomplete regular category and the domain L is a stably continuous 

lattice. Then σFilt(L) is also a stably continuous lattice; in particular, a complete lattice. So, we can 
consider the category ShK(σFilt(L)op, C) of C-valued K-sheaves over σFilt(L)op. This is a full subcategory 
of [σFilt(L), C] and we have a composite functor

ShK(σFilt(L)op,C) [σFilt(L),C] [Lop,C].λ∗◦Ranκ

In order to characterise the image of this functor, we introduce the notion of Ω-sheaf. Intuitively, whereas 
K-sheaves on a (stably compact) space X are defined on the lattice K(X) of compact saturated subsets of 
X, Ω-sheaves are defined on the frame Ω(X) of opens of X—hence the nomenclature. The relation between 
Ω-sheaves and ordinary sheaves is explained in Proposition 6.14 and Remark 6.15.

Definition 6.10. Let D be a category and let P be a complete lattice. A D-valued Ω-sheaf on P is a functor 
F : P op → D that satisfies the following properties:

(Ω1) F (⊥) is a subterminal object of D, i.e. the unique arrow F (⊥) → 1 is monic.
(Ω2) For all x, y ∈ P , the following is a pullback square in D:

F (x ∨ y) F (x)

F (y) F (x ∧ y)

Fx∨y,x

Fx∨y,y

�
Fx,x∧y

Fy,x∧y

(Ω3) F preserves codirected limits. I.e., for all directed subsets D ⊆ P , the cone (F∨
D,p : F (

∨
D) →

F (p))p∈D is a limit of the restriction of F to D.

We denote by ShΩ(P, D) the full subcategory of [P op, D] defined by the Ω-sheaves.

Remark 6.11. Note that conditions (Ω1) and (Ω2) coincide, respectively, with conditions (K1) and (K2) in 
the definition of K-sheaf. By contrast, (Ω3) is dual to (K3).
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Remark 6.12. By Lemma 6.6, if P is a continuous lattice and F : P op → C is a functor, then condition (Ω3)
can be equivalently stated as follows: For all x ∈ P , the cone (Fx,y : F (x) → F (y))y∈↓↓ x is a (codirected) 
limit of the restriction of F to ↓↓x.

Lemma 6.13. Suppose that D is a category and P is a complete lattice. The following statements are equiv-
alent for all functors F : P op → D:

(1) F satisfies (Ω2) and (Ω3).
(2) For every non-empty subset S ⊆ P closed under binary meets, the cone (F∨

S,y : F (
∨

S) → F (y))y∈S is 
a limit of the restriction of F to S.

Proof. Suppose 1 holds and let S ⊆ P be a non-empty subset closed under binary meets. The set T ⊆ P

obtained by closing S under binary joins is directed and so, by (Ω3), the cone (F∨
T ,y : F (

∨
T ) → F (y))y∈T

is a limit of the restriction of F to T . It follows from (Ω2) that the cone (F∨
S,y : F (

∨
S) → F (y))y∈S is 

a limit of the restriction of F to S. Just observe that 
∨
S =

∨
T and condition (Ω2) allows to extend any 

compatible cone over the restriction of F to S to a unique compatible cone over the restriction of F to T .
Conversely, assume that 2 holds. Then (Ω2) follows by setting S := {x, y, x ∧y}. With regards to (Ω3), let 

D ⊆ P be a directed subset and let E be the closure of D under binary meets. As D is non-empty, so is E. 
Also, since D is a cofinal subset of E, we have 

∨
D =

∨
E. By item 2, the cone (F∨

D,y : F (
∨

D) → F (y))y∈E

is a limit of the restriction of F to E. A straightforward argument that uses the fact that D is a directed 
cofinal subset of E shows that (F∨

D,y : F (
∨

D) → F (y))y∈D is a limit of the restriction of F to D. �
Recall that a sheaf of sets on a topological space X can be characterised as a presheaf F : Ω(X)op → Set

such that, for every set of opens S ⊆ Ω(X) that is closed under binary intersections, the cone

(F⋃
S,U : F

(⋃
S
)
→ F (U))U∈S

is a limit of the restriction of F to S. For S = ∅, this amounts to saying that F (∅) is a terminal object of 
Set, i.e. a one-element set, which is a strengthening of (Ω1). More generally, for any frame M , a sheaf of sets 
over M is a presheaf F : Mop → Set such that, for every set S ⊆ M closed under binary meets, the cone

(F∨
S,a : F

(∨
S
)
→ F (a))a∈S

is a limit of the restriction of F to S.
The previous description of sheaves as “limit-preserving presheaves” remains valid when the category of 

sets is replaced with any variety of (finitary) algebras, and has been exploited to propose a notion of sheaf 
with values in an arbitrary category D—simply by replacing Set with D—see e.g. [25]. Adopting this notion 
of D-valued sheaf on a frame, we have the following immediate consequence of Lemma 6.13:

Proposition 6.14. Let D be a category and let M be a frame. The following statements are equivalent for all 
presheaves F : Mop → D:

(1) F is a D-valued sheaf.
(2) F is a D-valued Ω-sheaf such that F (∅) is a terminal object of D.

Thus the notion of Ω-sheaf of sets over a frame (and, in particular, over a topological space) coincides 
with the classical notion of sheaf of sets, with the only exception that we allow the empty presheaf. This is 
the content of the following remark:
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Remark 6.15. Let M be a frame. When D = Set, the only proper subterminal object is the empty set. Thus, 
any Ω-sheaf F : Mop → Set that is not a sheaf satisfies F (⊥) = ∅. But for every a ∈ M there is a restriction 
function Fa,⊥ : F (a) → F (⊥) = ∅, which implies that F (a) = ∅. Thus, a presheaf of sets Mop → Set is an 
Ω-sheaf if, and only if, it is either a sheaf or the initial presheaf (i.e., the constant presheaf of value ∅).

A similar reasoning applies when D is any variety of algebras whose signature contains no constant 
symbols, e.g. the variety of semigroups. On the other hand, if D is a variety of algebras whose signature 
contains at least one constant symbol, then it admits no proper subterminal objects (just observe that any 
algebra in D has at least one element). In this case, the notions of sheaf and Ω-sheaf coincide for any presheaf 
Mop → D.

We will now proceed to compare the notions of K-sheaf and Ω-sheaf. To this end, we shall suppose from 
now on that C is a bicomplete regular category and L is a stably continuous lattice.

Definition 6.16. We consider the following full subcategories AK and AΩ of [F , C]:

• AK consists of those F such that κ∗F is a K-sheaf and η̃F is an isomorphism.
• AΩ consists of those F such that λ∗F is an Ω-sheaf and εF is an isomorphism.

The next lemma follows by reasoning as in the proof of Proposition 6.9:

Lemma 6.17. The following statements hold:

(a) The adjunction κ∗ � Ranκ restricts to an equivalence ShK(σFilt(L)op,C) � AK.
(b) The adjunction Lanλ � λ∗ restricts to an equivalence ShΩ(L, C) � AΩ.

Lemma 6.18. AK is a (full) subcategory of AΩ.

Proof. Fix an arbitrary functor F : F → C that belongs to AK. We must prove that λ∗F is an Ω-sheaf and 
εF is an isomorphism. Since η̃F : F → Ranκ κ

∗F is an isomorphism, the formula for pointwise right Kan 
extensions implies that, for all x ∈ L,

λ∗F (x) ∼= lim
x∈k

κ∗F (k)

where k ∈ σFilt(L). Just observe that x ∈ k if and only if ↑x ⊆ k in F .
Condition (Ω1) in Definition 6.10 is trivially satisfied, since the unique (Scott-open) filter containing the 

bottom element of L is the improper one, which is the bottom element of σFilt(L)op. Hence λ∗F (⊥) ∼=
κ∗F (L), which is subterminal because κ∗F satisfies (K1). For (Ω2), for all x, y ∈ L we have

λ∗F (x) ×λ∗F (x∧y) λ
∗F (y) ∼= lim

x∈k
κ∗F (k) ×limκ∗F (k∨k′) lim

y∈k′
κ∗F (k′)

∼= lim
x∈k, y∈k′

(κ∗F (k) ×κ∗F (k∨k′) κ
∗F (k′))

∼= lim
x∈k, y∈k′

κ∗F (k ∧ k′) κ∗F satisfies (K2)

∼= lim
x∨y∈l

κ∗F (l) Lemma 5.10 and coinitiality

∼= λ∗F (x ∨ y)

where by coinitiality we understand the order-theoretic dual to the notion of cofinality, and in the first step 
we used the fact that {l | x ∧ y ∈ l} = {k ∨ k′ | x ∈ k, y ∈ k′} and so
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lim
x∧y∈l

κ∗F (l) ∼= lim
x∈k, y∈k′

κ∗F (k ∨ k′).

Finally, since κ∗F preserves directed colimits (by definition of K-sheaf) and η̃F is an isomorphism, Lemma 6.8
entails that λ∗F satisfies (Ω3) and εF is an isomorphism. �

We record the following immediate consequence of Lemmas 6.17 and 6.18. Recall that L denotes an 
arbitrary stably continuous lattice, and C a bicomplete regular category.

Proposition 6.19. There is a fully faithful functor

ShK(σFilt(L)op,C) → ShΩ(L,C) (9)

given by the following composition:

ShK(σFilt(L)op,C) � AK ↪→ AΩ � ShΩ(L,C).

Next, we shall see that the fully faithful functor in the previous proposition is an equivalence of categories 
whenever directed colimits in C commute with finite limits.

Remark 6.20. Directed colimits commute with finite limits in Set (more generally, in any Grothendieck 
topos), as well as in algebraic categories (i.e., categories of models of Lawvere theories, or equivalently 
varieties of finitary algebras); see e.g. [7, Corollary 3.4.3].

Furthermore, suppose D is a Barr-exact category with a regular generator that admits all small copowers. 
Then, by a result of Vitale [45], directed colimits in D exist and commute with finite limits if, and only if, D
is equivalent to the localization (i.e., a reflective subcategory such that the reflector preserves finite limits) 
of an algebraic category.

The following theorem provides an equivalence between K-sheaves and Ω-sheaves, and is akin to a result 
of Lurie for sheaves on locally compact Hausdorff spaces with values in ∞-categories [35, Corollary 7.3.4.10]. 
The two results are incomparable: we work with ordinary categories but consider, more generally, sheaves 
on stably continuous lattices.

Theorem 6.21. If directed colimits in C commute with finite limits, there is an equivalence of categories 
ShK(σFilt(L)op, C) � ShΩ(L, C).

Proof. Consider the fully faithful functor ShK(σFilt(L)op, C) → ShΩ(L, C) in eq. (9). In view of the definition 
of the latter, it suffices to show that AΩ is a (full) subcategory of AK, for then AK = AΩ. To this end, fix an 
arbitrary functor F : F → C in AΩ. We must show that κ∗F is a K-sheaf and η̃F is an isomorphism. Since 
the component of the counit εF : Lanλ λ

∗F → F is an isomorphism, for all k ∈ σFilt(L) we have

κ∗F (k) ∼= colim
x∈k

λ∗F (x)

by the formula for pointwise left Kan extensions. Note that the colimit above is directed because k is 
codirected and λ∗F is contravariant.

Clearly, κ∗F satisfies condition (K1) in Definition 3.3. Just observe that the bottom element of σFilt(L)op
is the improper filter L, and so every arrow in the colimit cocone

{λ∗F (x) → κ∗F (L) | x ∈ L}
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factors through λ∗F (⊥) → κ∗F (L). Hence κ∗F (L) ∼= λ∗F (⊥), which is subterminal because λ∗F satisfies 
(Ω1). For (K2), using the fact that directed colimits in C commute with finite limits, for all k, l ∈ σFilt(L)
we have

κ∗F (k) ×κ∗F (k∨l) κ
∗F (l) ∼= colim

x∈k
λ∗F (x) ×colimλ∗F (x∧y) colim

y∈l
F (y)

∼= colim
x∈k, y∈l

(λ∗F (x) ×λ∗F (x∧y) λ
∗F (y))

∼= colim
x∈k, y∈l

λ∗F (x ∨ y) λ∗F satisfies (Ω2)

∼= colim
z∈k∧l

λ∗F (z)

∼= κ∗F (k ∧ l)

where in the first step we used the fact that the supremum of the Scott-open filters k and l is ↑ {x ∧ y | x ∈
k, y ∈ l} and thus, by coinitiality,

colim
z∈k∨l

λ∗F (z) ∼= colim
x∈k, y∈l

λ∗F (x ∧ y).

Similarly, the penultimate step holds because k∧ l = {x ∨y | x ∈ k, y ∈ l}. Moreover, because λ∗F preserves 
codirected limits (by definition of Ω-sheaf) and εF is an isomorphism, Lemma 6.8 shows that κ∗F satisfies 
(K3) and η̃F is an isomorphism. �

The equivalence of categories in the previous theorem induces an equivalence of sheaf representations in 
the following sense.

Definition 6.22. For every object A of a category D, an Ω-sheaf representation of A over a complete lattice 
P is a pair (F, ϕ) where F : P op → D is an Ω-sheaf and ϕ : A → F (�) an isomorphism in D.

We denote by ShA
Ω(P, D) the category of Ω-sheaf representations of A over P ; a morphism (F, ϕ) → (G, ψ)

in this category is a natural transformation α : F ⇒ G such that α� ◦ ϕ = ψ.

Theorem 6.23. If directed colimits in C commute with finite limits, then for any A ∈ C there is an equivalence 
of categories ShA

K(σFilt(L)op, C) � ShA
Ω(L, C).

Proof. Fix an arbitrary object A of C and an Ω-sheaf representation (F, ϕ) of A over L. The top element of 
σFilt(L)op is the filter {�}, where � is the top element of L (note that {�} is Scott-open because � � �
in a stably continuous lattice). We have

λ∗ Lanλ F (�) = Lanλ F ({�}) = κ∗ Lanλ F ({�})

and so, by item (a) in Lemma 6.1, we obtain an isomorphism (ηF )� from F (�) to κ∗ Lanλ F ({�}). The 
composite arrow

ϕ∗ : A F (�) κ∗ Lanλ F ({�})ϕ (ηF )�

is then an isomorphism and the pair (κ∗ Lanλ F, ϕ∗) is a K-sheaf representation of A over σFilt(L)op. 
Further, if α : (F, ϕ) → (G, ψ) is a morphism in ShA

Ω(P, C) then

κ∗ Lanλ(α) : (κ∗ Lanλ F,ϕ
∗) → (κ∗ Lanλ G,ψ∗)
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is a morphism in ShA
K(σFilt(L)op, C). Just observe that the square in the following diagram commutes by 

naturality of η,

F (�) κ∗ Lanλ F ({�})

A

G(�) κ∗ Lanλ G({�})

(ηF )�

α� (κ∗ Lanλ(α)){�}

ϕ

ψ (ηG)�

and so (κ∗ Lanλ(α)){�} ◦ ϕ∗ = ψ∗.
This yields a functor

ShA
Ω(L,C) → ShA

K(σFilt(L)op,C). (10)

We claim that the latter is an equivalence of categories. It follows from (the proof of) Theorem 6.21 that 
κ∗ Lanλ : ShΩ(L, C) → ShK(σFilt(L)op, C) is an equivalence. Hence the functor in eq. (10) is faithful. To see 
that it is full, fix an arbitrary morphism

β : (κ∗ Lanλ F,ϕ
∗) → (κ∗ Lanλ G,ψ∗)

in ShA
K(σFilt(L)op, C). Since κ∗ Lanλ is full, there is α : F ⇒ G such that κ∗ Lanλ(α) = β. Note that

(ηG)� ◦ α� ◦ ϕ = (κ∗ Lanλ(α)){�} ◦ (ηF )� ◦ ϕ Naturality of η

= β{�} ◦ ϕ∗

= ψ∗

= (ηG)� ◦ ψ

and so α� ◦ ϕ = ψ because (ηG)� is an isomorphism. It follows that α is a morphism of Ω-sheaf represen-
tations and thus the functor in eq. (10) is full. Finally, fix an arbitrary object (G, ψ) ∈ ShA

K(σFilt(L)op, C). 
Because κ∗ Lanλ is essentially surjective, there exist an Ω-sheaf F ∈ ShΩ(L, C) and a natural isomorphism 
δ : κ∗ Lanλ F ⇒ G. Let

ϕ := (δ{�} ◦ (ηF )�)−1 ◦ ψ : A → F (�).

Then (F, ϕ) is an object of ShA
Ω(L, C) whose image under the functor in eq. (10) is isomorphic to (G, ψ). 

We conclude that the latter functor is an equivalence of categories. �
The classical notion of soft sheaf can be extended to arbitrary Ω-sheaves:

Definition 6.24. Let P be a complete lattice and let D be a category admitting directed colimits. An Ω-sheaf 
F : P op → D is soft if, for all Scott-open filters k ∈ σFilt(P ), the canonical colimit arrow

F (�) → colim
x∈k

F (x)

is a regular epimorphism.
An Ω-sheaf representation (F, ϕ) is said to be soft if F is a soft Ω-sheaf. The full subcategory of ShA

Ω(P, D)
defined by the soft Ω-sheaf representations is denoted by

s-ShA
Ω(P,D).
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Remark 6.25. In the case where P = Ω(X) for a sober space X, and D is Set—or, more generally, any 
variety of finitary algebras—the Hofmann–Mislove theorem implies that the notion of softness introduced 
in Definition 6.24 coincides with the ordinary one (always with the caveat outlined in Remark 6.15). Cf. e.g. 
[21, Remark 3.3].

Remark 6.26. Let D be Set or, more generally, any variety of algebras. Fix an object A ∈ D and assume that 
F : Ω(X)op → D is a soft Ω-sheaf representation of A over a sober space X. Reasoning as in Remark 6.4, 
we see that for all x ∈ X the canonical arrow

A → colim
x∈U

F (U)

whose codomain is the stalk of F at x is a regular epimorphism. This exhibits each stalk of F as a quotient 
of A.

Lemma 6.27. Suppose that directed colimits in C commute with finite limits. The following statements are 
equivalent for all functors F : Lop → C:

(1) F is a soft Ω-sheaf.
(2) κ∗ Lanλ F is a soft K-sheaf.

Proof. Fix an arbitrary functor F : Lop → C. In view of Theorem 6.23, F is an Ω-sheaf over L precisely 
when κ∗ Lanλ F is a K-sheaf over σFilt(L)op. Thus, it suffices to show that F is soft (as an Ω-sheaf) if, and 
only if, κ∗ Lanλ F is soft (as a K-sheaf).

Recall that the top element of σFilt(L)op is {�}, where � is the top element of L. Hence, κ∗ Lanλ F is 
soft precisely when, for all k ∈ σFilt(L), the arrow

κ∗ Lanλ F {�},k : (κ∗ Lanλ F )({�}) → (κ∗ Lanλ F )(k)

is a regular epimorphism. Moreover, recall from Remark 6.3 that, for all l ∈ σFilt(L), (κ∗ Lanλ F )(l) ∼=
colimx∈l F (x). Under this isomorphism, κ∗ Lanλ F {�},k can be identified with the canonical colimit arrow

F (�) → colim
x∈k

F (x).

Therefore, κ∗ Lanλ F is soft if, and only if, so is F . �
Remark 6.28. Even if direct colimits in C fail to commute with finite limits, by Proposition 6.19 there is 
a full and faithful functor ShK(σFilt(L)op, C) ↪→ ShΩ(L, C). The second part of the proof of Lemma 6.27, 
combined with Proposition 6.9, then shows that this functor sends soft K-sheaves to soft Ω-sheaves.

Combining the previous observations, we obtain an equivalence between soft K-sheaf representations and 
soft Ω-sheaf representations:

Proposition 6.29. If directed colimits in C commute with finite limits, then for any A ∈ C there is an 
equivalence of categories s-ShA

K(σFilt(L)op, C) � s-ShA
Ω(L, C).

Proof. By (the proof of) Theorem 6.23, combined with Lemma 6.27. �
Remark 6.30. Under the assumptions of Proposition 6.29, the category s-ShA

Ω(L, C) of soft Ω-sheaf 
representations of A over L is a (large) preorder. This follows from Proposition 6.29, recalling that 
s-ShA

K(σFilt(L)op, C) is a preorder by item (b) in Lemma 4.5.
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We can finally state our main result, which characterises soft Ω-sheaf representations for a broad class of 
regular categories. Recall that L denotes an arbitrary stably continuous lattice, and C a bicomplete regular 
category.

Theorem 6.31. Suppose that directed colimits in C commute with finite limits, and let A ∈ C. Let M be 
the (large) sub-preorder of [σFilt(L), RegEpiA] consisting of those maps that preserve finite infima and 
arbitrary suprema, and whose images consist of pairwise ker-commuting elements. There is an equivalence 
of categories

M � s-ShA
Ω(L,C).

Proof. By Theorem 4.7 and Proposition 6.29. �
In the same vein of Corollary 4.8, we state a consequence of Theorem 6.31 obtained by taking the poset 

reflections of the categories involved, assuming that C is Barr-exact. Recall that �s-ShA
Ω(L, C)� denotes 

the poset reflection of s-ShA
Ω(L, C); the objects of �s-ShA

Ω(L, C)� are isomorphism classes of soft Ω-sheaf 
representations of A over L.

Corollary 6.32. Suppose that C is Barr-exact and directed colimits in C commute with finite limits, and let 
A ∈ C. Let N be the (large) sub-poset of [σFilt(L), EquivA] consisting of those maps that preserve finite 
infima and arbitrary suprema, and whose images consist of pairwise commuting equivalence relations. There 
is an order isomorphism

N ∼= �s-ShA
Ω(L,C)�.

Proof. Note that two (large) posets that are equivalent as categories must be order isomorphic. Thus, by 
Theorem 6.31, there is an order isomorphism �M� ∼= �s-ShA

Ω(L, C)�. In turn, as pointed out in the proof of 
Corollary 4.8, �M� ∼= N. �

Theorem 6.31 and Corollary 6.32 are generalisations of [21, Theorem 3.10] from the framework of varieties 
of finitary algebras to that of regular and Barr-exact categories, respectively. We end this section with some 
remarks concerning the previous results.

Remark 6.33. As with Corollary 4.8, if C is a well-powered category then all posets in the statement of 
Corollary 6.32 are small (cf. Remark 4.10).

Remark 6.34. Even when directed colimits in C do not commute with finite limits, and so Theorem 6.31
does not apply, by Proposition 6.19 there is a full and faithful functor

ShK(σFilt(L)op,C) ↪→ ShΩ(L,C).

The latter induces, for every object A of C, a full and faithful functor

s-ShA
K(σFilt(L)op,C) ↪→ s-ShA

Ω(L,C).

Cf. Remark 6.28. Hence, in view of Theorem 4.7, there is an order embedding

M ↪→ s-ShA
Ω(L,C).
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In particular, every map σFilt(L) → RegEpiA that preserves finite infima and arbitrary suprema, and 
whose image consists of pairwise ker-commuting elements, induces a soft Ω-sheaf representation of A over 
L. In a similar fashion, if C is Barr-exact and there exists a map σFilt(L) → EquivA that preserves finite 
infima and arbitrary suprema, and whose image consists of pairwise commuting equivalence relations, then 
A admits a soft Ω-sheaf representation over L.

Remark 6.35. Throughout this paper we have adopted an “external” perspective, whereby an object of a 
regular category C is studied via (pre)sheaves Lop → C. However it is well known that, in many situations, 
the appropriate notion of sheaf of C-objects is given by an “internal C-object” in the category of sheaves 
of sets. Whereas the internal and external perspectives coincide when C is the category of models of a 
finitary algebraic theory (i.e., C is a variety of finitary algebras), they may differ for arbitrary first-order 
theories—consider e.g. the elementary theory of fields.4 We do not know if, in general, our results can be 
adapted to the internal perspective—whenever the latter is available.

7. Examples

7.1. The dual of compact ordered spaces

A compact ordered space is a compact space X equipped with a partial order that is closed in the product 
topology of X ×X. Compact ordered spaces were first introduced by Nachbin in his monograph [39].

Let CompOrd denote the category of compact ordered spaces and continuous monotone maps between 
them. For any object X of CompOrd we write X∗ for the same object, but this time regarded as an object 
of the opposite category CompOrdop. In this subsection, we shall investigate soft sheaf representations of 
objects of CompOrdop.

Recall that regular monomorphisms in CompOrd can be identified, up to isomorphism, with the closed 
subsets with the induced order [27, Theorem 2.6]. Moreover, it follows from the main result of [1] that 
CompOrdop is a Barr-exact category (see also [2] for a direct proof). Thus, for any compact ordered space 
X, there is an order isomorphism between (EquivX∗)op and the coframe of closed subsets of X. Equivalently,

EquivX∗ ∼= Ω(X).

For the next lemma recall that, by Corollary 2.5 and Remark 2.10, for any object A of a Barr-exact 
category admitting pushouts, the poset EquivA is a (bounded) lattice. Further, given ϑ ∈ EquivA, we 
write

A � A/ϑ

for its coequaliser—provided it exists. If ϑ1 ≤ ϑ2 in EquivA, the universal property of the coequaliser entails 
the existence of a unique regular epimorphism A/ϑ1 � A/ϑ2 through which A � A/ϑ2 factors.

Lemma 7.1. Let A be an object of a finitely cocomplete Barr-exact category, and let ϑ1, ϑ2 ∈ EquivA. Then 
ϑ1 and ϑ2 commute if, and only if, the following diagram (whose arrows are the canonical ones) is a pullback.

A/(ϑ1 ∧ ϑ2) A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

(11)

4 This is due to the fact that the global section functor does not preserve the validity of all first-order sentences, but only of 
Cartesian theories, cf. e.g. [28, §V.1.12].
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Proof. The square on the left-hand side below is a pushout by Lemma 2.3, where f and g are the coequalisers 
of ϑ1 and ϑ2, respectively, and η1, η2 are the canonical arrows induced by the universal property of f and 
g, respectively.

A A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

f

g η1

η2
�

A

P A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

f

g

q

�
η1

η2

Let P be the pullback of η1 along η2, and let q : A → P denote the unique arrow making the right-hand 
diagram above commute. By Lemma 3.8, ϑ1 and ϑ2 commute precisely when q is a regular epimorphism.

Now, if q is a regular epimorphism then it is an infimum of f and g in RegEpiA; so, up to an isomorphism, 
it coincides with the coequaliser A � A/(ϑ1∧ϑ2). Thus, (11) is a pullback square. Conversely, suppose (11)
is a pullback. Then q is a coequaliser of ϑ1 ∧ ϑ2, hence a regular epimorphism. �

In [21, Lemma 5.4], Gehrke and van Gool characterised the pairs of commuting congruences on a bounded 
distributive lattice A in terms of the corresponding closed subsets of the dual Priestley space of A [42]. The 
next result extends their characterisation from Priestley spaces to compact ordered spaces.

Proposition 7.2. Let X be a compact ordered space. Let ϑ1, ϑ2 ∈ EquivX∗ and let C1, C2 be the corresponding 
closed subsets of X. The following statements are equivalent:

(1) The equivalence relations ϑ1 and ϑ2 commute.
(2) For any x1 ∈ C1, x2 ∈ C2, if {i, j} = {1, 2} and xi ≤ xj, there exists z ∈ C1∩C2 such that xi ≤ z ≤ xj.

Proof. The category CompOrdop is cocomplete and Barr-exact (cf. [2]), thus Lemma 7.1 entails that ϑ1 and 
ϑ2 commute if and only if the following is a pushout in CompOrd.

C1 ∩ C2 C1

C2 C1 ∪ C2

In turn, this is equivalent to the condition in item 2. Cf. e.g. [2, Remark 6]. �
If X is a compact ordered space, we can consider the collection of all open subsets of X that are 

downwards closed in the partial order of X. The latter forms a topology on the underlying set of X, and we 
shall denote by X↓ the ensuing topological space. In fact, X↓ is a stably compact space (cf. Example 5.12) 
and every stably compact space arises in this manner, cf. e.g. [33, Proposition 2.10]. Similarly for the space 
X↑ obtained by considering the topology consisting of the open subsets of X that are upwards closed. The 
space X↑ is called the co-compact dual of X↓ and there is a frame isomorphism Ω(X↓) ∼= K(X↑)op sending 
an open subset of X↓ to its complement, cf. e.g. [29, §2.2].

The following is a direct generalisation of [21, Definition 5.5], from the setting of Priestley spaces to that 
of compact ordered spaces.



M. Abbadini, L. Reggio / Journal of Pure and Applied Algebra 227 (2023) 107413 37
Definition 7.3. Let X, Y be compact ordered spaces. An interpolating decomposition of X over Y is a 
continuous function q : X → Y ↓ such that, for all x1, x2 ∈ X, if x1 ≤ x2 then there is z ∈ X such that 
x1 ≤ z ≤ x2, q(x1) ≤ q(z) and q(x2) ≤ q(z).5

If X, Y are compact ordered spaces and q : X → Y ↓ is a continuous map, denote by

ψq : Ω(Y ↓) → EquivX∗

the composition of the frame homomorphism Ω(q) : Ω(Y ↓) → Ω(X) with the order isomorphism Ω(X) ∼=
EquivX∗. It is useful to consider the map ϕq order-dual to ψq. Since Ω(Y ↓)op ∼= K(Y ↑), we can assume 
that this order-dual map has type

ϕq : K(Y ↑) → (EquivX∗)op.

Note that any compact ordered space is Hausdorff, hence the poset K(X) of compact saturated subsets of 
X coincides with the coframe of its closed subsets. Thus, ϕq can be equivalently described as the composite 
of the inverse image map q−1 : K(Y ↑) → K(X) with the order isomorphism K(X) ∼= (EquivX∗)op.

Proposition 7.4. Let X, Y be compact ordered spaces and let q : X → Y ↓ be a continuous function. The 
following statements are equivalent:

(1) The function q is an interpolating decomposition of X over Y .
(2) Any two equivalence relations in the image of ψq : Ω(Y ↓) → EquivX∗ commute.

Proof. We prove, equivalently, that 1 holds if and only if any two elements in the image of ϕq (the map 
order-dual to ψq) commute.

Assume 1 holds and let K1, K2 ∈ K(Y ↑). To show that ϕq(K1) and ϕq(K2) commute, it suffices to prove 
that the closed sets Ci := q−1(Ki), for i ∈ {1, 2}, satisfy the property in item 2 of Proposition 7.2. Fix 
arbitrary elements x1 ∈ C1 and x2 ∈ C2 such that x1 ≤ x2 (if x2 ≤ x1 the proof is the same, mutatis 
mutandis). Because q is an interpolating decomposition, there is z ∈ X such that x1 ≤ z ≤ x2, q(x1) ≤ q(z)
and q(x2) ≤ q(z). It remains to show that z ∈ C1 ∩ C2. As K1 and K2 are compact saturated subsets 
of Y ↑, they are upwards closed in the order of Y (cf. e.g. [29, §2.2]). Since q(xi) ∈ Ki for i ∈ {1, 2}, we get 
q(z) ∈ K1 ∩K2 and so z ∈ C1 ∩ C2.

Conversely, suppose any two elements in the image of ϕq commute and let x1, x2 ∈ X satisfy x1 ≤ x2. 
Write yi := q(xi) and Ci := q−1(↑ yi) for i ∈ {1, 2}. Clearly, xi ∈ Ci for i ∈ {1, 2}. Moreover, by definition 
of ϕq, Ci is the closed subset of X corresponding to the equivalence relation ϕq(↑ yi) on X∗. Since ϕq(↑ y1)
and ϕq(↑ y2) commute, by Proposition 7.2 there is z ∈ C1 ∩ C2 such that x1 ≤ z ≤ x2. Note that, for each 
i ∈ {1, 2}, z ∈ Ci implies that q(xi) ≤ q(z). �

Let X, Y be compact ordered spaces and let (F, ϕ) be a soft K-sheaf representation of X∗ over the coframe 
K(Y ↑). Under the order isomorphism in Corollary 4.8, the isomorphism class of (F, ϕ) corresponds to a frame 
homomorphism K(Y ↑)op → EquivX∗. Identifying EquivX∗ with Ω(X), and K(Y ↑)op with Ω(Y ↓), we shall 
denote this frame homomorphism by ψ(F,ϕ) : Ω(Y ↓) → Ω(X). Note that Y ↓ and X are sober spaces, so 
there is a unique continuous function

q(F,ϕ) : X → Y ↓

5 The inequalities q(x1) ≤ q(z) and q(x2) ≤ q(z) refer to the partial order of Y .
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such that Ω(q(F,ϕ)) = ψ(F,ϕ). The following theorem extends Gehrke and van Gool’s result [21, Theorem 5.7]
from distributive lattices to the dual of compact ordered spaces.

Theorem 7.5. Let X, Y be compact ordered spaces. The assignment

(F,ϕ) �→ q(F,ϕ)

yields a bijection between isomorphism classes of soft K-sheaf representations of X∗ over K(Y ↑) and inter-
polating decompositions of X over Y .

Proof. This follows from Corollary 4.8 and Proposition 7.4. �
Observe that, for every compact ordered space X, there is a fully faithful functor

s-ShX∗
K (K(Y ↑),CompOrdop) ↪→ s-ShX∗

Ω (Ω(Y ↑),CompOrdop)

from soft K-sheaf representations of X∗ over K(Y ↑) to soft sheaf representations of X∗ over Y ↑, and this is 
an equivalence provided that directed colimits commute with finite limits in CompOrdop (cf. Proposition 6.19
and Theorem 6.21). We do not know if the category CompOrdop satisfies the latter property and conjecture 
that it does not.

Nevertheless, replacing K-sheaves over K(Y ↑) with ordinary sheaves over Y ↑ in Theorem 7.5, we obtain 
an injective assignment from interpolating decompositions of X over Y into isomorphism classes of soft 
sheaf representations of X∗ over Y ↑ (cf. Remark 6.34). This allows us to construct soft sheaf representations 
for all objects of CompOrdop:

Proposition 7.6. Let X be a compact ordered space. Then X∗ admits a soft sheaf representation over the 
stably compact space X↑ induced by the interpolating decomposition X → X↓ given by the identity function.

Of course, the category CompOrdop can be replaced with any equivalent category D (e.g., following [1], 
with an appropriate variety of infinitary algebras; cf. also [27]), thus obtaining soft sheaf representations of 
objects of D.

7.2. Commutative Gelfand rings

In this subsection, we assume the reader is familiar with basic notions of point-free topology, see e.g. [40].
Let CRing be the category of commutative rings with unit and ring homomorphisms preserving the unit, 

and fix an arbitrary A ∈ CRing. Denote by XA the Zariski spectrum of A (that is, XA is the set of prime 
ideals of A equipped with the Zariski or hull-kernel topology). A classical result by Grothendieck [26] states 
that A is isomorphic to the ring of global sections of a sheaf F : Ω(XA)op → CRing whose stalks are local 
rings. In fact, the stalk of F at p ∈ XA is isomorphic to the localization Ap of A at p. Note that this is not
a soft sheaf representation because the stalks of F are not quotients of A (cf. Remark 6.26). In more detail, 
for all p ∈ XA, the set

kp := {U ∈ Ω(XA) | p ∈ U}

is a filter on Ω(XA) and is Scott-open because XA is locally compact. Thus, the canonical colimit arrow 
F (XA) → colimU∈kp

F (U) into the stalk of F at p can be identified with the localization map

A → Ap.
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The latter is an epimorphism but, in general, fails to be surjective (i.e., a regular epimorphism in the 
category CRing).

Remark 7.7. On the other hand, the Pierce representation of a commutative ring A is a soft sheaf repre-
sentation. In fact, it is induced by the monotone map

IdE(A) → IdA,

where E(A) is the Boolean ring of idempotent elements of A, that sends an ideal J of E(A) to the ideal of 
A generated by J . See e.g. [28, §V.2]. In this case, IdE(A) can be identified with the frame of opens of the 
Boolean (i.e., compact, Hausdorff and zero-dimensional) space corresponding to E(A) under Stone duality 
for Boolean algebras [44]. More generally, if V is a variety of finitary algebras whose signature contains a 
constant symbol, every sheaf of V-algebras over a Boolean space is soft, cf. [41, Lemma 3.3].

However, Grothendieck’s sheaf representation induces a soft sheaf representation for a smaller class of 
commutative rings as we shall now explain. For any A ∈ CRing, the frame RIdA of radical ideals6 of A

(ordered by inclusion) is compact and coherent, i.e. the subset of RIdA consisting of the compact elements 
forms a join-dense sublattice. Assuming the Prime Ideal Theorem, it can be proved that RIdA is a spatial 
frame isomorphic to Ω(XA). This observation was exploited by Banaschewski [4] to give a point-free version 
of Grothendieck’s sheaf representation of A, replacing the spatial frame Ω(XA) with RIdA.

Now, recall that a (commutative) Gelfand ring is a (commutative) ring with unit satisfying the condition

∀x, y. (x + y = 1 =⇒ ∃a, b. (1 + xa)(1 + yb) = 1).

Again assuming the Prime Ideal Theorem, commutative Gelfand rings are exactly the commutative rings 
with unit in which every prime ideal is contained in a unique maximal ideal. Even in the absence of the 
Prime Ideal Theorem, we have that a commutative ring A with unit is a commutative Gelfand ring precisely 
when the frame RIdA is normal [4, Proposition 1] (recall that a frame L is normal if, for all g, h ∈ L such 
that g ∨ h = �, there are u, v ∈ L such that u ∨ g = v ∨ h = � and u ∧ v = ⊥). In that case, RIdA retracts 
onto its compact regular subframe JRIdA consisting of the Jacobson radical ideals, i.e. those ideals J such 
that, for every a ∈ A, if 1 + ra is invertible modulo J for all r ∈ A, then a ∈ J . See [4, Lemma 1 and 
p. 27]. Since JRIdA is a compact regular frame, in view of the following remark there is an isomorphism 
σFilt(JRIdA) ∼= JRIdA.

Remark 7.8. If L is a compact regular frame, then σFilt(L) ∼= L. An explicit isomorphism is given by

L → σFilt(L), x �→ {y ∈ L | x ∨ y = 1},

whose inverse sends k ∈ σFilt(L) to 
∨
{x ∈ L | ∃y ∈ k. x ∧ y = 0}. In the particular case of spatial compact 

regular frames (recall that, assuming the Axiom of Choice, every compact regular frame is spatial, see e.g. 
[28, Proposition III.1.10]), this reduces to the observation that a compact Hausdorff topology coincides with 
its patch topology.

The category CRing is a well-powered, bicomplete Barr-exact category in which directed colimits commute 
with finite limits. Hence, by Corollary 6.32 and Remark 6.33, there is an order isomorphism of small posets

N ∼= �s-ShA
Ω(JRIdA,CRing)�

6 An ideal is radical if it is the intersection of all prime ideals in which it is contained.
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where N consists of the maps JRIdA → IdA preserving finite infima and arbitrary suprema (just note that 
any two congruences on A commute). Since CRing has no proper subterminal objects, it follows from Re-
mark 6.15 that CRing-valued (soft) Ω-sheaves coincide with ordinary (soft) sheaves. Therefore the inclusion

JRIdA ↪→ IdA,

which preserves finite infima and arbitrary suprema because so does RIdA ↪→ IdA, induces a soft sheaf 
representation of the commutative Gelfand ring A over the compact regular frame JRIdA. This sheaf 
representation was first obtained by Banaschewski and Vermeulen [5], improving on results of Mulvey [38]
and Banaschewski [3,4].

If the Prime Ideal Theorem is assumed, for any commutative Gelfand ring A the frame JRIdA can be 
identified with Ω(MaxA), where MaxA is the subspace of XA consisting of the maximal ideals of A (i.e., the 
closed points of XA). The space MaxA is compact and Hausdorff, and in view of the previous paragraph A
is isomorphic to the ring of global sections of a soft sheaf F : Ω(MaxA)op → CRing (this sheaf representation 
can also be derived as a special case of [21, Corollary 3.11], see [21, p. 2178]).

Note that, in contrast with the case of arbitrary commutative rings, for Gelfand rings we get a soft sheaf 
representation. In fact, the stalk of F at a maximal ideal m ∈ MaxA is isomorphic to the quotient ring 
A/Om, where the ideal Om is defined by

Om := {a ∈ A | ∃b ∈ A \m such that ab = 0}.

See e.g. [28, Lemma V.3.8]. The unique maximal ideal of A containing Om is m, hence A/Om is a local ring 
(equivalently, note that A/Om

∼= Am). The canonical colimit arrow F (MaxA) → colimx∈U F (U) can then 
be identified with the quotient map A → A/Om, which is a regular epimorphism. This shows that every 
local section over a point of MaxA can be extended to a global section. A similar argument shows that 
every local section defined on a closed subset of MaxA can be extended to a global section, i.e. F is soft.
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