
 
 

University of Birmingham

Carbon emission reduction in railway maintenance
using reinforcement learning
Sresakoolchai, Jessada; Kaewunruen, Sakdirat

DOI:
https://doi.org/10.1201/9781003323020

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Sresakoolchai, J & Kaewunruen, S 2023, Carbon emission reduction in railway maintenance using
reinforcement learning. in F Biondini & DM Frangopol (eds), Life-cycle of structures and infrastructure systems:
Proceedings of the eighth international symposium on life-cycle civil engineering (IALCCE 2023), 2-6 July, 2023,
Politecnico Di Milano, Milan, Italy. 1 edn, Life-Cycle of Civil Engineering Systems, Taylor & Francis, London, pp.
1778-17785, Eighth International Symposium on Life-Cycle Civil Engineering, Milan, Italy, 2/07/23.
https://doi.org/10.1201/9781003323020

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1201/9781003323020
https://doi.org/10.1201/9781003323020
https://birmingham.elsevierpure.com/en/publications/4e9abe46-844a-4eaf-9ac1-70f8d2edab73


Life-Cycle of Structures and Infrastructure Systems – Biondini & Frangopol (Eds) 
© 2023 The Author(s), ISBN 978-1-003-32302-0 

Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Carbon emission reduction in railway maintenance using 
reinforcement learning

J. Sresakoolchai & S. Kaewunruen
School of Civil Engineering, University of Birmingham, Birmingham, UK

ABSTRACT: At present, the effect of global warming becomes more severe due to carbon emis
sions. This negative effect attracts the interest of the international community to minimize it. The 
railway industry is an industry in which carbon emission cannot be neglected due to the sizes of 
projects, long operation and maintenance stages in the service life, including sources of energy that 
might not be clean in some areas. This study aims to minimize the negative effect of the railway 
industry on the maintenance aspect by using reinforcement learning to optimize maintenance activ
ities. The maintenance in the railway industry is a complicated task and might not be optimized in 
terms of cost efficiency, serviceability, and environmental impact. The use of reinforcement learning 
can improve the overall efficiency of railway maintenance as it has been proven in many tasks in the 
railway industry and other industries. Data used to develop the machine learning model are based 
on field data collected during 2016-019. The length of the studies section is 30 km. Sources of data 
are from track geometry cars, maintenance reports, defect reports, and maintenance manuals of the 
sampled railway operator. The methodology used in the study is Proximal Policy Optimization 
(PPO). The results show that the use of reinforcement learning can reduce the carbon emission from 
railway maintenance activities by 48% which causes a significant amount of carbon emission while 
the railway defects are reduced by 68% which improved maintenance efficiency.

1 INTRODUCTION

Carbon emission is one of the causes of severe global warming and climate change nowadays. 
Therefore, carbon emission attracts more attention. The international community then tries to 
reduce it to minimize the negative effect on the environment. Although someones claim that 
railway transportation is one of the transportation modes that are environmentally friendly. 
However, it cannot be denied that many activities in the railway industry also create carbon 
emissions. For example, the construction of a railway project needs a lot of construction mater
ials their production processes emit carbon or the sources of energy that are used to operate the 
railway may not totally clean. In addition, railway projects have long service life so the oper
ation and maintenance phase also cause carbon. Therefore, minimizing carbon emissions in rail
way activities will be able to significantly minimize the negative effect on the environment.

This study aims to reduce carbon emissions from railway maintenance activities using 
reinforcement learning (RL). A technique used to develop a deep RL model is Proximal 
Policy Optimization (PPO). Data used to develop the RL model is collected from field data. 
The samples section is 30 km long. The duration of data collection is 2016-2019. Sources of 
data are from track geometry parameters collected using track geometry cars, track inspection 
reports showing track component defects, and maintenance reports showing performed main
tenance activities during the interesting duration. Data from different sources are processed 
and combined together to feed into the RL model. Then, a maintenance manual of the sam
pled authority will be used to compare and define thresholds to create the customed RL 
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environment which will be used to define rewards for the RL’s agent in the RL model training 
process. The expected contributions of the study are the developed RL model can be used by 
railway operators to plan railway maintenance activities more efficiently when carbon emis
sion from maintenance activities is reduced as well as the number of railway defects. These 
will result in the improvement of an environmentally friendly railway system, and better ser
viceability, reliability, and safety in the railway system due to few defects occurring in railway 
networks. In addition, the developed RL model can be used to support decision-making for 
railway maintenance if railway operators are not ready to use a data-driven scheme in which 
decision-making completely relies on data and the RL model.

2 LITERATURE REVIEW

RL was first introduced in the early 1980s. It was developed to solve problems about how to 
react or what to do when we are in different situations (Sutton and Barto, 2018). The purposes 
of different reactions are to maximize rewards or outcomes from actions. As a representative, 
an agent is used and trained to know how to respond to different situations. The agent is not 
told how to do but it has to explore by itself how to maximize rewards at the latest stage. 
A challenge is each action not only affects the immediate rewards but also what happens next 
(stage). All of these are the important characteristic of RL that other types of machine learn
ing techniques do not have and cannot resolve.

Examples of popular RL applications are chess and other game players, robots in indus
tries, or pilot assistance in passenger cars (Sutton and Barto, 2018). Many methods are used 
to solve RL problems. One of the first methods is Tabular Solution Method which is the sim
plest. Then, other techniques were developed to be used with RL such as Markov Decision 
Processes, Dynamic Programming, or Monte Carlo Methods. During the last decade, many 
techniques have been developed to extend the potential of RL and other recent RL models 
have been developed and proven that the performance is better.

RL is one of the main categories of machine learning among supervised and unsupervised 
learning. RL becomes more popular because it has a capability that supervised and unsuper
vised have not. RL can react to specific environments and be trained to respond to environ
ments that optimize rewards. Therefore, RL can be used to solve problems by finding the best 
responses or actions under specific situations. The interaction of the RL model is done 
through an agent over time or stage. The agent will use the process of trial and error to find 
the optimum policy under different situations.

In each timestep or stage, two components continuously interact which are the agent and 
the environment. The environment will provide information to the agent through stages and 
rewards. Then, the agent will react to the environment by taking action. After that, new stages 
and rewards will be provided by the environment to the agent again. This process will repeat 
until the end of the training. A simple flowchart of this process is shown in Figure 1. In every 
stage, a reward is provided to the agent based on how well the agent reacts to the environ
ment. This will be used to find the best policy for the agent.

Reinforcement learning (RL) has been more popular in the last few years. It has been 
applied in many fields (Li, 2019) such as communication and networking (Luong et al., 2019), 
biology (Mahmud et al., 2018), electrical systems (Zhang et al., 2019), robotics (Kormushev 
et al., 2013), transportation (Abdulhai and Kattan, 2003), medical (Zhou et al., 2021), finance 
(Kolm and Ritter, 2020), or engineering (Andriotis and Papakonstantinou, 2019). Shaker 
et al. (2010) proposed a technique applying RL to assist in the landing of unmanned aerial 
vehicles. In that study, it was found that the RL agent could learn very fast and achieve the 
goal. Sun et al. (2017) applied RL to control and improve water use or agricultural irrigation. 
They found that RL could increase productivity while decreasing water use.

RL has been applied in the railway industry in different aspects. Šemrov et al. (2016) 
applied Q-Learning for rescheduling single-track trains. The action spaces of the agent con
sisted of two actions which were stop and go. Rewards were calculated based on delay. The 
model was tried with a three-station scenario. It was found that using RL could reduce delays 
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in train schedules. This finding was also confirmed by Khadilkar (2018), Cui et al. (2016), Zhu 
et al. (2020b), and Cui et al. (2020). Other applications of RL in the railway industry were 
alignment optimization (Gao et al., 2022), power management (Xu and Ai, 2021, Zhu et al., 
2020a, Deng et al., 2022), inspection (Zhong et al., 2021), and control (Wang et al., 2022).

For the environmental aspect, RL was used to manage the building energy (Yu et al., 2020) 
which showed that efficiency was improved by up to 30%. Cao and Wang (2022) applied RL 
to schedule the carbon emission of electric vehicles. They found that the use of RL could 
reduce carbon emissions by up to 20%.

From the literature review, there has never been a study applying RL for railway mainten
ance and carbon emission reduction. This research gap is interesting and is possible to be ful
filled using RL. Therefore, this study aims to apply RL to reduce carbon emissions generated 
from railway maintenance activities.

3 METHODOLOGY

3.1  RL model

This study applied PPO to develop the RL model. Referring to OpenAI (2017), PPO provides 
a better result than the state-of-the-art approaches while it is simple and easy to use and tune. 
PPO includes the supervised learning technique to implement a cost function. A concept is the 
RL model will try to minimize the cost function in each stage while keeping the deviation from 
the previous policy small. This creates less variance during the training process. As a result, the 
training will be smoother and prevent the agent from unreasonably reacting to the environment.

PPO applies the Actor-Critic scheme for the RL agent. The RL model comprises two parts 
which are the Deep Neural Nets of the Actor and the Critic. For the actor part, the model learns 
what action to take in specific situations. in other words, the agent will receive information from the 
environment. Information can be images or numerical data in the form of features likes supervised 
learning. For the critic part, the model will receive information about actions and observe the next 
stage to evaluate how well those actions are. The positive and negative outcomes will be evaluated 
and updated by the critic part. In conclusion, the actor part has the function to select actions and 
the critic part has the function to tell whether those actions are good or bad. From this process, the 
agent will have the ability to learn which actions are good. If the new policy is better than the cur
rent one, the agent will update its policy. If not, the agent will keep the current policy.

Figure 1.  Simple flowchart of RL model.
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3.2  Data characteristics and preparation

Data are obtained from a selected section of the 30-km track during 2016-2019. Sources of 
data are track geometry measurements, defect inspection reports, and maintenance records.

Track geometry measurement contained data of superelevation, longitudinal level (10m 
chord), longitudinal level (20m chord), alignment (10m chord), alignment (20m chord), gauge, 
and twist (20m chord).

Defect inspection reports contain data on different track component defects. to simplify the 
defects, defects are categorized using types of track components consisting of ballast, fastener, 
rail, sleeper, and switch and crossing. Track geometry parameters and component defects will 
be used as states of the RL model. Therefore, there are 12 features used as states to determine 
whether track sections have defects. For component defects, it is straightforward. However, 
for track geometry parameters, defective sections will be considered using thresholds defined 
by the railway authority. If track geometry parameters exceed the thresholds, they will be con
sidered defective. The thresholds are shown in Figure 2.

Maintenance records collect data on performed maintenance activities on each track section. 
There are seven maintenance activities which are tamping, rail grinding, ballast cleaning, sleeper 
replacement, rail replacement, fastening components replacement, and ballast unloading.

Every source of data is combined to process and analyze the characteristic of data. These 
data will be used to develop the custom RL environment. Maintenance activities can be con
sidered seven binary action spaces. In each stage, different maintenance activities can be com
bined and it will create a lot of diversity in performed maintenance activities. However, the 
data sources are rich enough to be numerically processed to support this diverse action space. 
In other words, the size of the data is big enough to tell how much track geometry parameters 
will improve or deteriorate when any maintenance activities are performed. At the same time, 
how much the probability of each track component defect will increase or decrease when dif
ferent maintenance activities are performed. More detail will be described in the following 
section.

Figure 2.  Track geometry thresholds.
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3.3  Problem description

In the RL model, there are five components consisting of agent, environment, states, actions, 
and rewards.

In this study, the agent will learn how to perform maintenance activities according to 12 
states which are seven track geometry parameters and five track component defects. There are 
five maintenance activities which are tamping, rail grinding, ballast cleaning, sleeper replace
ment, rail replacement, fastening components replacement, and ballast unloading that can be 
independently combined. Therefore, there are possible 128 combinations of maintenance 
activities. Different combinations of maintenance activities result in different improved and 
deteriorated track geometry parameters and the probability of track component defect occur
rence that is obtained from the analysis of collected field data. The RL agent aims to minimize 
the maintenance activities to minimize the carbon emission while keeping tracks free from 
defects. Non-defective track means every track geometry parameter does not exceed defined 
thresholds and there is no track component defect.

The first stage of the RL model will have states or features as the field data. Then, the agent 
will randomly take actions that generate a new stage. This process will repeat 100 times which is 
the defined number for the agent to learn. Then, the reward will evaluate based on the actions. 
Rewards are defined by setting negative values of maintenance activities creating carbon emis
sions and penalties when tracks are defective. The penalties are set relatively high because main
tenance aims to keep track in good conditions or defect-free. In a study done by Kaewunruen 
et al. (2021), they found that the maintenance activities of a 2.45 km track caused carbon emis
sions of 3,017 tCO2e. In this study, the length of a section is 1 foot or 0.3 m. Form the calcula
tion, the average carbon emissions per maintenance activity in a section is 0.37 tCO2e. The 
agent is trained until the loss converges which demonstrates that the policy is optimized.

Then, results from field data and the RL model will be compared to evaluate the carbon 
emissions and the number of defects.

4 RESULTS AND DISCUSSION

The RL model is set to train for 100,000 epochs or training times. The RL model is developed using 
Python language. The technique used to develop the RL model is PPO as mentioned. The loss of 
the training is shown in Figure 3. It can be seen that after the model is trained for 30,000 epochs, 
the loss is equal or close to 0 which means the RL model is optimized and the training is done.

Figure 3.  Training loss.
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Figure 4 presents the differences between the number of performed maintenance activ
ities and defects from field data and the RL model. From the field data, the number of 
performed maintenance activities and defects are about 963k and 520k respectively. 
However, the results from the RL model are 503k and 164k respectively. Therefore, the 
use of the RL model can reduce the number of performed maintenance activities by 48% 
and the number of defects by 68% which significantly improves the overall maintenance 
efficiency.

In terms of carbon emissions, assume that one maintenance activity causes a carbon 
emission of 0.37 tCO2e. Therefore, the maintenance activities from the field data will 
create a carbon emission of 356,404 tCO2e while the carbon emission from the main
tenance when the RL model is applied is only 186,154 tCO2e which is only 52% of 
the current carbon emission. Therefore, it can be concluded that the developed RL 
model can significantly reduce carbon emissions from the maintenance activities in the 
railway industry which conforms to the aim of the study.

5 CONCLUSION

This study aims to apply the RL model to reduce carbon emissions from railway maintenance. 
The technique used to develop the RL model is PPO. States used to train the agent consist of 
12 parameters from track geometry parameters and track component defects. Combinations 
of seven maintenance activities are used to create the action spaces for the Rl agent. Rewards 
are based on the number of performed maintenance activities and defects found in track sec
tions. Therefore, the RL agent is trained to minimize the maintenance activities to reduce 
carbon emissions while keeping railway tracks defect-free. Data used to develop the RL model 
are from field data collected from the 30km track in 2016-2019.

The developed RL model can fulfill the aim of the study. It demonstrates the potential in 
reducing carbon emissions from railway maintenance by minimizing maintenance activities 
while limiting occurred defects. Compared to field data, the results from the RL model shows 
that it can reduce carbon emission by 48% and the number of defects by 68%.

Contributions of the study are the railway operators can use the concept from this study to 
develop their own RL model to support decision-making and plan the maintenance using 
their data. More states can be added to meet different requirements such as setting a limited 
budget for maintenance or time constraints to perform maintenance activities.

Figure 4.  Differences in the number of performed maintenance activities and defects from field data 
and the RL model.
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