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Highlights 

- Thetranscriptome of the mangrove oyster Crassostrea brasilianawas sequenced. 

- The sequencing effort dramatically expanded the existing cDNA sequences available for the species. 

- Global analysis for transcription in the oyster treated with phenanthrene, diesel and domestic 

sewage was performed. 

- The pollutants altered mRNAs for genes in biotransformation, antioxidant and stress response 

pathways. 

 

 

Abstract 
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The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental 

contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic 

sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were 

sequenced using the 454 FLX pla orm. The assembled transcriptome resulted in ˜20,000 

contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. 

Sequences were screened to identify genes potentially involved in the biotransformation of 

xenobiotics and associated antioxidant defence mechanisms. These gene families included those 

of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-

transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis 

showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication 

identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these 

processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed 

several candidates biomarker genes that were up-regulated during each of the three treatments, 

suggesting the potential for environmental monitoring. 

 

Keywords: xenobiotic metabolism; antioxidant parameters; pollutants; bioaccumulation; bivalve; 

polycyclic aromatic hydrocarbon. 

 

1. Introduction 

Mangrove oysters, Crassostrea brasiliana (sin. Crassostrea gasar, Lazoski et al., 2011), are 

common species along the Brazilian coast, where they are both economically and ecologically 

important. These sessile, filter feeders are known to accumulate water contaminants in their 

tissues and are therefore ideal bioindicator species for pollution monitoring in coastal waters 

(Lüchmann et al., 2011; 2014). However, along with other Ostreidae species, little is known 

regarding the specific genomic and transcriptomic adaptations to these contaminants. The 

monitoring endpoints are based on a small number of biomarkers with origins in human 

toxicology, and are therefore not bivalve-specific (Forbes et al., 2006). In excess of the ecological 

and economical importance of oysters to the coastal areas and the aquaculture industry, 

understanding their biology, susceptibility to pollutants and differential stress resistance has 

become an important issue for modern ecotoxicology. In particular, genomic resources such as 

genome or transcriptome sequences would greatly facilitate studies into the cellular 
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mechanisms under-pinning biological responses in this species and enable the development of 

molecular markers for bioaccumulative pollution monitoring. 

Due to their economic importance, oysters have been the subject of several large-scale 

expressed sequence tags (EST) projects (Fleury et al., 2009; Joubert et al., 2010; Tanguy et al., 

2008; Wang and Guo, 2007). Indeed whole genome or transcriptome sequencing has proved a 

very efficient and cost effective method for expanding the sequence database for bivalves and 

other non-model species (i.e. Clark et al., 2010; Craft et al., 2010; Hou et al., 2011; Joubert et al., 

2010; Meyer et al., 2009), and so was applied here to the transcriptome of the mangrove oyster 

C. brasiliana. In the last few years, several oyster genomes have become available, including the 

Pacific oyster Crassostrea gigas (Zhang et al., 2012a) and Pearl oyster Pinctada fucata (Takeuchi 

et al., 2012), significantly enriching the genomic resources for this animal model.  

Here we aimed to sequence the transcriptome of the mangrove oyster C. brasiliana to both 

improve the genomic resources for this species, and to explore gene transcription for 

biotransformation of xenobiotics, antioxidant and stress response during exposure to three 

different environmental contaminants: phenanthrene (PHE), diesel fuel water-accommodated 

fraction (diesel WAF) and domestic sewage. All three contaminants are key chemical models for 

ecotoxicological studies. Phenanthrene, a 3-ring compound included in the US-EPA priority 

pollutant list, is one of the most abundant aquatic PAH (polycyclic aromatic hydrocarbon), as a 

result of human activities (US EPA, 2009). It is lipophilic and has a low molecular weight, making 

it easily taken-up by aquatic organisms (Oliveira et al., 2007), with a greater bioaccumulation 

rate in bivalve molluscs (Hannam et al., 2010; Lüchmann et al., 2014). In contrast, diesel WAF 

comprises a model for complex mixtures derived from petroleum industry activities. Diesel fuel 

is one of the most common aquatic contaminants, and has recently been shown to exert 

biochemical effects and bioaccumulation trends in C. brasiliana (Lüchmann et al., 2011). 

Domestic sewage was chosen based on the high inputs of untreated sewage discharges in 

coastal ecosystems around the world and its potential effects on transcriptional levels of oysters 

(Medeiros et al., 2008).  

C. brasiliana was challenged to each contaminant separately, total RNA was extracted from the 

gill and digestive gland with the resulting cDNA libraries sequenced using the 454 FLX platform. 

The sequence data was assembled into a reference transcriptome, which was then screened to 

identify genes potentially involved in the biotransformation of xenobiotics and associated 

antioxidant defence and stress mechanisms. The results demonstrated differences between the 
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responses to the different toxicants, with promising relevance for ecotoxicology studies and 

aquatic monitoring programs. 

 

2. Material and methods 

2.1. Oyster collection and chemical exposures 

Mangrove oysters (Crassostrea brasiliana) of similar shell length (5-8 cm) were collected from an 

oyster farm at Sambaqui beach (Marine Mollusks Laboratory, UFSC) in Florianópolis, southern 

Brazil. This criterion was strictly adhered to and therefore limited availability of oysters 

throughout the course of the study meant that certain experiments were unfortunately run 

without replication. After collection, the animals were covered with wet towels and immediately 

transported in coolers by road approximately 20 km to the laboratory. In the lab, the oysters 

were transferred into 50 litre aquaria containing 0.45 μm-filtered, aerated seawater, at 21 °C, 

and salinity 25. Oysters were fed twice a day on microalgae (Chaetoceros muelleri and Isochrysis 

sp.) at a density of 3.3 x 106 cels mL-1 and 2.2 x 106 cels mL-1, respectively, and water was 

changed daily for one week prior to experiments. Oyster were then randomly divided into the 

glass exposure tanks (1 animal per 1 L of seawater) and held (without feeding) for 24 h prior to 

the exposures. During the exposure periods, control and exposed organisms were not fed to 

prevent potential bioaccumulation of chemicals by food.  

There were 4 exposure experiments: diesel WAF for 24 h, diesel WAF for 72 h, PHE for 24 h and 

sewage for 24 h, which were carried out in different occasions but the oysters were supplied 

from the same brood stock of the mollusc farm, and were submitted to the same acclimatization 

process as described above. For each set of experiment, there was a control group where a 

separate set of oysters was kept under control conditions in normal seawater, with the 

exception of the PHE exposure control group, where the seawater also included 0.01% DMSO, as 

this was the solvent used to dissolve the PHE (please see details of the exposure condition 

below). The diesel WAF exposure was carried out in duplicate, and PHE and sewage exposures 

were performed without replication. 

Diesel fuel was purchased at a PETROBRAS petrol station and WAF was obtained according to 

Singer et al. (2000) with minor modifications. Briefly, one part (1 L) of fresh diesel fuel was 

diluted with nine parts (9 L) of 0.45 μm-filtered seawater (salinity 25) in a sealed 14 L glass flask 

which was protected from light, in order to minimize evaporation and degradation of the fuel 

components. The diesel-water mixture was stirred for 23 h with the homogenizer Glas-Col (LLC) 
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using a steel modified pestle at 1600 rpm at a constant temperature of 21 °C. The mixture was 

then allowed to settle for 1 h before the lower layer of water (diesel WAF) was transferred into 

the glass tanks. The 10% diesel WAF was prepared through dilution of the WAF with the control 

seawater. The diesel WAF concentration was chosen based on previous results of biochemical 

biomarkers measured in C. brasiliana (Lüchmann et al., 2011). No mortality was observed in the 

control and treated groups. The levels of individual and total PAHs bioaccumulated after 24 h are 

summarized in the Supplementary Table S1. 

Phenanthrene (PHE) (Sigma-Aldrich, P1, 140-9) was first dissolved in dimethyl sulfoxide (DMSO), 

and then added to 0.45 μm-filtered seawater (salinity 25) to achieve final nominal PHE 

concentration of 1000 μg.L-1 (equivalent to 5.6 μM), and a final maximum DMSO concentration 

of 0.01% (v/v). The concentration of PHE added to the test media was chosen based on previous 

reports carried out with bivalves (i.e. Hannam et al., 2010; Lüchmann et al., 2011; 2014). Oysters 

were then randomly divided into the glass exposure tanks, which were individually aerated and 

covered with glass and sealed to avoid evaporation of PHE, and held (without feeding) for 24 h 

prior to the exposure. The control oysters were subjected to the same conditions as the exposed 

groups, except for the addition of 0.01% (v/v) DMSO only without PHE. No mortality was 

observed in the control and treated groups.  

Sewage exposure was performed according to Medeiros et al. (2008) with minor modifications. 

Briefly, domestic sewage was collected at the influent duct of the downtown wastewater 

treatment plant (Florianópolis, southern Brazil) after solid material grid removal, and diluted to 

33% (v/v) using 0.45 μm-filtered seawater (salinity 25). Oysters were placed in the exposure 

glass tanks which were individually aerated using glass Pasteur pipettes and were covered with 

glass. No mortality was observed in the control and treated groups. 

After chemical exposures, twelve oysters from each of the diesel fuel WAF and PHE experiments, 

and seven from the domestic sewage experiment were sacrificed and the gill and digestive gland 

were immediately excised, flash frozen in liquid nitrogen and individually stored at -80 °C until 

further analysis. Three oysters from the control groups of each treatment were pooled, totalizing 

12 animals for the control. The control group included oysters from both seawater control and 

DMSO-control. 

 

2.2. Total RNA isolation and preparation of cDNA libraries 
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Total RNA from the gill and digestive gland of each oyster was individually isolated using TRIzol 

reagent (Invitrogen, UK) and purified with the Nucleospin RNA II Total RNA Isolation Kit (AbGene, 

UK) following the supplier’s protocol with minor modifications. Briefly, 50 – 100mg of each tissue 

was mechanically disrupted in the presence of 1mL TRIzol using a homogenizer (Tissue-Tearor, 

BioSpec Products). The TRIzol protocol was strictly followed until separation of the phases, with 

200µL of the upper aqueous phase transferred to a new tube for on-column purification using 

the Nucleospin RNA II Total RNA Isolation Kit (AbGene, UK). RNA was finally eluted in 60µL of 

RNase-free water. Residual genomic DNA contamination was removed during the RNA 

Nucleospin cleanup using the DNase I digestion following manufacturer’s instructions (AbGene, 

UK). The integrity of the purified total RNA was assessed using formaldehyde agarose gel 

electrophoresis, and RNA quantity was determined using a NanoDrop ND-1000 

spectrophotometer (ThermoScientific, UK).  

Equal quantities of purified total RNA (3μg) were pooled into 10 samples: gill and digestive gland 

for each of diesel WAF 24 h, diesel WAF 72 h, PHE, sewage and control groups. The pools were 

used for synthesis of non-normalized full-length double-stranded cDNA. cDNA libraries were 

constructed for each sample using the SMARTer PCR cDNA Synthesis Kit (Clontech, Paris) 

according to the manufacturer’s instructions. Full-length cDNA templates were then amplified by 

long-distance PCR using the Advantage 2 PCR Kit (Clontech, Paris). To ensure that the PCR 

products were not over amplified, the optimal number of PCR cycles was determined according 

to the manufacturer’s guidelines, which was verified by agarose gel electrophoresis. The 

products were purified with the DNA Clean & Concentrator™-5 Kit (Zymo Research, USA). The 

amplified cDNA libraries were verified for quality by microcapillary electrophoresis (Agilent 

Bioanalyzer 2100, Agilent Technologies) and quantified using a NanoDrop ND-1000 

spectrophotometer (ThermoScientific, UK).  

 

2.3. Transcriptome pyrosequencing 

The 10 cDNA libraries were then combined into 4 samples. Both gill and digestive gland tissue-

specific libraries were combined for each of the controls, sewage, PHE and diesel WAF (with 

both 24 and 72 h samplings). The libraries were then submitted to size-selection in a gel with 

two libraries prepared: one selected for "larger" fragments (cut from just below the 4kb and 

sheared by nebulisation down to 500 – 700 bp) and one for "smaller" fragments (cDNA 

fragments of approximately 700 bp). Molecular Identifier (MID) tags were used to enable 
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subsequent identification of size-selected portions from each library dataset. The 8 tagged 

libraries (two for each cDNA library) were then combined and pyrosequenced on the half of a 

PicoTiter Plate using the 454 Genome Sequencer FLX System according to the manufacturers' 

instructions (454/Roche, http://www.454.com). Pyrosequencing was performed by the Centre 

for Genomic Research at the University of Liverpool. 

 

2.4. Sequence data analysis and assembly 

The raw sequence data obtained from the cDNA libraries were pooled and subject to filtering 

and trimming of SMARTer™ adaptors for cDNA synthesis, primers, poly (A/T) tails and potential 

contaminating vector sequences. Following the sequence trimming and size selection (>150 bp), 

the reads were assembled using SeqMan NGen v 3.0.4 (DNASTAR). Default parameters for de 

novo assembly of ‘454’ reads were used, except for two settings: the ‘Min Match Percentage’ 

was set to 80 (instead of 85) and minimum number of reads to form a consensus sequences, 

which was set to a minimum of 2 (instead of 10). The first parameter represents the minimum 

percentage of identity required to join two sequences in the same contig and the second was 

chosen in order to assemble low frequency reads, which potentially represented weakly 

transcribed genes. 

 

2.5. Functional annotation and mapping 

The dataset was annotated by first searching the NCBI non-redundant (nr) nucleotide databases 

using blastn (E value threshold of 10-6) to identify rRNA genes and mitochondrial (mtDNA) 

sequences. The rational for selecting the blastn algorithm for the initial search lies in the absence 

of blastx matches of most contigs with matches to rRNA genes and mtDNA (data not shown), 

which could have lead to bias in the types of genes during the annotation of the C. brasiliana 

transcriptome. Sequences with matches to rRNA genes, mtDNA sequences, Prokaryotic and virus 

proteins, were then excluded from the C. brasiliana transcriptome dataset. This final set of 

contigs provided the reference transcriptome, against which the reads were mapped. The 

mapping was carried out using the mapping facility of Newbler with default mapping 

parameters. Both the full and partial mappings to each contig were extracted from all the 

respective mappings, and the values normalised by total library count. A ratio test was carried 

out in R, adjusting the p-values for multiple testing (Benjamini and Hochberg, 1995). The ratios 

from the different treatments relative to the control, or fold changes, are reported in the results.  
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Both blastn and blastx similarity searches were performed using Blast2GO PRO v.2.5.0 software 

(Conesa et al., 2005) using a cut-off of 10-6. The resulting top 10 blastx matches were fed into 

Blast2GO in order to retrieve associated Gene Ontology (GO) terms describing biological 

processes, molecular functions, and cellular components and extract the corresponding enzyme 

commission numbers (EC). InterPro terms were also obtained from InterProScan at EBI, 

converted and merged with GOs using Blast2GO software. Finally, the KEGG (Kyoto Encyclopedia 

of Genes and Genome) orthology (KO) identifiers, or the K numbers, were generated using the 

web-based server KAAS (KEGG Automatic Annotation Server) (Moriya et al., 2007), resulting in 

the mapping of putative KEGG metabolic pathways of C. brasiliana. The transcripts assigned to 

each gene family were first identified based on the closest blastx matches in the NCBI nr 

database, followed by the identification of at least one of the descriptors provided by the 

relevant InterPro Scan and Pfam domain (Supplementary Table S2).  

 

3. Results and discussion 

3.1. 454 sequencing and de novo assembly of the oyster transcriptome 

Pooled non-normalized cDNA libraries produced from gill and digestive gland RNA of C. 

brasiliana exposed to phenanthrene (PHE), diesel fuel water-accommodated fraction (WAF) and 

domestic sewage, plus a control group, were sequenced yielding 399,291 raw reads with an 

average length of 260 bp (GS FLX 2009 chemistry). In total, 246,514 reads passed quality 

filtering, while 152,777 reads were identified as singletons and were excluded from further 

analysis. Assembly of the 246,514 reads produced 20,938 contigs (150 to 4,662 bp), with an 

average length of 575 bp (Table 1). Annotation identified 282 contigs that matched rRNA, 

mtDNA, Prokaryotic and virus genes, which were removed from future analysis (Table 1). This 

final dataset was then subjected to putative functional annotation using a more rigorous blastx 

search (E value < 10-10) against the NCBI non-redundant (nr) protein database. The length of 

contigs was significantly correlated with the number of sequences assembled into them (Pearson 

ρ = 0.53; n= 20,938; p < 0.0001), as expected for 454 reads (Parchman et al., 2010) and the size 

distribution of contigs resembled that of previous 454 studies (Bettencourt et al., 2010; Fraser et 

al., 2011; Hou et al., 2011) (Supplementary Figures S1A and S1B). Files containing the reads have 

been submitted to the National Center for Biotechnology Information Short Read Archive 

[GenBank: SRX790900]. 
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Table 1 should be placed here. 

 

3.2. Functional annotation 

A total of 47.5% of the contigs were putatively annotated, which was significantly greater than 

other non-model marine invertebrates in which EST collections have been subjected to 

pyrosequencing (c.f. 9.9% in the razor clam Sinonovacula constricta (Niu et al., 2013), 12% in the 

blue mussel Mytilus galloprovincialis (Craft et al., 2010), 17% in the Antarctic bivalve Laternula 

elliptica (Clark et al., 2010; Meyer et al., 2009), 24% in the Manila clam Ruditapes philippinarum 

(Milan et al., 2011), 25% in the krill Euphausia superba (Clark et al., 2011), 28% in the Yesso 

scallop Pactinopecten yessoensis (Hou et al., 2011) and 39% in the sea cucumber Apostichopus 

japonicus (Du et al., 2012). This is almost certainly due to the genome sequencing and 

annotation of a close relative; the Pacific oyster, Crassostrea gigas (Zhang et al., 2012a). 

Oyster sequences that had matches in NCBI nr protein database were subject to Gene Ontology 

(GO) analysis to determine the corresponding enzyme commission (EC) number. EC numbers 

were assigned to 1,341 sequences, of which, the most important for this study were the 

oxidoreductases (16.7%) (Figure 1). In addition, 2,673 transcripts were assigned KEGG orthology 

(KO) identifiers (K numbers), which were then integrated into the KEGG resource by the KAAS 

service, resulting in the assignment to 276 different KEGG pathways. The number of pathways 

identified in this study is superior to other previous studies (i.e. Hao et al., 2011; Hou et al., 

2011) and might suggest that the C. brasiliana sequence data contain a large diversity of genes 

involved in a variety of biological processes, and do not contain notable biases towards 

particular categories of genes. Of these 276 KEGG pathways, those commonly related to 

xenobiotic biotransformation and response to stress in aquatic organisms were represented by 

sequences classified into “metabolism of xenobiotics by cytochrome P450”, “drug metabolism - 

cytochrome P450”, “drug metabolism - other enzymes”, “glutathione metabolism”, and 

“pentose phosphate pathway”. These annotations provided a valuable resource for the 

identification of novel genes involved in the pathways of xenobiotic biotransformation and stress 

responses.  

 

Figure 1 should be placed here. 

 

3.3. Detection of transcripts encoding genes involved in xenobiotic biotransformation  
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In Eukaryotes, the biotransformation of most lipophilic xenobiotics can be divided in four phases. 

In phase 0 there is an initial uptake of the xenobiotic. During phase I, polar groups are 

introduced into the xenobiotic molecule, which is usually catalysed by the cytochrome P450 

enzymes (CYP450), making it a suitable substrate for phase II reactions. Thus, the metabolites 

formed by phase I reactions may undergo further metabolism by conjugation to polar 

endogenous substrates which is mainly catalysed by enzymes like glutathione S-transferases 

(GSTs), sulfotransferases (SULT) and glucoronosyltransferases whereby lipophilic compounds are 

transformed into hydrophilic conjugates (Walker et al., 1996). In phase III specialized 

transporters recognize the conjugates, and expel them from the cell (Homolya et al., 2003). 

Therefore, the response of enzymes belonging to these four phases represents a defence 

mechanism developed by an organism exposed to contaminants and have been used as 

biomarkers to evaluate both exposure to, and effects of, environmental pollutants. Given this 

and the importance of oysters for aquatic biomonitoring programs, our aim was to identify 

transcripts involved in the metabolism of xenobiotic biotransformation and associated 

antioxidant defence, providing a baseline for future studies on the environmental stress 

response of C. brasiliana. Then, the selection of candidate genes involved in phases I, II and III 

was based on the database analyses above, using the queries matching xenobiotics 

detoxification-related criteria to identify relevant sequences from the oyster transcriptome.  

 

3.4. Transcripts encoding putative CYP450s 

A total of 43 CYP450-related contigs were identified in the C. brasiliana transcriptome. These 

were assigned to nine CYP families and included representatives of all the major CYP clans in 

protostomes (2-4, 7, and mitochondrial; Karatolos et al., 2011; Nelson et al., 2013) (Table 2). The 

majority of transcripts were assigned to the CYP2 family, which is in accordance with data from 

other marine invertebrates, where this family predominates (Guo et al., 2013; Putnam et al., 

2007; Sodergren et al., 2006; Zhang et al., 2012a). Indeed in most species it has been identified 

as the most diverse CYP family, which has evolved complex roles in physiology and toxicology, 

and diverse regulatory mechanisms (Kubota et al., 2011). Analysis of the C. gigas genome data 

showed a considerable expansion of genes involved in defence pathways, often called “stress 

genes”. This included the whole CYP450 gene family with the identification of 136 different 

genes with over half assigned to the CYP2 family. This represented a considerable increase in the 

number of CYP genes compared to other species: 57 in human, 78 in Daphnia, 82 in the sea 
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anemone, 96 in Capitella teleta and 120 in the sea urchin and correlation of the transcripts with 

genome data indicated that this is, in many cases, due to tandem duplications (c.f. Figure S20 in 

Zhang et al., 2012a). Although such an extensive repertoire of CYP450 genes was not identified 

in our smaller dataset, this preliminary scan indicates that there may be a similar expansion in C. 

brasiliana highlighting that the origin of such duplications may be at the base of the Crassostrea 

lineage. 

 

Table 2 should be placed here 

 

Among the putative CYP450 families with ecotoxicology interest identified in this study, CYP1 

and CYP2 are known for the oxidative transformation of environmental contaminants in 

deuterostomes (Kubota et al., 2011; Nebert and Russel, 2002). The involvement of CYP families 

in protostomes is not so well documented, but in insects, the CYP3 and CYP4 families have been 

implicated in the metabolism of synthetic insecticides (Feyereisen, 2006; Karatolos et al., 2011), 

and recently the CYP2 and CYP4 families were suggested as being involved in defence against 

toxic chemicals of bivalve molluscs (Miao et al., 2011; Zanette et al., 2010). Our expression data 

show that the CYP2 family members (Figure 2; Table 3) are up-regulated in response to both 

diesel WAF and sewage, with CYP2D expression more specific to diesel WAF, indicating their 

roles in the detoxification of organic compounds such as PAHs, which has been previously 

reported in cormorant and mouse (Kubota et al., 2011; Schober et al., 2010). This is consistent 

with recently documented report that benzo[a]pyrene (BaP) induced CYP414A1, a subfamily 

closely related to members of the CYP2 family, in the clam Venerupis (R.) philippinarum (Zhang 

et al., 2012b). Increased levels of CYP2-like mRNA have also been detected in the gill of C. 

brasiliana following short-term exposure to PHE (Lüchmann et al., 2014). Similarly, the CYP4 

gene family encodes a diverse number of enzymes, with functions related to the hydroxylation 

of fatty acids and eicosanoids in vertebrates (Kikuta et al., 2002), and xenobiotic 

biotransformation in polychaetes and insects (Rewitz et al., 2006). A wide variety of factors have 

been shown to regulate CYP4 family members, ranging from hormones in vertebrates (Simpson, 

1997) to dissolved oxygen in bivalves (Snyder et al., 2001). There is also recent evidence of the 

regulation by environmental pollutants on CYP4 related genes in bivalves, in which BaP 

decreased the transcription levels of CYP4 in scallops (Miao et al., 2011). However, the C. 

brasiliana CYP4-like genes did not show any response to diesel WAF, PHE or sewage.  
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Figure 2 and Table 3 should be placed here 

 

Putative transcripts encoding CYP17 proteins and a closely related family member CYP356A1 

were well represented in C. brasiliana transcriptome (Table 2). Although CYP17 is thought to be 

related to the steroid metabolism, the role of homologous sequences of the xenobiotic 

detoxification is also suggested (Toledo-Silva et al., 2008) and indeed, our data show CYP17 

transcripts are up-regulated in response to all the chemical challenges, with the highest 

responses for PHE and sewage. A similar response was seen in a CYP356A1-like gene which was 

over-expressed in the gill of C. brasiliana exposed to PHE (Lüchmann et al., 2014) and together 

with CYP2 are therefore candidate biomarkers for PAH biotransformation in bivalve molluscs. 

Furthermore, four sequences could be aligned to the CYP1 family, which is reported to be the 

main phase I enzyme involved in PAHs metabolism in vertebrates. To date, the role and even the 

existence of CYP1 in molluscs are poorly described (Zanette et al., 2013), but this study shows 

that CYP1 is up-regulated in response to diesel WAF and PHE. Finally, while recent studies have 

shown differential modulation in CYP3 transcription of bivalves (Cubero-Leon et al., 2012; 

Zanette et al., 2013), our data indicate that C. brasiliana CYP3-like genes are induced in a non-

specific manner by the chemicals tested in this study. 

 

3.5. Transcripts encoding putative 70kDa heat shock proteins (HSP70) 

Heat shock proteins, particularly those of the HSP70 family have long been associated with the 

response to environmental stress (Reviewed in Gross, 2004). Most members of this family are 

present in the normal cell state, as they have a housekeeping function with a critical role in the 

folding of native polypeptides and their translocation to different cellular compartments (Feder 

and Hofmann, 1999; Hartl and Hartl-Meyer, 2002). However, under conditions which elicit 

cellular stress, there is an increase in the levels of protein mis-folding. In these cases, heat shock 

proteins are frequently up-regulated to assist in either protein refolding or targeting the 

denatured proteins for removal from the cell. The latter is important because if the denatured 

proteins accumulate in the cell, they are cytotoxic (Fink 1999; Hartl, 1996; Parsell and Lindquist, 

1993). 53 contigs were identified with matches to the HSP70 family, which could be assigned to 

8 different members of the HSP70 family (Table 4). In the majority of cases, it was possible to 

assign multiple sequence fragments to a single gene, with 36 fragments mapping to the HSP70-
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12 family to closely related members; HSP70-12A and HSP70-12B. Whilst it is always difficult to 

determine actual gene numbers when dealing with gene fragments, manual searches and 

alignments indicated that there are at least 13 members of the HSP70-12A family and 8 

members of the HSP70-12B family, representing a massive expansion of the HSP70-12A and 

HSP70-12B families in C. brasiliana. These data concur with the analysis of the C. gigas genome, 

where 88 HSP70 genes were identified, with phylogenetic analysis showing that the majority of 

these are expansions specific to C. gigas (Zhang et al., 2012a). These oyster-specific duplication 

events, both in C. brasiliana and C. gigas appear to be restricted to the HSP70-12 family (c.f. 

Figure S19 in Zhang et al., 2012a) and have not affected the other more well known members of 

the HSP70 family, such as the inducible and constitutive forms (HSP70 and HSC71 respectively). 

The HSP70-12 genes are atypical HSP70 family members, which are each present in vertebrates 

in a single copy. They are not classically up-regulated in response to stress, but have been shown 

to be involved in lipoprotein interactions and act as modulators of inflammation and/or 

apoptosis in humans (Cui et al. 2010; Han et al., 2003). HSP70-12B has also been shown to be 

involved in endothelial cell development in zebrafish (Hu et al. 2006). This expansion of HSP70-

12 genes has now been identified in two oyster species and therefore would appear to represent 

a Crassostrea-specific expansion, rather than just C. gigas. HSP70 genes have previously shown 

strong correlation with chemical exposure, including hydrocarbons as used in this study, and 

have been suggested as candidate biomarkers for environmental toxicology (Boutet et al., 2004; 

Cruz-Rodríguez and Chu, 2002; Snyder et al., 2001). In these studies the inducible form of HSP70 

was targeted in a candidate gene approach, as these were the only gene data available at the 

time, but more recent analyses have shown HSP70-12B to be induced in response to thermal 

challenge in C. gigas (Clark et al., 2013).  

 

Table 4 should be placed here 

 

Analysis of the transcriptome mapping shows up-regulation of HSC71, GRP78, two members of 

the HSP70-12A gene family and 3 members of the HSP70-12B family (Figure 2; Table 3). The 

variability in expression levels is expected as expansion of a gene usually results in sub-

functionalization and partition of function between the different family members (Force et al., 

1999). Indeed in each case of HSP70-12A and HSP70-12B, one family member shows more up 

regulation than the others in response to chemical challenge: contig 1465 (12A) in response to 
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PHE and contig 5614 (12B) in response to diesel WAF and therefore present as prime candidates 

for their further development as biomarkers. This expansion of members of the HSP70-12 family 

clearly adds a further level of complication in developing specific biomarkers for environmental 

monitoring in oysters, as full characterisation of all family members is needed to ensure 

biomarker specificity, along with the identification of which family is up-regulated in response to 

a particular toxin and also the time course involved, as has been identified in other stress 

response studies (c.f. Clark and Peck, 2009a).  

In contrast to both the CYP and HSP70 families, other genes which may potentially be involved in 

xenobiotic metabolism do not appear to show any additional duplicated members compared 

with other species. 

 

3.6. Transcripts encoding putative glutathione S-transferases (GSTs) and sulfotransferases 

In the C. brasiliana dataset 26 contigs were identified with high sequence similarity to GSTs and 

20 were assigned to seven cytosolic classes and six to three microsomal GSTs (Table 5). Most of 

the identified GSTs were assigned to the sigma (6 sequences), followed by the omega class (4 

sequences), members of which are known to play a role in the xenobiotic detoxification and in 

the protection against oxidative stress (Board et al. 2000; Fonseca et al., 2010; Milan et al., 

2011). Indeed, omega GST has been reported to be useful as a biomarker for hydrocarbon and 

domestic sewage exposure in oysters (Boutet et al., 2004; Lüchmann et al., 2014; Medeiros et 

al., 2008). The remaining contigs identified here with matches to cytosolic forms were further 

designated into putative pi, mu, theta and alpha classes. Of these, pi GST is known to inactivate 

products of oxidative damage, such as lipoperoxidation products, lipid hydroperoxides and their 

derivatives (Doyen et al., 2008) which has been implicated to play an important role in the 

detoxification of BaP in scallops (Miao et al., 2011). The mu class has also been proposed as 

biomarkers for hydrocarbons exposure in oysters, since it was over-expressed in C. gigas under 

chemical stress conditions (Boutet et al., 2004). Similarly, the theta class was responsive to 

organic compounds in the flounder Platichthys flesus, and has been identified as the most 

responsive cytosolic GST in fish challenged with organic compounds (Williams et al., 2008). This 

family was well represented in this transcriptome data although very little is known of this class 

in molluscs (Whalen et al., 2008). With regards to microsomal GSTs, six contigs were likely to be 

assigned to MAPEG family, with subgroups 1 (MGST1) and 3 (MGST3) most represented (Table 

5). MAPEG members constitute a unique branch where most of the proteins are involved in the 
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production of eicosanoids (Hayes et al., 2005), although evidence shows that microsomal GSTs 

are capable of detoxifying organic xenobiotics in fish and human (Hayes et al., 2005; Williams et 

al., 2008). In general, the GSTs did not show much up-regulation in response to chemical 

challenge (Figure 2; Table 3). The main candidates for biomarkers are GST sigma in response to 

diesel WAF, GST microsomal 2 in response to sewage, whilst GST microsomal 1 showed elevated 

expression in response to both PHE and sewage (Figure 2; Table 3).  

 

Table 5 should be placed here 

 

Finally, transcripts encoding sulfotransferases (SULT) were also identified in the C. brasiliana 

transcriptome, although only one (putative SULT1C4) was slightly up-regulated in response to 

PHE only (Table 5). In rats, however, the protein identified as SULT1C1 was down-regulated 

following a short-term PHE exposure (Park et al., 2013). Furthermore, while a recent study has 

shown a clear association between increased expression of SULTs enzymes and PAHs in the 

channel catfish Ictalurus punctatus (Gaworecki et al., 2004), contradictory results in SULT mRNA 

levels have also been detected in mice treated with microsomal enzyme inducers (Alnouti and 

Klaasen, 2008). Thus, the SULTs inducibility is yet to be confirmed for several species, including 

fish and molluscs (Janer et al., 2005; Milan et al., 2011; Roméo and Wirgin, 2011). However, the 

presence of putative SULTs, a key component of phase II metabolism of endogenous and 

exogenous compounds, in C. brasiliana suggests a role in the detoxification or endocrine 

metabolism of oysters, as previously suggested for mussels (Janer et al., 2005; Lavado et al., 

2006). 

 

3.7. Transcripts encoding putative multidrug resistance proteins (MDRs) 

Conjugates formed by phase II reactions are eliminated from the cells by the transport across the 

plasma membrane into the extracellular space, which is mediated by the multidrug resistance 

proteins (MDRs) (Homolya et al., 2003). Nine MDRs exist and all belong to the superfamily of 

ATP-Binding Cassette (ABC) transporters (Hayes et al., 2005). In mammals, MDR1 is thought to 

export phase II-by products and compounds complexed with endogenous glutathione (GSH), and 

plays, therefore, an essential role in detoxification and defence against oxidative stress (Homolya 

et al., 2003). In aquatic invertebrates, MDRs are called as multixenobiotic resistance (MXR), and 

even without a clear classification as of mammals, are known to provide protection against 
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toxicants (Luckenbach and Epel, 2008). In fact, previous examination has shown an over-

expression of MXR-like genes in C. gigas exposed to domestic sewage (Medeiros et al., 2008). In 

this data set three members of the MDR family were identified: MDR1, 3 and 4 (Table 5), of 

which MDR3 presents as a good potential candidate for PHE monitoring and suggest the 

importance of MDRs genes in providing protection against environmental pollutants of C. 

brasiliana. 

 

3.8. Detection of antioxidant genes of interest for ecotoxicology 

Given that the exposure to pollutants and further biotransformation may generate reactive 

oxygen species (ROS), which create harmful environment for cellular macromolecules, we were 

also interested in genes that participate in general antioxidant defence mechanisms. Cellular 

protection against the deleterious effects of ROS cells has been attributed to a complex network 

composed by both enzymatic and nonenzymatic antioxidants (Halliwell and Gutteridge, 2007). A 

number of contigs encoding genes putatively involved in the antioxidative system were 

identified in the C. brasiliana transcriptome with the thioredoxin-related contigs most 

represented (Table 6). Thioredoxin-related enzymes are involved in thiol-based redox regulation 

and belong to the thioredoxin (Trx) superfamily, which also consists of glutathione peroxidase, 

peroxiredoxin and glutaredoxin gene family members (Shchedrina et al., 2007). The activities of 

these enzymes have been proposed to protect against metal exposure and virus-induced 

oxidative stress in molluscs (Nikapitiya et al., 2009; Trevisan et al., 2011; 2014), although none 

were significantly up-regulated in response to the treatments applied here. Contigs were also 

identified with high sequence similarity to superoxide dismutase (SOD) and catalase (CAT) 

enzymes. With regards to the SOD genes, manganese SOD (MnSOD) and copper-zinc SOD 

(CuZnSOD) were identified. These corresponded to the mitochondrial and cytoplasmic isoforms 

of enzyme as identified in mammals (Zlatkovic and Filipovic, 2011), with only the cytoplasmic 

form showing any up-regulation in response to chemical exposure (Table 3). The two contigs 

with high sequence similarity to catalase genes represented a duplication of this gene. This had 

been identified in another oyster species, C. hongkongensis in a duplication event which 

followed the divergence of the bivalves and gastropods (Zhang et al., 2011). In this case, both 

genes were up-regulated (Table 3) with the A form showing a general up-regulation in response 

to all three chemicals, but with the B form, more specific to PHE. Catalytic activities of SOD and 

CAT have been identified as being involved in the cellular protection against ROS of molluscs 



17 

 

(mussels and limpets) challenged with environmental pollutants and environmental stress 

(Ansaldo et al., 2005; Cheung et al., 2004; Lima et al., 2007; Zhang et al., 2011). However, some 

discrepancy between gene transcription and enzymatic activity of both antioxidants has recently 

been reported in Mytilus edulis challenged with chemical stressors (Giuliani et al., 2013).  

Furthermore, two contigs were identified with high sequence similarity to quinone 

oxidoreductase, or DT-diaphorase. The latter enzyme is generally considered as a detoxification 

enzyme because of its ability to reduce reactive quinones to less reactive and less toxic 

hydroquinones (Siegel et al., 2004). Knowledge about DT-diaphorase in invertebrates is still 

limited, but a few reports have demonstrated its potential function as antioxidant in molluscs 

(i.e. Manduzio et al., 2005). Altogether these findings show promising insight for understanding 

antioxidant metabolism in oysters, more detailed and targeted functional studies will be 

required to elucidate the role and regulation of such genes in C. brasiliana.   

 

Table 6 should be placed here 

 

3.9. Candidate genes for environmental ecotoxicology  

This C. brasiliana transcriptome was generated from RNA extracted from animals exposed to 

three common types of pollutant (diesel WAF, PHE and sewage), which enabled the 

identification of transcripts potentially involved in phase I, phase II and phase III xenobiotic 

metabolism, besides stress and antioxidant response. Preliminary expression analysis showed 

that some of these transcripts were indeed up-regulated in response to chemical exposure. The 

results also suggest that some classes of genes are more influenced by a particular contaminant, 

indicating their potential application as molecular biomarkers in biomonitoring programs, but it 

is likely that the more accurate results will be achieved using a panel of different genes as 

biomarkers. This variable expression is seen in other species. For example, mussels M. edulis 

exposed to environmental pollutants showed differential regulation in the transcription level of 

cytochrome P450 genes, which was dependent on the chemical class, with 10% sewage extract 

exerting no effects on these genes whilst estrogenic compounds were negatively correlated to 

CYP3 levels (Cubero-Leon et al., 2012). In particular, differential expression is to be expected for 

those families where gene duplication events have produced numerous paralogues and 

retention of the extra copies is reliant upon sub-functionalisation (Force et al., 1999), as was 

seen with the duplicated CYP3 genes in M. edulis in the exposures above (Cubero-Leon et al., 
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2012). It should also be noted that these were single time point and single concentration 

exposure experiments and more detailed experiments using approaches such as real time PCR 

(qPCR) and/or transcriptional profiling will be required to validate the results from this 

preliminary analysis. The latter method may prove particularly useful where there is an 

expansion in gene family members and it is not necessarily the “classical”, best known family 

members that are responsive to the chemical or environmental challenge (c.f. Clark and Peck, 

2009a; Clark et al., 2013). Also these represent laboratory-induced experiments and there is an 

additional requirement to link these through to responses in the natural environment, as the 

two types of exposure and the associated stress response may not be equivalent (c.f. Clark and 

Peck, 2009b). This is especially true in ecotoxicology where bioavailability of contaminants may 

hindering the response, mixtures of compounds may produce synergistic or antagonistic 

responses along with differential rates of xenobiotic metabolism depending on the toxin 

involved (Cruz-Rodríguez and Chu, 2002), with the latter requiring detailed time course studies. 

Furthermore, biotic and environmental factors such as physic-chemicals parameters are always 

important considerations when studying genes transcription as biomarkers. In these cases, qPCR 

of candidate genes may provide and relatively quick and easy, cost-effective preliminary test on 

which to base future studies using more expensive transcriptional profiling technologies. 

 

4. Conclusions 

This study is the first to describe a de novo transcriptome for the mangrove oyster Crassostrea 

brasiliana, emphasizing pathways related to detoxification of environmental contaminants. To 

date, the lack of genomics data available for this species has hampered characterization of the 

molecular mechanisms underlying resistance to aquatic contaminants and these data (circa 

20,000 contigs) represent a dramatic expansion of existing cDNA sequences available for C. 

brasiliana. We have identified genes that are potential candidates as biomarkers for 

ecotoxicological studies including those encoding enzymes putatively involved in the 

biotransformation of xenobiotics and those encoding enzymes of the antioxidant defence 

system. Since this study was initiated, two oyster genomes have been published (C. gigas and P. 

fucata) (Zhang et al., 2012a; Takeuchi et al., 2012), which have aided in the annotation process. 

In particular our data show the same expansion of cytochrome P450 and HSP7012 gene family 

members as was shown in the C. gigas genome (Zhang et al., 2012a), indicating that the 

duplication events generating these particular genes may be basal to the Crassostrea lineage.  
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Why these particular gene families should be expanded in (at least two) Crassostrea species is 

unknown, but these are inter-tidal animals inhabiting environments where conditions can 

change rapidly and acute short term tolerance to environmental challenge is essential for 

survival. They would therefore be expected to be physiologically robust with an efficient “stress” 

response and these expanded gene sets are clearly part of their enhanced defence mechanisms. 

Both HSP70-12A and HSP70-12B are divergent members of the HSP70 family and it has been 

suggested that they are the more ancient forms (Han et al., 2003), which may partly explain why 

these particular genes, rather than the classical inducible forms, have massively expanded in 

Crassostrea. The data here, with the up-regulation of transcripts involved in the 

biotransformation of xenobiotics is in agreement with previous reports on the enzymatic 

activities on bivalves exposed to environmental contaminants, and adds to the current 

knowledge on the molecular biology and biochemistry of the stress response in oysters. 

Furthermore, the data generated in this study can be used as reference transcriptome for 

further transcriptional profiling studies on C. brasiliana and other bivalve species to address the 

molecular mechanisms underlying the susceptibility to pollutants and differential stress 

resistance. In the longer term the aim of this research is to develop effective biomonitoring 

programs using C. brasiliana as sentinel species in Brazilian coastal regions.  
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Table 

Captions 

Table 1. 454 

summary 

statistics for 

for the C. 

brasiliana 

transcriptome assembly. 

 

Assembly data  
Total number of reads 399,291 
Total number of assembled reads  246,514 
Total number of contigs  20,938 
Total number of singletons  152,777 
rRNA transcripts excluded 127 
mtDNA transcripts excluded 90 
Prokaryotic and virus transcripts excluded 65 
Final number of contigs 20,656 
  
Contig data  
Average contig size (bp) 575 
Largest contig (bp) 4,462 
Number of contigs longer than 1kb 1,556 (15.2%) 
Number of contigs longer than 500bp 10,260 (49%) 
N50 (bp) 911 
Average number of reads per contig 12 

 

 

Table 2. Summary information for the Cytochrome P450 transcripts identified in C. brasiliana 

that are putatively involved in phase I of the metabolism of biotransformation of xenobiotics. 

Classification of clans according to Nelson (1998). 

Candidate genes Number  Number  Average contig Average reads 
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Table3. Gene ratios of expression levels in C. brasiliana in response to the different chemical 

exposures. Where putative multiple forms of the genes exist, these have not been characterised, 

but are denoted by a number in () to differentiate them in these results. 

 

 

of contigs of genes size (bp) per contigs (bp) 

Clan 2     

CYP450, family 1 4 2 874 11 

CYP450, family 2 14 7 767  15 

CYP450, family 17 4 3 1,531  14 

Clan3     

CYP450, family 3 7 6 770  5 

Clan 4     

CYP450, family 4 9 6 507  2 

Clan 7 

CYP450, family 7 

Clan mitochondrial 

 

1 

 

1 

 

569  

 

2 

CYP450, family 12 2 2 756  3 

CYP450, family 13 1 1 489  2 

CYP450, family 24 1 1 916  3 
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Candidate gene Contig Diesel WAF PHE Sewage 

CYP450s     

CYP1A 4236 8.75 4.21 0.87 

CYP2C 762 5.84 0.62 3.77 

CYP2D 14324 4.38 0.00 0.00 

CYP17 1780 2.19 9.82 15.67 

CYP3A 1765 4.38 7.02 3.48 

     

Heat shock 
proteins 

    

HSC71 866 2.19 2.11 0.87 

GRP78 1750 2.81 2.41 2.36 

HSP7012A (1) 1465 2.19 4.21 2.61 

HSP7012A (2) 5468 0.00 0.00 2.18 

HSP7012B (1) 5007 2.19 1.40 2.61 

HSP7012B (2) 5614 6.57 1.40 0.00 

HSP7012B (3) 16631 2.19 0.00 0.87 

     

Glutathione-S-
transferases 

    

GST 5914 0.00 2.81 0.00 

GST A 504 0.67 0.67 2.08 

GST sigma (1) 7984 6.57 1.40 0.00 

GST sigma (2) 9071 0.00 0.00 2.61 

GST mu 1576 1.09 2.81 3.05 

GST microsomal 1 1539 0.00 4.21 6.96 

GST microsomal 2 3082 0.00 0.70 4.35 
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GST microsomal 3 1452 1.46 2.81 0.87 

     

Sulfotransferases     

Sulfotransferase 
1C4 

17609 0.00 2.81 0.00 

     

Multidrug 
resistance 
proteins 

    

MDR-associated 
protein 1 

13538 0.00 0.00 2.61 

MDR3 2495 0.00 7.02 0.87 

     

Other genes of 
interest 

    

MnSOD 1433 0.36 0.70 2.90 

CuZnSOD 6196 2.19 5.61 4.35 

Catalase (A) 1078 4.92 4.56 2.83 

Catalase (B) 12078 0.00 2.81 0.87 
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Table 4. Summary information for the HSP70 transcripts in C. brasiliana.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Candidate genes 

Number 

of contigs 

Number 

 of genes 

Average contig 

size (bp) 

Average reads  

per contig 

HSP70 3 1 542 4 

HSC71 2 1 1652 101 

HSP70 B2 5 1 838 12 

HSP70 mt 2 1 503 4 

GRP78 2 1 1340 25 

68kDa 1 1 463 2 

HSP70-12A 19 13 548 5 

HSP70-12B 17 8 566 5 
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Table 5. Summary information for the identified C. brasiliana genes putatively involved in phases 

II and III of the metabolism of biotransformation of xenobiotics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Candidate genes 

Number 

of contigs 

Average contig  

size (bp) 

Average reads  

per contig  

Phase II - Glutathione S-transferases 

GST alpha 2 346 2 

GST omega 4 646 7 

GST pi 2 819 11 

GST theta 2 678 3 

GST sigma 6 711 8 

GST mu 1 1048 14 

GST A 3 798 41 

GST microsomal 1 2 541 11 

GST microsomal 2 1 464 12 

GST microsomal 3 3 821 14 

Phase II - Sulfotransferases 

Sulfotransferases 7 586 3 

Phase III - Multidrug resistance proteins 

MDR1 6 467 4 

MDR3 2 655 5 

MDR4 1 489 3 
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Table 6. Summary information for the C. brasiliana transcripts putatively involved in the 

antioxidant defence system.  

 

Candidate genes 

Number of 

contigs 

Average contig  

size (bp) 

Average reads  

per contigs 

CuZn Superoxide dismutase 2 805 53 

Mn Superoxide dismutase 1 1073 30 

Catalase 2 1325 22 

Glutathione peroxidase 2 577 7 

Glutathione reductase 1 536 5 

Peroxiredoxin 5 2 737 10 

Peroxiredoxin 6 1 1013 13 

Glutaredoxin 2 2 468 4 

Glutaredoxin 5 1 390 12 

Glutaredoxin C6 1 414 5 
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Figure Captions 

Figure 1. General enzyme classification based on enzyme commission (EC) numbers for the 

contigs of C. brasiliana. 

 

 

 

 
 

 

 

Thioredoxin 8 657 7 

Thioredoxin reductase 2 564 4 

Thioredoxin peroxidase 1 989 10 

Quinone oxidoreductase 2 529 2 

Glucose-6-phosphate dehydrogenase 2 888 5 
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Figure 2. Schematic of expression profiling data indicating putative unique biomarkers for the 

environmental toxicants under study. 

 

 

 
 

Supplementary Material Captions 

Table S1. InterPro and Pfam Identifiers used in transcriptome searches for specific gene families. 
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Figure S1. Overview of the C. brasiliana transcriptome assembly. (A) Frequency distribution of 

contig lengths. (B) Frequency distribution of the number of reads assembled into contigs. 


