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Abstract 

 

The membrane protein transhydrogenase in animal mitochondria and bacteria couples 

reduction of NADP
+
 by NADH to proton translocation.  Recent X-ray data on Thermus 

thermophilus transhydrogenase indicate a significant difference in the orientations of the two 

dIII components of the enzyme dimer (Leung, JH, Schurig-Briccio, LA, Yamaguchi, M, 

Moeller, A, Speir, JA, Gennis, RB and Stout, CD, 2015, Science, 347, 178-181).  The 

character of the orientation change, and a review of information on the kinetics and 

thermodynamics of transhydrogenase, indicate that dIII swivelling might assist in the control 

of proton gating by the redox state of bound NADP
+
/NADPH during enzyme turnover.  

mailto:j.b.jackson@bham.ac.uk


  

Introduction 

 

 Proton-translocating transhydrogenase is an important enzyme found in the inner 

membranes of animal mitochondria and the cytoplasmic membranes of bacteria.  In the 

forward direction it catalyses NADP
+
 reduction by NADH coupled to inward proton 

translocation across the membrane.  Thus, the enzyme is a proton motor in the same sense as 

the F1FO-ATP synthase. 

 

Transhydrogenase in bacteria is one of several enzymes, often operating in parallel, 

which supply NADPH for biosynthesis.  In Escherichia coli, for example, about one third of 

the NADPH needed for biomass production can be supplied by proton-translocating 

transhydrogenase [1, 2].  In some bacterial species over-expression of inserted 

transhydrogenase genes leads to commercially significant increases in the formation of 

fermentation products, such as lysine for animal feed, by increasing the rate of NADP
+
 

reduction [3]. 

 

Transhydrogenase is strongly expressed in the mitochondria of cells in a range of 

animal tissues [4].  Again, other enzymes participate in the reduction of NADP
+
 in these cells 

and here even approximate estimates of the contribution of transhydrogenase to NADPH 

production are difficult to make [5, 6].  The NADPH produced by transhydrogenase may be 

particularly important in pathways responsible for the removal of damaging reactive oxygen 

species (ROS) [7].  Knockdown of the transhydrogenase gene in a human adrenocortical cell 

line resulted in elevated levels of ROS, and mutations of the gene were identified in 

individuals with familial glucocorticoid deficiency [8].    In an interesting parallel 

development it was reported that mouse strains carrying deletions in their transhydrogenase 

genes have impaired glucose-stimulated insulin secretion and glucose tolerance [9, 10].  It 

was proposed [11] that loss of transhydrogenase in mice prevents removal of superoxide 

radicals, and hence promotes activation of the mitochondrial uncoupling-protein 2 with 

consequent dissipation of the proton electrochemical gradient and inhibition of the ATP 

synthesis required for insulin secretion.  Despite difficulties in properly establishing genetic 

backgrounds [12], the transhydrogenase-defective mouse strains may serve as useful models 

for understanding human type 2 diabetes. 

 

 

http://ees.elsevier.com/febsletters/viewRCResults.aspx?pdf=1&docID=32087&rev=1&fileID=810938&msid={869937C4-A0A7-43E3-ABB3-C12B3AE17C5E}


  

The dI, dII and dIII components of transhydrogenase. 

 

Transhydrogenase has three structural components (Fig.1).  The hydrophilic 

components dI and dIII protrude from the membrane on the cytoplasm side in bacteria, and 

dII spans the membrane.  The dI binds NADH (and product NAD
+
), dIII binds NADP

+
 (and 

product NADPH), and dII conducts protons across the membrane.  Transhydrogenase has two 

dI-dII-dIII protomers.  The joining of the polypeptide chains within a protomer varies 

amongst species (Fig.2) but this is unlikely to significantly influence the enzyme mechanism.   

While dII is always covalently linked to dIII (through the “hinge region”) the dI/dII and 

dIII/dI components may or may not be joined together through their polypeptide chains. 

 

High-resolution structures of isolated dI [13-15] and dIII [16-18], and that of a dI-dIII 

complex [19-21], have been published during the last decade, and have afforded insights 

particularly into nucleotide binding and the hydride transfer step.  The recent structure of the 

membrane-spanning dII at 2.8 Ǻ resolution, and of the holo-enzyme at 6.9 Ǻ from Thermus 

thermophilus [22], provide clues as to how hydride transfer from NADH to NADP
+
 at the 

interface of dI and dIII is coupled to proton translocation through dII.  Distances are such that 

coupling must be mediated by conformational changes across the protein. 

 

Isolated dI of transhydrogenase is a stable dimer [23].  Bound NAD
+
 (or NADH 

depending on crystallization conditions) is readily observed in the X-ray structures of isolated 

dI and dI-dIII complexes [13, 14, 19-21].  It occupies a classical nucleotide binding site in 

one of the two Rossmann folds that comprise the dI monomeric unit.  Interactions between 

the protein and the ribose group of the nucleotide AMP moiety explain why the site strongly 

favours NAD
+
/NADH binding over NADP

+
/NADPH.  The nicotinamide mononucleotide 

moiety of the NAD
+
, which carries the redox-active nicotinamide ring, can adopt more than 

one conformation within the binding site [24].  Two conserved polypeptide loops of dI, the 

“mobile loop” and the “RQD loop” (Fig.1), interact with the bound nucleotide.  The former, 

detectable in proton NMR spectra because of its segmental mobility [25], closes down on the 

surface of the protein following nucleotide binding.  Mutations in the mobile loop of 

Rhodospirillum rubrum dI (Rrα1M226F, Rrα1T231C, Rrα1G234A, Rrα1Y235F, Rrα1A236G, 

Rrα1K237M – see Fig.2 for polypeptide nomenclature) lead to a decrease in NADH binding 

affinity and in the hydride-transfer rate [26]; its function may be to exclude water from the 

hydride-transfer site during catalysis.  Mutations in the RQD loop of R.rubrum dI 



  

(Rrα1Q132N, Rrα1D135N, Rrα1S138A) cause only small changes in NADH binding affinity 

(Rrα1R127A has a more pronounced effect) but all lead to very strong inhibition of hydride 

transfer [27].  X-ray structures of these mutant dI proteins indicate that residues in the RQD 

loop are involved in positioning the dihydronicotinamide ring of NADH for hydride transfer 

to NADP
+
 bound to dIII. 

 

 Isolated dIII proteins are monomeric and have either tightly bound NADP
+
 or 

NADPH depending on purification conditions.  The dIII component comprises a single, 

classical Rossmann fold but the NADP
+
 (or NADPH) is bound in a non-classical manner with 

a reverse nucleotide orientation [16, 17].  Favoured binding of NADP
+
/NADPH relative to 

NAD
+
/NADH is ensured by interaction between the 2’ phosphate of the AMP moiety of the 

former and a conserved KRS motif in loop E.  The central section of this loop arches over the 

pyrophosphate group of the bound nucleotide forming a “lid” (Fig.1).   The protruding feature 

designated helix D/loop D is conformationally mobile [28], and along with the interacting 

loop E, is thought to have a central role in the transhydrogenase energy-coupling mechanism, 

perhaps in the crucial transition between the open and occluded states of the enzyme (see 

below).  Mutations of EcβK424, EcβR425 and EcβY431 in helix E and of EcβD392 in helix 

D/loop D in the intact E.coli enzyme lead to inhibition of transhydrogenation activity [29-32].  

Studies on these and other mutants in loop E and helix D/loop D of isolated E.coli dIII reveal 

further consequences of interactions of the protein with NADP
+
 and NADPH [33, 34].  In 

crystal structures the equivalent residues to EcβD392 form hydrogen bonds with the 

pyrophosphate and a ribose hydroxyl group of bound NADP
+
/NADPH [16, 17].  Its 

unusually high pKa, sensitive to the redox state of the bound nucleotide [35-37], and the fact 

that its substitution results in a failure in NADP
+
/NADPH binding [33] to isolated dIII, 

indicate an important catalytic role for this residue. 

 

Until recently information on the structure of the transmembrane dII component of 

transhydrogenase was reliant upon amino acid sequence and biochemical analysis (see ref 

[38].  Thus, the single-subunit enzyme from animal mitochondria was thought to have 14 

transmembrane helices (TM) per protomer, the two-subunit enzyme from E.coli, 13, and the 

three subunit enzyme from R.rubrum, 12 TM (Fig.2).  Gene fusions during evolution were 

thought to increase the number of TM in the E.coli and mitochondrial-type enzymes [39, 40].  

Consistent with these views, the new X-ray structure of dII from T.thermophilus 

transhydrogenase (a three-subunit enzyme) has 12 TM per protomer, 3 in the α2 subunit, and 



  

9 in the β subunit [22].  The most highly conserved of the transmembrane helices are TM2, 

TM3, TM4, TM9, TM10, and especially, TM13 and TM14 (for the TM numbering system, 

see Fig.2).  The proton channel through dII (one per protomer) is thought to comprise the 

hexagram of TM3, TM4, TM9, TM10, TM13 and TM14 seen in the T.thermophilus crystal 

structure.  Within the hexagram TM3, TM9 and TM13 form a central three-helix bundle 

enclosing a “tunnel”, perhaps the proton-translocation pathway itself, and the bundle is 

surrounded by TM4, TM10 and TM14.    Six layers of amino acid residues are distinguished 

along the channel.  Probably necessary for H
+
 transport, pairs of residues in layers 3 and 4 are 

hydrogen bonded.  There are no ordered water molecules within the proton channel.  The two 

protomers of the dII dimer interact through the respective TM2.  In the holoenzyme crystal 

structure one dII protomer is slightly displaced relative to the other.  Conservative single-site 

substitutions of only EcαH450 (in TM3), EcβH91 (TM9), EcβS139 (TM10), EcβD213 (in the 

cytoplasmic loop between TM12 and 13), EcβN222 (TM13), EcβG252 (TM14) and in a run 

of residues from EcβK261-βR265 (in the hinge at the C-terminus of TM14 which connects 

dII to dIII – see Fig.1) of many examined in E.coli dII lead to strong inhibition of 

transhydrogenase activity [30, 31, 41-48].  EcβH91 has often provoked interest in that it is 

the only conserved protonatable residue close to the centre of the membrane dielectric whose 

substitution significantly deactivates transhydrogenation.  However, in many species 

(including T.thermophilus) the His is replaced by an Asn (TtβN89); in some of these species 

the lost His is accompanied by the appearance of another in TM3 (as in TtβH42) though this 

is not always the case (we may speculate that transhydrogenases in this last category do not 

translocate H
+
 but perhaps Na

+
).  Low concentrations  of Zn

++
 block proton translocation 

through the E.coli dII channel; both FTIR [49] and X-ray absorption studies [50] implicate a 

His residue in the metal-ion binding but the role of βHis91 in the process is not yet clear.  

The conserved salt bridge between TtβD202 and TtβR254 in the hinge, which very likely has 

an important role in catalysis [44], is located next to the proton channel at the membrane 

surface [22].  Differences in electron density of the hinge region suggest different 

conformations in the two protomers.  Despite extensive mutagenesis experiments on the dII 

sequence the roles of individual amino acid residues in proton translocation and energy 

transduction have remained unclear.  In Fig.3 the amino acid residue(s) responsible for proton 

binding in the dII channel, and the subsequent coupling to hydride transfer (see below), is 

labelled “X”.  

 

The dIII component of transhydrogenase swivels during turnover 



  

 

A most unexpected feature of the holo-enzyme X-ray structure confirmed by cross-

linking inserted cysteine residues is that the dIII component of one protomer has a “face-up” 

orientation, in which its bound NADP
+
 is located close to the NAD

+
/NADH binding site of 

dI, but the other dIII has a “face-down” orientation in which the bound NADP
+
 would be 

brought into the short cytoplasmic loops linking the TM of dII (Fig.1) [22].  

Transhydrogenase is thus asymmetric, and its dIII components evidently swivel between 

face-up and face-down orientations during turnover.  Modelling studies show that neither the 

holo-enzyme [22] nor dI-dIII complexes [19] can simultaneously accommodate two dIII 

components in the face-up orientation.  The emerging view is that during operation 

transhydrogenase undergoes an alternation of sites:  the reaction sequence in one protomer 

runs approximately 180
o
 out-of-phase with that in the other (Fig.3). 

 

Below we discuss the function of the dIII swivel in the context of the 

transhydrogenation mechanism.  In accordance with earlier suggestions dIII in the face-up 

orientation is positioned for the enzyme to catalyse hydride transfer from NADH to NADP
+
 

but in the light of the the new holo-enzyme structure we now propose that in its face-down 

orientation dIII is responsible for gating the proton channel in dII to give H
+
 access to one 

side of the membrane or the other. 

 

The binding-change mechanism of coupling to proton translocation in transhydrogenase 

 

 The strongest evidence on the mechanism of action of transhydrogenase relates to the 

hydride-transfer step.  This takes place with the dIII component in an “occluded state” in 

which both the binding and release of NADP
+
 and NADPH are extremely slow relative to 

enzyme turnover [51-53].  Crystal structures show that with dIII in the occluded state the pro-

R hydrogen atom on C4 of the dihydronicotinamide ring of NADH (on dI) can be brought 

into close apposition with the si face of C4 of the nicotinamide ring of NADP
+
 (on dIII) to 

effect direct, stereo-specific and rapid hydride transfer [21].  The dIII component can also 

adopt an “open state”, where NADP
+
 and NADPH can rapidly bind and dissociate, 

respectively, but where hydride transfer between bound NADP
+
 and NADH is blocked [36, 

54].  X-ray structures reveal nucleotide-binding conformations in which the block may be 

achieved; essentially the nicotinamide and dihydronicotinamide rings are held apart by the 

enzyme [24].  The pH dependences of transhydrogenation reactions in bacterial membranes 



  

suggest that protonation of the enzyme converts open dIII into its occluded state and, 

subsequent to the hydride transfer step, deprotonation then converts occluded dIII back into 

its open state [51, 54, 55].  Thus, the basic mechanism is (i) substrate nucleotides, NADP
+
 

and NADH, associate with their binding sites in an enzyme protomer having both dIII and dI 

in open states, (ii) protonation of dII from the outside aqueous phase converts the open dIII to 

occluded, (iii) hydride-ion equivalents are transferred from bound NADH to NADP
+
, (iv) 

deprotonation of dII on the cytoplasmic side regenerates the open state of dIII, and (v) the 

nucleotide products, NADPH and NAD
+
, are released.  The binding affinities of NAD

+
 and 

NADH to dI are not significantly altered during the catalytic cycle; this enzyme component 

remains open except perhaps during the brief (< 10
-3

 s) period of hydride transfer [23, 56].  

The proposed mechanism affords two important features.  First, by confining hydride transfer 

to a form of the enzyme in which the nucleotides NADP
+
 and NADPH remain tightly bound, 

it prevents the redox step (potentially a facile reaction) from taking place without proton 

translocation (“slip”).  Second, it permits the enzyme to adjust the binding properties of dIII 

for NADP
+
 and NADPH differently in the open and occluded states:  in the open state to 

encourage substrate binding and product release, and in the occluded state to favour a large 

equilibrium constant for hydride transfer [57].  The consequent change in NADP
+
/NADPH 

binding energy necessitates compensating changes in the equilibrium constants of steps 

associated with proton binding and proton release. 

 

Gating of the proton channel 

 

 To provide directionality, for example to enable the enzyme to utilize a 

transmembrane proton electrochemical gradient and drive nucleotides to an elevated ratio of 

[NADPH][NAD
+
]/[NADP

+
][NADH], the H

+
-translocation reaction has to be appropriately 

gated: proton binding/release steps on either side of the membrane must be coordinated with 

the progress of the reaction [54].  In principle, the redox state of either NAD
+
/NADH or 

NADP
+
/NADPH bound to reaction intermediates could provide the trigger to allow proton 

access to or from one side of the membrane or the other.  However, the dI component 

remains essentially in an open state during turnover of the enzyme (see above).  Thus, NAD
+
 

and NADH can rapidly bind to and be released from dI throughout the transhydrogenase 

reaction – they would be a poor trigger for controlling proton gating.  NADP
+
/NADPH are a 

much better proposition.  In the framework of the proposed mechanism, gating would be 

effectively achieved if elements in the proton channel were to sense the redox state of 



  

NADP
+
/NADPH bound to dIII, and adjust the local conformation to allow or disallow the 

passage of protons to or from the solvent.  When NADP
+
 is bound, the channel is able to 

access protons only from the outside, and when NADPH is bound, only from the cytoplasmic 

side.  Thus, with NADP
+
 in its dIII site H

+
 binds into the channel from the outside (at 

relatively high proton electrochemical potential in respiring bacteria) generating the occluded 

state and, following reduction to NADPH, H
+
 is released from the channel into the bacterial 

cytoplasm (at relatively low proton potential) regenerating the open state.  A difficulty with 

this view was that previous predictions of the holo-enzyme structure based only on X-ray 

data on dI-dIII complexes had dIII in a face-up orientation [19, 20].  Thus, bound NADP
+
 and 

NADPH were thought to be held some 20 Ǻ or more from the proton channel.  This 

arrangment is essential for direct hydride transfer from NADH (see above) but is not so well 

suited for gating:  the “signal” relaying information on the redox state of the dIII nucleotide 

would have to be transmitted a considerable distance to the proton channel to control the 

gating. 

 

 The new structure of the T.thermophilus holo-enzyme reveals that the dIII component 

of one protomer is in the face-up orientation appropriate for hydride transfer; the other has a 

face-down orientation in which bound NADP
+
 or NADPH would be brought into the short 

cytoplasmic loops linking the TM of dII [22].  In this latter conformation nucleotide influence 

on the structure of the proton channel is much easier to envisage.  The (dihydro-) 

nicotinamide end of the bound nucleotide is proximal to the inter-TM loops.  The positive 

charge on the nicotinamide ring of NADP
+
 relative to the uncharged dihydronicotinamide 

ring of NADPH might thus be sufficient to switch the channel gates.  

 

 In Fig.3 the view that dIII swivelling regulates proton gating has been incorporated 

into the basic and well-supported transhydrogenase mechanism outlined above.  At the end of 

catalytic turnover in a single protomer, dIII is face-down and in its open state (intermediate 1, 

either red or blue).  Release of products NAD
+
 and NADPH are followed by substrate NADH 

and NADP
+
 binding.  NADP

+
 newly-bound to the face-down dIII (intermediate 2) triggers 

access of the proton channel to the outside aqueous phase.  Protonation of X from the outside 

causes the dIII to become occluded and swivel into the face-up orientation to enable hydride 

transfer to its bound NADP
+
 from NADH bound to dI (intermediate 3).  The still-occluded 

dIII, now bearing NADPH (intermediates 4 and 5), then swivels back into the face-down 

orientation (intermediate 6).  The bound NADPH in its face-down dIII triggers access of the 



  

proton channel to the inside aqueous phase where H
+
 is released from X, and the dIII is 

converted back into the open state. 

 

Alternation of sites 

 

 It is recalled that the T.thermophilus holo-enzyme structure has one dIII in the face-up 

orientation and the other face-down (Fig.1), and that there is strong evidence that isolated dI-

dIII complexes from R.rubrum have their dIII fixed in the face-up orientation, are occluded 

and are capable of rapid hydride transfer between bound nucleotides [19, 57, 58].  The events 

taking place during operation of the dimer then fall into place (Fig.3).  The two protomers run 

approximately 180
o
 out of phase:  while one is completing the hydride-transfer step with dIII 

in an occluded state (intermediate 3 → 4), the other is preparing for the replacement of bound 

product NADPH with substrate NADP
+
 in dIII in an open state (intermediate 6 → 1).   

During the period in which proton binding from the outside aqueous phase is converting the 

open to the occluded state of dIII in one protomer (intermediate 2), proton release to the 

cytoplasm is converting dIII in the other from the occluded to the open state (intermediate 6). 

 

The available experimental evidence on transhydrogenase would be satisfied if the 

two protomers in the figure operate independently of one another, only occasionally and 

briefly arrested to prevent both dIII components simultaneously adopting the clashing face-up 

orientation.  However, this independent operation seems unlikely since then the enzyme 

would function more effectively as isolated protomers.  It is more probable that events in the 

two protomers are conformationally linked to secure a kinetic advantage in the operation of 

the dimer.  A conformational linkage  between the protomers is most likely at steps 2 → 3 

and 5 → 6 where proton binding/release, interconversion of the open/occluded states, and 

dIII swivelling all take place.  Thus, the swivelling of face-up → face-down orientations in 

one protomer could be compulsorily linked to face-down → face-up swivelling in the other; 

and/or conformational changes resulting from proton binding in one protomer could be linked 

to conformational changes resulting from proton release in the other.  These possibilities are 

not distinguished in the figure.  In general, however, there are clear indications that structural 

changes in one protomer are linked to structural changes in the other – differences in the 

orientation of dIII, in the structure of the dII proton channel, and in the conformations of the 

hinge region, of the two protomers were all referred to above.  Even in the isolated dI dimer 

the two NAD
+
/NADH binding sites of the monomers adopt slightly different conformations, 



  

one appropriately poised for hydride transfer, the other not [13].  It seems likely that 

cooperative interactions between the two protomers of transhydrogenase are central to its 

mechanism of action.  It may also be noted that it has not been ruled out that the dimer could 

accommodate both dIII components in the face-down orientation, which might simplify our 

understanding of the transition, 5 → 6, and that protonation/deprotonation of dIII itself is the 

cause of the occluded/open transition of this component. 

 

The development of procedures for purifying and crystallizing the holoenzyme and its 

isolated components from the T.thermophilus transhydrogenase opens up ways to test 

predictions of the above model.  Effort will be directed towards improving the X-ray 

resolution of the holoenzyme.  Crucially, it is predicted that the open state of dIII will be 

stabilized in the face-down orientation of this component, and this will be reflected in 

changes in the structure of the NADP
+
/NADPH binding pocket.  Interactions of the 

(dihydro)nicotinamide group of the bound NADP
+
/NADPH with amino acid residues in dII 

will test the prediction that the redox state of the nucleotide is involved in gating the proton 

channel.  Changes in the structure of the hinge region are expected to have a central role in 

the swivelling of dIII.  It is anticipated that working with low concentrations of Zn
++

 and the 

construction of mutants in the hinge, in the dII proton channel and in the conformationally 

mobile region of dIII (for example at the equivalent of EcβD392 – see above) might be 

required to lock the conformational state of the enzyme.  The possibility of introducing 

specific mutations into just one protomer of the dimer should help to refine our understanding 

of the alternating-sites mechanism and identify points of conformational linkage.  Changes in 

the binding of NADP
+
/NADPH are at the heart of the proposed mechanism; methods for the 

fluorescence detection of these changes have been developed for isolated dIII and should be 

adaptable for use in the holoenzyme. 

 

The different mechanisms of coupling to the proton electrochemical gradient in 

bioenergetic machines 

 

Although many features of the mechanism of coupling the proton electrochemical 

gradient to the chemical reaction catalyzed by transhydrogenase are far from clear, it is 

evident that the enzyme utilizes mechanisms unlike those of the other bioenergetic machines 

present in the mitochondrial inner membrane or in the bacterial membrane: NADH:quinone 

oxidoreductase (Complex I); quinol:cytochrome c oxidoreductase (Complex III or the bc1 



  

Complex); cytochrome c oxidase (Complex IV); and the F1FO-ATP synthase (Complex V).  

The F1FO-ATP synthase couples proton flux across the membrane through two half-channels 

to conformational changes linked to rotatory motion and a three-fold alternating sites 

mechanism of ATP synthesis [59]. Complex I also conveys protons across the membrane via 

four sets of half-channels whose opening/closing conformations are gated by the chemistry 

occuring at the single distant quinone binding site [60].  The chemistry of oxygen reduction 

by cytochrome c oxidase is used to gate proton channels and alter proton affinities resulting 

in proton pumping, but conformational changes must be subtle compared to either Complex I 

or the ATP synthase [61]. Complex III has a unique “Q-cycle” to move charges across the 

membrane and a large conformational change of the Rieske Fe-S subunit to assure the two 

electrons from quinol are bifurcated, i.e., directed to different electron acceptors [62]. The 

enzymology of each of these systems is distinct from the others and each is a remarkable 

testament to the different ways that evolution has solved the problem of both generating and 

utilizing the proton motive force across a biological membrane. We can now add the 

transhydrogenase to this list of amazing molecular machines at the heart of bioenergetics. 

 

 

Figure Legends 

 

Fig.1.  The three-dimensional structure of transhydrogenase from T.thermophilus. 

 

 Modified from ref [22].  The gray bars indicate the position of the membrane.  The 

dashed lines delineate the short polypeptide hinges of presently unknown structure that link 

dII and dIII.  NAD(H) and NADP(H) correspond to nucleotides bound in the NAD
+
/NADH 

and NADP
+
/NADPH sites, respectively.  See text for comments on secondary-structure 

features and on the orientation change of dIII. 

 

Fig.2.  The four types of polypeptide organization of transhydrogenases from 

representative species. 

  

Tt, Thermus thermophilus; Rr, Rhodospirillum rubrum; Ec, Escherichia coli; Bt, Bos 

taurus; Eh, Entamoeba histolytica.  The horizontal lines correspond to polypeptide chains.  

The labels α, α1, α2 and β are names of the polypeptide chains (but sometimes also called 

PntA, PntAA, PntAB and PntB, respectively).  The components dI, dII and dIII, and the 



  

hinge region, are common to all 4 types of polypeptide organization.  The small black 

rectangles represent transmembrane helices (TM) numbered according to predictions on 

bovine transhydrogenase but to date only visualised in X-ray structures of the T.thermophilus 

enzyme [22]: question marks adjacent to the number of TM in other species show that 

estimation is based only on prediction and limited biochemical experiments. 

 

Fig.3.  Proposed mechanism of coupling to proton translocation in transhydrogenase. 

 

Each panel diagramatically shows an intermediate in the transhydrogenase dimer as it 

runs in the forward direction.  One protomer of the dimer is coloured red, the other blue.  The 

relative positions of the dI, dII and dIII components correspond to those seen in the X-ray 

structure of the T.thermophilus holo-enzyme (PDB, 4O9U) – see Fig.1.  The dI component is 

shown as a rectangle, dII as a rounded rectangle spanning the membrane, and dIII as a 

trapezoid with its NADP
+
/NADPH binding site located at the broader end.  In the face-up 

orientation of dIII (see text) the NADP
+
/NADPH binding site is located next to the 

NAD
+
/NADH binding site of dI; in the face-down orientation the NADP

+
/NADPH binding 

site is directed into the cytoplasmic loops between the TM of dII .  The dI and dIII 

components and X, a proton binding site in the dII channel (see text), are shown bounded by 

dashed lines in open states, and solid lines in occluded states.  The pairs of parallel dashed 

lines in dII show allowed proton access along the channel between X and the aqueous phase 

on one side of the membrane or the other.  The six reaction intermediates (1-6) run 

approximately 180
o
 out-of-phase in the two protomers.  Thus, intermediates 1, 2, 3, 4, 5 and 6 

in one protomer are paired with intermediates 4, 5, 6, 1, 2 and 3, respectively, in the other.  

Hydride transfer from NADH to NADP
+
, only possible with dIII in its occluded face-up 

orientation, is highlighted with a green arrow.  For simplicity, NAD
+
 is shown as 

dissociating, and NADH as binding, only to intermediate 1; in fact, NAD
+
 and NADH can 

probably reach equilibrium binding with all intermediates on the reaction path (see text).  The 

reverse transhydrogenation reaction, oxidation of NADPH by NAD
+
 coupled to H

+
 efflux, is 

described essentially by a simple reversal of the reaction sequence shown in this figure. 
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