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Abstract— Mapping and characterising low to medium 
airspace in an urban setting using radar presents significant 
challenges, especially for low observable targets such as drones 
and birds. This paper presents some examples of micro-Doppler 
signatures which make up part of a larger dataset of control 
drone, control bird, and opportune bird signatures measured 
with a pair of L-band staring radars installed at an urban 
location at the University of Birmingham. The results of 
multiple measurements over a two-year period are used to 
facilitate the classification of birds and drones, and the results 
of a machine learning classifier on the collected data is shown.  

Keywords—L-Band, staring radar, urban surveillance 

I. INTRODUCTION 
With the increasing prevalence of drones in low altitude 

urban airspace, the capability to map this airspace using wide-
area surveillance radar requires the reliable and accurate 
detection, tracking, and identification of drones, as well as the 
ability to distinguish these drones from confuser targets such 
as birds. Additionally, the identification of bird targets is 
important when considering, for example, the security and 
safety of a runway, as well as for monitoring the activity of 
birds in an urban environment in aeroecology research.   

The detection, tracking, and identifying small targets in 
low-altitude airspace of an urban environment poses a 
significant challenge due to the dense clutter of such an 
environment. Several strategies for classifying drones using 
radar systems have been proposed, using both kinematic 
features and micro-Doppler features, utilising both decision 
tree-based classification as well as deep learning [1]–[3]. For 
classification using deep learning methods, Convolutional 
Neural Networks (CNNs) provide some of the best results 
when a target’s spectra contains micro-Doppler components 
induced by the rotating parts of a drone. While some research 
has shown classification without the need to label non-drone 
targets explicitly [4], other research has proposed methods for 
labelling opportune targets [5] allowing supervised learning 
techniques to benefit from large quantities of labelled drone 
and bird target data [6]. At the University of Birmingham 
(UoB), two L-band staring radars have been installed capable 

of detecting and tracking small and low radar cross section 
(RCS) targets. The staring radar offers an all-weather solution 
to track targets reliably and accurately in real-time with 
minimal false tracks, and additionally provides the high 
sensitivity and high Doppler resolution necessary to track low 
RCS targets which fly at low altitudes and low velocities [7], 
[8]. The testbed facility enables the collection of vast amounts 
of data from both opportune targets, as well as from a diverse 
set of controlled flights of drone and bird targets in a variety 
of urban areas.  

This paper presents some of the micro-Doppler signatures 
of control drone and bird targets as well as the results of a 
CNN classifier trained and tested on spectrogram images, that 
is able to distinguish between birds and drones with a high 
accuracy. Section II provides an overview of the UoB staring 
radar facility, section III details the measurement campaigns 
conducted to collect a multitude of drone and bird signatures, 
section IV presents some examples of results from this 
measurement campaign focusing on the characteristics of the 
Doppler spectrograms for each target type, section V presents 
some classification results using a CNN classifier utilising the 
dataset collected, and, finally, section VI presents the 
conclusions and future work. 

II. INFRASTRUCTURE SETUP 
The UoB is developing a dedicated facility of networked 

staring radars to capture, from the urban environment, realistic 
clutter over extended periods of time [9]. The facility consists 
of two L-band multiple receive beam 3-D staring radar 
systems installed on the rooftops of buildings on the UoB 
Edgbaston campus, approximately 4 kilometers away from 
Birmingham city centre. The first radar is located atop the 6-
story Gisbert Kapp building at a height of 108 m above sea 
level (ASL). The second radar is located on the roof of the 
European Research Institute (ERI) building on the Edgbaston 
campus, approximately 180 m from the first radar, and at a 
height of 90 m ASL. Each radar is a prototype commercial-
off-the-shelf system that are designed for the detection of 
small, low-altitude, low-RCS objects, such as micro- 
Unmanned Aerial Vehicles (UAVs) and birds. Operating at L-



band and using a broad beam on transmit and 2-D array on 
receive that are digitised at element level, the radar can 
provide multiple simultaneous digital beams over its field of 
regard that spans 90 degrees in azimuth and 60 degrees in 
elevation. It has an instrumented range of up to 10 km [5-6]. 
The radar has a low bandwidth <2 MHz but uses a pulse 
waveform with a high PRF (~8 kHz) and is therefore able to 
achieve long integration and a high update rate on targets.  

Baseband I/Q data for a specified range gates can be saved 
to disk for every pulse for all receiver channels. Doppler 
processing and beam forming are performed in software. The 
radar system also has an on-board real-time processor that 
performs standard detection on the beam-formed range-
Doppler data and, following a tracking and classification 
stage, outputs tracker data that is updated every frame for all 
active tracks. The frame update rate is software configurable 
but typically is about 0.25 seconds. The tracker output has an 
associated track ID and target classification label that assigns 
broad class labels such as drone, birds, ground targets, 
unknown etc. Both the raw data and the processed tracker 
output are available for off-line analysis and processing. The 
radar facility is capable of continuous operation although the 
duration for which raw data can be saved is limited by the 
available storage space. Each radar is capable of operating 
monostatically or as part of a network. All results reported in 
this paper are from monostatic configurations of either of the 
two radars.   

III. MEASUREMENTS CAMPAIGN 

A. Control Drone Measurments 
To obtain a diverse dataset of target signatures, multiple 

different types of drone were flown at a variety of distances, 
heights, and speeds. Figure  1 shows some of the rotary wing 
drones used for field trials, a DJI Inspire 2 (I3-D), a DJI Mavic 
Mini 2 (M2-D), and a DJI Matrice 300 (MT-D). The GPS 
position of each drone is acquired from the log files recorded 
by the drone, which for some of the drone models also 
includes the rotational speeds of each rotor, which can be used 
to generate realistic simulated micro-Doppler signatures for 
synthetic targets [10]. 

   
Figure  1 – (a) DJI Inspire 2 (I3-D), (b) DJI Mavic Mini 2 (M2-D), (c) DJI 

Matrice 300 (MT-D) 

 
Figure  2 – GPS tracks from one of the drone trials, from Google Earth 

The larger drones such as the MT-D and I3-D were flown 
using pre-programmed waypoints which allowed the drones 
to repeat a predetermined flight path at a number of different 
heights. The smaller drones could not be flown using 
waypoints and so they were flown manually by an operator on 
a straight path between the same predetermined waypoints for 
the larger drones. Figure  2 shows the GPS plot from one of 

the drone trials. Over 10 hours of drone flight data has been 
collected using this methodology. 

B. Control Bird Measurements in a Rural Environment 
Measurements of control birds require that birds are 

tagged with a GPS device to record accurate position, and that 
they fly within the field of view of the radar. For this reason, 
control bird measurements require the use of captive birds  
flown by trained professional handlers [11]. A control trial at 
a rural location with raptors was conducted in collaboration 
with the International Centre for Birds of Prey (ICBP), in 
which four birds were flown in the field of view of an L-band 
staring radar installed at Cranfield Airport. The four birds used 
for the trial were a Saker Falcon (Falco cherrug) × Gyrfalcon 
(Falco rusticolus) hybrid (hereafter referred to as the ‘hybrid 
falcon’), a Gyrfalcon, a Yellow-billed Kite (Milvus 
aegyptius), and a Black-chested Buzzard-eagle (Geranoaetus 
melanoleucus). Each bird was tagged with a Microsensory 
GPS tracking device which was capable of real-time 
positioning of the bird, with the use of a handheld receiver, as 
well as being able to store the GPS data for later retrieval. The 
birds were released approximately 1.75 km from the staring 
radar in an open area with direct line of sight. The hybrid 
falcon and Gyrfalcon were trained to chase a small, fixed-
wing UAV designed to look like a bird, known as the 
RoboCrow. This drone was piloted by one of the handlers 
from the ICBP and flown in a circular trajectory. The Yellow-
billed Kite was flown from one handler to another close to the 
ground. The Black-chested Buzzard-eagle, when released, 
rose up to approximately 200 m above the ground and flew in 
a tight circular pattern while being carried towards the radar 
by the prevailing wind. 

  
Figure 3 – (a) Black-chested Buzzard-eagle equipped with a Microsensory 
GPS tracking device, and (b) GPS track generated during flight shown in 

Google Earth 

Figure 3a is a photograph of the Black-chested Buzzard-
eagle, the largest of the birds flown during the trial and Figure 
3b shows the GPS track of the bird, superimposed onto an 
aerial image of the target location, with the radar field of view 
also shown. The circling behaviour exhibited by the bird 
manifests as a spiral pattern in the GPS track due to the overall 
motion towards the radar as a result of the wind direction on 
the day and at the altitude the bird flew. From this study, 18 
minutes of truthed bird flight data was collected. 

C. Control Bird Measurements in an Urban Environment 
For control bird measurements in an urban environment, a 

field trial was conducted in which homing pigeons (Columbia 
livia domestica) were equipped with PathTrack GPS tracking 
tags and released within the field of view of an L-band staring 
radar. When released, homing pigeons first fly in a sweeping 
circle over the immediate area before flying in the direction of 
their home loft in the north-east of the city. The birds were 
released from Queen's Park, just over 2.5 km from the radar. 
Each bird wore a custom-made harness designed to hold a 
tracking tag (Fig. 4), which provided high-accuracy and high-

(a) (b) 

(a) (b) (c) 

Daniel White (PhD Dept ElecElecComp Eng FT)
Within quantity how much data has been collected: “In section III it would be nice to quantify how much data was collected for each category, how many samples and/or minutes of flights?”



update positional data for the bird. The GPS tag was activated 
prior to the release of a pigeon and recorded its position onto 
an internal memory card at a rate of 5 Hz. Each tag can only 
record up to an hour of high-rate data due to the limits of the 
internal memory. 

 
Figure 4 – Homing pigeon with a harness carrying a PathTrack GPS tag 

Once the birds had returned to the loft, the data was 
downloaded from each of the tags. For the period of time the 
birds flew in the field of view of the radar, typically the first 
few minutes of flight, the positional GPS data were in all cases 
captured and recorded. Figure 5 shows an aerial image 
showing locations of the release site and the loft as well as the 
location and field of view of the staring radar. The image 
shows different coloured tracks depicting the flight paths of 
the birds which were released individually. 

 
Figure 5 - Image showing the GPS tracks of multiple racing pigeons 

superposed on an aerial image of the scene with the radar coverage shown 

D. Opportune Bird Measurements 
By far the largest dataset collected to date is that of 

opportune bird targets, including raw data of opportune birds 
when recording for control drone and bird trials. Raw data for 
over 10 hours of opportune flights has been recorded. 
However, without any truthing, the data are unlabelled and 
therefore not ideal for classification using supervised learning 
algorithms. 

A technique for truthing opportune birds by matching 
field observation to the radar tracker output has been 
developed. The transect method involves an observer 
recording the traverse(s) of a bird across a virtual line 
between the observer and a fixed point, usually a landmark 

such as a tall building. The time, crossing direction, 
approximate distance, and approximate height, are recorded 
by the observer when a bird crosses this virtual line, known 
as a ‘transect line’. Comparing these crossing observations to 
the track number (referred to as ‘track ID’) which cross the 
transect line at approximately the same time and in the same 
direction, individual observations can be matched to track 
IDs, leading to a labelled set of opportune bird tracks. To 
date, twelve transect trials have been performed at different 
locations within the field of view of the test bed facility. For 
some of these trials, raw radar data were recorded, allowing 
us to produce a species-labelled set of opportune bird 
spectrograms. 

IV. RESULTS 
In order to investigate the micro-Doppler signatures of 

drones and birds, the raw data were processed into 
spectrograms of the targets, which showed the Doppler profile 
per Coherent Processing Interval (CPI) as a function of time 
for a target at a particular range and beam direction. To 
generate a target spectrogram, firstly all beam directions for 
each CPI were processed into range-Doppler plots. The GPS 
positional data of the drone or bird were then used to 
determine the target range and beam direction, and the 
Doppler profile for each CPI was then concatenated to form 
the spectrogram. In the resulting spectrogram images, static 
clutter appeared as a bright line through the centre of the 
image, as this represented reflectors with zero Doppler at all 
time points. The body of the drone or bird, when visible above 
the noise floor, appeared as a line offset from the center with 
non-zero Doppler. Since the Doppler axis represents the radial 
velocity of the target, the body return may cross through the 
zero-Doppler clutter line when the component of velocity in 
the radial direction changes direction such as when the target 
is moving in a circular trajectory. Sub-components of a target 
object which oscillate at higher frequencies, such as the 
rotational motion of drone propellers or the flapping motion 
of bird wings, can result in detectable micro-Doppler 
components in the spectrograms. These micro-Doppler 
signatures can be used to help to discriminate between targets 
such as drones and birds. Furthermore, for drones there is a 
strong correlation between the micro-Doppler signature and 
the physical parameters relating to the rotors and have shown 
to enable estimation of the blade length and rotation rate of the 
propellers that in turn can help to identify sub-categories of a 
drone class, such as the approximate size of the drone [12]. 

A. Drone Micro-Doppler Results 
The drone spectrograms shown in Figure 6 in this section 

are from target measurements that were conducted at the 
same range of <2km. Figure 6a shows the spectrogram for 
MT-D showing strong micro-Doppler Helicopter Rotor 
Modulation (HERM) lines that are due to the drone’s rotor 
motion [10], which takes the appearance of spectral lines in 
this case where the blade’s rotational rate is greater than the 
integration length of the CPI. Note that between timestep 250 
and 350 the micro-Doppler is observed to split into four 
components, showing the individual contributions from each 
of the four rotors of the quadcopter drone. Figure 6b shows 
the spectrogram for I3-D flying the same trajectory as that of 
MT-D. Again, the rotating propeller blades from the four 
rotors of this drone produced highly visible micro-Doppler 
lines throughout the measurement time period. In contrast to 



the micro-Doppler observable in the spectrogram for MT-D, 
the micro-Doppler signature appeared weaker and less 
uniform, and the sideband splitting due to the individuality of 
rotor speeds is of a different character. Both drones present 
strong micro-Doppler at all times, with sideband-to-body 
ratio existing at approximately -20dB. Figure 6c shows the 
spectrogram for the smaller M2-D drone. The micro-Doppler 
appears very different in comparison to the other two drones, 
due to the smaller rotor blades of the M2-D drone that reflect 
insufficient energy relative to the noise floor to appear in the 
spectrogram. Also, as this drone was flown manually (unlike 
I3-D and MT-D that were flown using pre-programmed 
waypoints) the body return of the drone was more irregular. 
All the subtle differences in the drone body and micro-
Doppler signature characteristics can aid with target 
classification. 

 

 

 
Figure 6 – Spectrograms of the (a) DJI Matrice 300 (MT-D), (b) DJI 

Inspire 2 (I3-D), and (c) DJI Mavic Mini 2 (M2-D) drone targets 

B. Control Bird Micro-Doppler Results 
Figure 7a shows the spectrogram from the Black-chested 

Buzzard-eagle that was circling during its flight and the 
resulting body return can be seen to oscillate through zero 
Doppler line for the majority of the measurement. The body 
return itself is very narrow and weaker than those of the drone 
targets shown previously. Note the absence of any strong 
micro-Doppler in the spectrogram and visually it appears 

highly differentiated from the drone spectra shown in Figure 
6a and b. Figure 7b shows the spectrogram for one of the 
homing pigeons from the control pigeon trial. However, 
unlike the Black-chested Buzzard-eagle, the spectrogram 
contained what appears to be feint sideband lines but with a 
closer spacing between them. This was most evident between 
timesteps 300 and 500 in Figure 7b. Although the precise 
origin of these micro-Doppler lines is unknown, one 
possibility is the oscillating motion of the wings of the bird 
as they flap. When the pigeons flew from the release site to 
the loft they were observed flapping their wings rapidly while 
in visible range. This was in contrast to the larger birds of 
prey such as Black-chested Buzzard-eagle that tended to glide 
when possible, flapping its wings less frequently than the 
pigeons. Given the very different appearances of the bird 
spectrograms from those of drones when HERM lines are 
present, it was envisaged that a classification algorithm 
would be able to discriminate between drones and birds on 
the basis of their spectra. 

 
Figure 7 – Spectrograms of the (a) Black-chested Buzzard-eagle, and (b) 

homing pigeon bird targets 

C. Opportune Bird Micro-Doppler Results 
For the spectrograms of opportune birds, recorded in the 

urban environment around UoB, the Doppler characteristics 
varied markedly but in general there was a lack of micro-
Doppler sidebands that were typical of those observed for 
larger drones. However, the characteristics of the body return 
observable in the spectrograms for the opportune birds 
showed some distinguishable properties. For example, Figure 
8a shows a spectrogram from an opportune bird target in 
which the body Doppler was narrow, while Figure 8b shows 
a spectrogram of another opportune bird in which it was much 
broader. Figure 8c shows a spectrogram of an opportune bird 
displaying some of the same micro-Doppler signature 
characteristics as observed in Figure 7b, and thus was 
assumed to also be a pigeon.  

 

(b) 

(c) 

(a) 

(b) 

(a) 

Mohammed Jahangir (Engineering)
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Daniel White (PhD Dept ElecElecComp Eng FT)
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Daniel White (PhD Dept ElecElecComp Eng FT)
Explain no microDoppler because of small RCS, due to the difference in radiation wavelength and blade size.



 
Figure 8 – Spectrograms of opportune bird targets with Doppler signatures 
that are (a) narrow, (b) broad, and (c) appear similar to those of a pigeon as 

shown in Figure 7b. 

Due to the resolution of the staring radar, it is possible to 
record multiple birds within a resolution cell. During trials, 
flocking behaviour of birds has been observed and recorded 
by the radar as an opportune measurement. The spectral 
characteristics of a group or flock of birds can be observed in 
Figure 9 that depicts two spectrograms, each with multiple 
spectral lines indicative of a collection of multiple bird targets 
in close proximity to each other and demonstrating similar 
flight patterns. In addition, Figure 9b shows the spectrogram 
from a dense cluster of birds, where individual spectral lines 
can no longer be distinguished at all points in time, but the 
spectra of the return signature is markedly wider than that of 
an individual bird target return. Given the difference in the 
appearance of the spectra of flocks from those of individual 
birds or drones, there is potential to derive classification 
approaches for flock detection. We report these results 
captured by an L-band staring radar. At other operational 
frequencies the scatting nature of flocks may be different, and 
the detail observed in bird micro-Doppler may be greater 
[13].  

 

 
Figure 9 – Spectrogram of a flock of opportune bird targets 

V. DRONE-BIRD CLASSIFICATION 
Recently published results using CNNs to classify drones 

and birds have demonstrated that they work well for high 
Signal to Noise Ratio (SNR) data in which distinguishing 
micro-Doppler features are present [14]. With the large 
dataset of drone and bird spectrograms from the UoB testbed, 
a CNN classifier was trained to understand performance 
within a realistic urban setting. The classifier used in this case 
was a pretrained neural network called Alexnet, which was 
then retrained in the last three layers to classify full colour 
spectrograms input as images. The classifier was configured 
to detect only drones and birds, and all drone spectra were 
obtained from well labelled control trials and the bulk of bird 
spectra were obtained from opportune targets where the true 
label was unknown. 

TABLE 1.   TARGET QUANTITIES USED IN CNN TRAIN AND TEST SETS 

Set 
(#Images) 

Class 
(#Images) Target #Flights #Images 

Train 
(7,256) 

Bird 
(3,625) 

Control - - 

Opportune 321 3625 

Drone 
(3,631) 

I3-D 46 1444 

MT-D 29 1058 

M2-D 40 1129 

Test 
(3,632) 

Bird 
(1,818) 

Control 3 137 

Opportune 143 1681 

Drone 
(1,814) 

I3-D 19 612 

MT-D 19 671 

M2-D 19 531 

 
Table 1 shows the quantities of the train and test subsets. The 
subsets were randomly constructed, ensuring that images 
from a given flight were not mixed across different sets. Each 
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(c) 
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(b) 
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Explain that these results are L-band only and cite other papers that have results at different wavelengths. 
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The main novelty of this paper may be the detailed L-band spectrograms of different birds and flocks of birds. However, the paper would be much stronger if a comparison with, e.g., X-band bird spectrograms would be included



image corresponded to five seconds of dwell time on the 
target. Figure 10 shows the results of the CNN classification 
as a confusion matrix. The percentage of correctly classified 
spectrograms for birds and drones was 90.1% and 90.0%, 
respectively. 

 
  

Figure 10 – Confusion matrix of a CNN classifier between birds and drones 

While the CNN classifier provided a good accuracy for 
distinguishing birds and drones, the classifier works by 
identifying spatial features in spectrograms, such as the shape 
and distribution of micro-Doppler lines. In addition to these 
geometric features, it may be possible to categorize targets 
based on other features which can be derived from the 
spectrograms, such as SNR of a target, as well as features 
extracted from the trajectory information of a target, which 
can be determined from the output of the tracker and does not 
require raw data or spectrograms to be generated.  

 

Figure 11 - Histogram of the SNR of the strongest non-clutter component 
of each target’s spectrogram.  

Figure 11 shows a histogram of the measured SNR for a 
multitude of bird and drone targets. As can be seen, there was 
a large overlap of SNR values for drones and birds. However, 
there were non-overlapping regions in which the lower SNR 
can be attributed to birds, while the higher SNR values can 
be attributed to drones. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper describes the measurement campaign 

conducted with the UoB staring radar facility and showcases 
some of the characteristics of the Doppler signatures of 
control drone, control bird, and opportune bird targets. The 
empirical results highlighted many of the differences (and 
similarities) between the bird and drone signatures which 
present real challenges to the development of classifiers 
designed to distinguish between drones and birds. Using the 
large dataset of labelled measurements collected with the 
UoB staring radar testbed, a CNN classifier was performed 
and gave a classification accuracy of 90.1% on a test set of 
3,632 images. For further classification, it is not yet known to 
what extent the classifiers can distinguish between individual 
and groups of birds, and to what extent flocks of birds affect 
the broader classification of drones versus birds. Using the 

dataset collected, it is becoming possible to investigate 
whether there is a need to separate measurements which 
contain flock behaviour from those of individual targets, and 
to test the effectiveness of the classifier in distinguishing 
between individual bird species and drone models. 
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Daniel White (PhD Dept ElecElecComp Eng FT)
“Please explain how the test and training sets are separated.”

Daniel White (PhD Dept ElecElecComp Eng FT)
Besides the histogram in figure 11 it would be informative to show a statistic indicator of how often the blades were visible in the spectrograms and how visible with respect to the background? Some kind of blade to noise ratio as that in my opinion can affect the performances.
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