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Beta cell lipotoxicity in
the development of type
2 diabetes: the need for
species-specific understanding
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and Gabriela Da Silva Xavier2

1Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham,
Birmingham, United Kingdom, 2Institute for Metabolism and Systems Research, Birmingham Medical
School, University of Birmingham, Birmingham, United Kingdom
The propensity to develop type 2 diabetes (T2D) is known to have both

environmental and hereditary components. In those with a genetic predisposition

to T2D, it is widely believed that elevated concentrations of circulatory long-chain

fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing

pancreatic b-cells – the fundamental feature of the development of T2D. Over 25

years of research support that LC-FFA are deleterious to b-cells, through a process

termed lipotoxicity. However, the work underpinning the theory of b-cell lipotoxicity
ismostly based on rodent studies. Doubts have been raised as towhether lipotoxicity

also occurs in humans. In this review, we examine the evidence, both in vivo and in

vitro, for the pathogenic effects of LC-FFA on b-cell viability and function in humans,

highlighting key species differences. In this way, we aim to uncover the role of

lipotoxicity in the human pathogenesis of T2D and motivate the need for species-

specific understanding.
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1 Introduction

Incidence rates of type 2 diabetes (T2D) have reached pandemic proportions, affecting

more than 422 million individuals worldwide (1). The root cause of T2D is unknown,

although it is well-established that obesity is the primary risk factor. The causal link

between obesity and T2D remain unclear, but a feature of both conditions is an elevated

blood concentration of long-chain free fatty acids (LC-FFA) (2). A decline in b-cell
function and mass is the defining feature of T2D and it is widely believed that

supraphysiological concentrations of circulatory LC-FFA are deleterious to b-cells
through a process of lipotoxicity (Figure 1).

Through their investigations into obese Zucker diabetic fatty rats, Unger et al. (3, 4) were

among the first to suggest that chronically elevated circulatory FFA have a direct toxic effect on

pancreatic b-cell function and viability. In subsequent years, considerable evidence has
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established long-chain saturated fatty acids (LC-SFA) species such as

stearate and palmitate to be toxic to in vitro rodent b-cells upon

chronic exposure [e.g (5)]. Extensive investigations have been

undertaken to identify the mechanisms underpinning b-cell
lipotoxicity (Figure 2), often with conflicting results.

Despite the popularity of lipotoxicity as a theory for the cause

of b-cell dysfunction and death in T2D, the majority of literature

that supports this concept is derived from rodent studies.

Historically, difficulties isolating populations of b-cells from

humans have slowed the study of human b-cell physiology (6).

Rodent models have therefore played a key role in gaining a

greater understanding of mechanisms underlying T2D, but there
Frontiers in Endocrinology 02
are significant differences between human to rodent b-cells. Such
differences include the main glucose transporter (predominantly

GLUT1 instead of GLUT2) (7), islet lipid handling (8, 9) and the

sensitivity of human and rodent b-cells to the toxic effects of LC-

SFA (10). It is not yet clear whether elevated circulatory LC-FFA

concentrations occurring during the development of T2D are

pathogenic in vivo. Delineating the effects of elevated circulatory

FFA concentrations on b-cell function and viability remains a

significant challenge, due to factors such as between-participant

variability in plasma FFA levels/composition and b-cell secretory
capacity through influences such as ethnicity, sex and

genetic background.
FIGURE 2

Proposed theories of b-cell lipotoxicity. ROS, reactive oxygen species; FFAR1, free fatty acid receptor 1.
FIGURE 1

The current theory of b-cell lipotoxicity during the progression of T2D. A sedentary lifestyle coupled with a high-calorie diet leads to an
accumulation of adipose tissue with hyperinsulinemia and elevated FFA, contributing towards insulin resistance of the peripheral tissue and
hyperglycaemia. In genetically susceptible subjects, increased circulatory FFA concentrations are believed to contribute towards the death and
dysfunction of insulin-producing pancreatic b-cells (lipotoxicity), leading to overt T2D.
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There have been conflicting opinions regarding the theory of b-cell
lipotoxicity, with strong voices both supporting (11) and opposing (12)

it’s existence. The complexity of this topic, in part, lies in the

amalgamation of data from both human and rodent models. As we

show in this review, these two species have fundamentally differing

responses to elevated levels of LC-FFA. This leads us to pose the

question of how we develop species-specific understanding that clearly

defines human pathology, enabling the targeted development of

treatments in humans. In doing so, we review the evidence for a) the

pathogenic effects of elevated LC-FFA on human b-cells in vivo, and b)
human b-cell lipotoxicity in vitro. In this way, we aim to characterize

what is currently known about T2D pathogenesis and highlight key

areas where more data are needed to understand this disease.
2 Human b-cell lipotoxicity in vivo

Transportation of fatty acids throughout the body occurs via the

blood, in either an esterified (predominantly as triglycerides) or non-

esterified (as FFA) form, but it is the latter that are thought to be

pathogenic in T2D (13, 14). Plasma FFA concentrations are tightly

regulated between approximately 100-1000mM (15), but in samples

from individuals with T2D, the FFA concentration has been shown to

be 3-fold higher compared to age-matched controls (16). The source of

surplus FFA in T2D is still unclear although it can in part be attributed

to increasing de novo fatty acid synthesis, reduced FFA clearance, and

enlarged adipocytes releasing more FFA [as reviewed by (17)].

In vivo studies assessing the relationship between FFA and human

b-cell function report that high FFA concentrations are associated with a

decline in insulin secretion (18–20), although this is not universally

observed (21). It remains unclear whether this negative association is due

to b-cell lipotoxicity or the adverse effects of elevated FFA concentrations

on hepatic and peripheral tissue insulin sensitivity; with insulin

resistance being a major feature of T2D. Measuring the deleterious

impact of FFA on human b-cells in vivo remains challenging. In practice,

we still do not know the precise concentration of FFA that b-cells are
exposed to. Investigations that have sought to delineate the direct effect

of excess FFA on human b-cells have largely been limited to exploring

blood insulin levels only [e.g (20, 22)], which does not provide direct

evidence for lipotoxicity in vivo. However, the majority of studies (8 for,

5 unclear, and 3 against; studies discussed below) identified in this review

support that elevated plasma FFA are detrimental to human b-cells in
vivo. This situation is mirrored in rodent studies (in vivo), where a

controlled intravenous fat infusion causes a reduction in insulin

secretion (23). Due to the complexity of the problem, a greater body

of research is needed to gain a better understanding of in vivo human b-
cell lipotoxicity. In what follows we aim to showcase and understand the

progress made in this area so far.
2.1 The plasma free fatty acid profile and
human b-cell lipotoxicity in vivo

Together with elevated concentrations of circulatory FFA, the

plasma FFA profile has been shown to be associated with the

development of T2D (24). In healthy lean individuals, the plasma
Frontiers in Endocrinology 03
FFA profile consists of fatty acids of more than 30 different species,

with 78% of all FFA in circulation being comprised of palmitic

(C16:0), stearic (C18:0) and oleic (C18:1) acid (25). As discussed by

Sobczak et al. (26), those studies that have characterized the plasma

FFA profile of individuals with T2D have found the data to be

highly heterogeneous, although a common trend is an increase in

the concentration of the LC-SFA palmitic and stearic acid (26).

In the EPIC-InterAct case-cohort study (27) elevated

concentrations of the even-chained LC-SFA, palmitate (C16:0) and

stearate (C18:0) were associated with an increased risk of developing

T2D. Interestingly, elevated levels of the odd-chain LC-SFA,

pentadecanoic (C15:0) and heptadecanoic acid (C17:0) were

associated with a decreased risk (27). When testing the effects of

pentadecanoic and heptadecanoic acid on the viability of the human

b-cell line, EndoC-bH1, viability was maintained at high concentrations

(500mM) following a 72h exposure period (10). However, viability was

also maintained in EndoC-bH1 cells when exposed to palmitate and

stearate, which are widely believed to be toxic to b-cell in vitro (10). In

the RISC study cohort, raised levels of oleate correlated with enhanced

b-cell function in non-diabetic individuals (22) indicating that oleate

may not have the same deleterious effects as LC-SFA in vivo, supporting

what has previously been shown in vitro (28). Although there is a clear

relationship between T2D and obesity, many individuals with obesity do

not develop T2D. Both conditions present with elevated concentrations

of FFA in the blood, although individuals with prediabetes have been

found to have a significantly greater concentration of plasma FFA

compared to metabolically healthy obese subjects (29). Wrzosek et al.

(2) found palmitic and stearic acid to be raised in both obesity and

obesity-T2D, along with oleic and linoleic acid. However, the FFA

profile was markedly different between the two groups (2) which could

have pathogenic/diagnostic implications in T2D but requires further

investigation. Not all studies support that the FFA profile is important.

The PROMISE cohort found a predictor of lower b-cell function to be

total FFA concentration, but not FFA profile (20).

Further investigations are required to understand the effect of

changes in FFA composition on human b-cell function. To date, the

data on changes to the blood FFA profile in T2D is heterogenous due in

part, to a lack of appropriate matched controls (i.e. whether they were

BMI matched), if the participants were fasted or not pre-blood

collection, the ethnic group studied, and whether the results were

reported as the percentage of total plasma FFA measured or absolute

concentrations (26). In future studies, these factors need to be

accounted for. Most investigations studying the effect of FFA on b-
cells in vitro often only apply one or two LC-FFA at a time.

Considering the broad array of FFA in circulation, and that different

FFA species seemingly have different associations with T2D incident

and effect on b-cell function, future in vitro studies should expose b-
cells to a range of FFA to ensure physiological relevance.
2.2 Fat deposition and human b-cell
lipotoxicity in vivo

The main storage site for FFA is in white adipose tissue (WAT)

in the form of triglycerides (TAG). WAT is distributed

subcutaneously (under the skin) or viscerally (around internal
frontiersin.org
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organs), and the site of WAT has distinct metabolic profiles (30).

Ectopic fat is the storage of TAG in cells that are not adipose tissue,

and which do not normally store large amounts of fat.

Intrapancreatic lipid content has been shown to be inversely

associated with insulin secretion and contributes towards b-cell
dysfunction in the development of T2D (31, 32). Importantly, there

are significant interindividual differences in the concentration of

FFA that b-cells are exposed to, which result from differences in fat

distribution due to ethnicity and sex (discussed in section

2.2.2 below).

2.2.1 Intrapancreatic fat and human
b-cell lipotoxicity

Magnetic resonance imaging (MRI) and spectroscopy (MRS)

studies have revealed intrapancreatic fat content to be consistently

raised in T2D subjects (31, 33–35). Although pancreatic fat is

elevated in both obese non-diabetic and obese-T2D subjects, it is

believed to be a feature independently related to T2D (34–36). Lu

et al. (35) observed an association between pancreatic fat content

and insulin secretion in male, but not female T2D subjects. In recent

years, the work of Roy Taylor and colleagues has garnered

significant attention for the proposal of “diabetes remission”.

Taylor et al. report a 14% decrease in body weight resulted in a

significant fall in pancreatic fat in those individuals with T2D, but

not in matched normal glucose tolerance individuals with

comparable weight loss (34). Following a 15% weight loss over a

12-month period, a T2D cohort had a decrease in liver and

pancreatic fat content coupled with the recovery of b-cell first-
phase insulin response and glucose control (37). Whether the

recovery of b-cell function was due to the decline in the liver or

pancreatic fat however is unclear but the findings of this study (37)

indicate that b-cells have the capacity to regain some function

during the early stages of T2D progression. This is yet to be shown

in longer-term studies and in a diverse ethnic cohort. Most studies

that investigate the relationship between pancreatic fat content and

T2D incident are cross-sectional, reporting only one point in time.

There are few longitudinal studies investigating this question, only

Yamazaki et al. (38) observed no independent association between

pancreatic fat and T2D incident over a 5-year period (38).

Pancreatic fat may contribute towards the deterioration of

human b-cell function in the early stages of T2D progression,

although, there is limited evidence to support that it plays a role

in the long-term development of T2D. To draw clearer conclusions,

long-term studies are required on the recovery of b-cell function
with sustained weight loss and loss of pancreatic fat content.

2.2.2 The role of sex and ethnicity in
understanding human b-cell lipotoxicity in vivo

In recent years, T2D has emerged to be more prevalent in men

than women (39). As discussed by Kautzky-Willer et al. (40),

psychosocial and biological factors can, in part, account for sex

differences in T2D incidence and prevalence. A potential
1 Here we use (wo)men to mean natal (wo)men (i.e. those assigned (fe)male

at birth).

Frontiers in Endocrinology 04
pathophysiological mechanism is differences in FFA metabolism

and thus the concentration of FFA that the b-cells are exposed to.

Figure 3 shows key sex differences in fat distribution (for a more in-

depth summary of these differences see (30).1.

Men and women store and use fat differently. Overall, women

have a higher body fat percentage compared to men and store more

fat in abdominal and gluteofemoral SAT (30), whereas men deposit

more fat in VAT. It is believed that gluteofemoral SAT offers

protection against T2D (41). Elevated levels of VAT are more

harmful than SAT due to lipolysis releasing FFA which are

transported through the portal vein directly to the liver

contributing towards hepatic insulin resistance and steatosis (42,

43). Women tend to store FFA to a greater extent compared to men,

as at rest and post-meal-consumption women are more likely to

store FFA as TAG whereas men are more prone to oxidize the FFA

[as discussed by (44)]. Insulin inhibits lipolysis; women have greater

insulin sensitivity (45) causing differences in the rates of lipolysis

between the sexes. Women have an approximately 15% higher

concentration of circulatory FFA than men, and release

approximately 40% more FFA relative to resting energy

expenditure than men. This is thought to be due to women being

more dependent on FFA oxidation during times of high energy

requirements (e.g. exercise) (30). Subsequently, the b-cells of

women may be exposed to higher concentrations of FFA

although the concentration that b-cells are exposed to in either

sex is currently still unknown.

There is also widespread acceptance that the prevalence and risk

of developing T2D are higher amongst certain ethnic populations

[as discussed by (46)]. Similarly to the disparities owing to sex, the

reason for differences in T2D incidence rates amongst different

ethnic groups is multifactorial, one of which could be differences in

FFA metabolism between different ethnic populations (see

Supplementary Table 1). As discussed by Goff (46), the genetic

contribution of ethnic disparities in T2D incidence rate is unclear.

However, differences in obesity and fat distribution across different

ethnic groups are well-documented (47). For example, White

European populations often develop T2D later in life and at a

BMI of 30kg/m2, whereas South Asian populations develop T2D

earlier and at a BMI of 22kg/m2 (48, 49). A reason for this may be

due to the propensity of South Asian populations to store fat in

abdominal VAT stores, less so than SAT, and have more ectopic

liver fat compared to White Europeans causing greater metabolic

complications (50). We have collated studies which have described

fat distribution in high T2D-risk ethnic populations and

investigated b-cell function (Supplementary Table 1).

In terms of b-cell lipotoxicity, it could be proposed that high-

risk T2D populations may: 1) have higher circulatory

concentrations of FFA and thus the b-cells are exposed to greater

amounts of FFA; 2) have b-cells with greater sensitivity to lipotoxic

insult. Goree et al. (51) found their female African American cohort

to have lower basal fasting FFA compared to their European cohort.

Ladwa et al. (52) found no association between intrapancreatic lipid

content and insulin secretion in either a White European or Black

African ancestry cohort. Collectively, this would indicate that high

T2D risk ethnic groups are not exposed to more adverse

concentrations of FFA compared to those at lower risk.
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There are, however, disagreements in the literature. Szczepaniak

et al. (32) found ethnic differences in both b-cell dysfunction and

pancreatic fat. During a 20% intralipid infusion, Burns et al. (53)

reported a comparable increase in fasting insulin and C-peptide

concentrations in both Caucasian and African American

adolescents. Conversely, Michaliszyn et al. (54) reported a

decrease in b-cell function upon a 20% intralipid infusion in

Caucasian and African American children which suggests that

Caucasian youths may be more susceptible to lipotoxic insult.

These results do not support the position that African American

populations are more prone to developing T2D due to their b-cells
being more sensitive to lipotoxicity.

In summary, these data imply that an alternative mechanism

(s) to b-cell lipotoxicity may be contributing towards the higher

risk of developing T2D in certain ethnic populations and between

sexes. Differences in fat deposition between sexes and ethnic

cohort groups seemingly contribute towards the risk of an

individual developing T2D, with greater VAT and ectopic fat

being adverse to metabolic health. Clearly the role of lipotoxicity

between ethnic cohorts requires further investigation, as does

determining the exact concentration of FFA that b-cells are

exposed to in vivo. Importantly, when conducting ex vivo and in

vivo studies using human islets, the sex and ethnicity of the

participant/donor should be reported, and differences in FFA

metabolism accounted for, as these are currently under

controlled and will influence findings.
3 Human b-cell lipotoxicity in vitro

It is well documented that, upon acute exposure, LC-FFA can

promote insulin release from human islets in vitro (55, 56), whilst

chronic exposure impairs insulin secretion (54–56) and activates

apoptosis (57–60). Conversely, human-derived EndoC-bH1 cells

remain viable following chronic exposure to LC-FFA. This is

potentially due to an elevated expression of the desaturase enzyme,

stearoyl CoA desaturase (SCD) (61). LC-FFA may still induce

dysfunction in this cell line; Jeffery et al. (62) found that when

exposed to palmitate for 24h, EndoC-bH1 cells express

somatostatin, a hormone that is selectively expressed by delta cells
Frontiers in Endocrinology 05
and not b-cells. This finding raises the question of whether high

concentrations of LC-FFAmay cause human b-cells to dedifferentiate,
thus losing their identity and function – although the theory of b-cell
dedifferentiation in T2D is currently a subject of research. Collectively

these studies support that LC-FFA may cause human b-cell
dysfunction in vitro and exploring the underpinning mechanism is

the remaining subject of this review. In presenting this data, we have

focused only on data taken from human islets or the human-derived

EndoC-bH b-cell lines – with the latter being well characterized and

insulin-producing (63). We omitted studies using 1.1B4 cells as they

have been found to contain both rodent and human cells (64), and

other human-derived b-cell lines (e.g., 1.4E7 or 1.1E7) due to their low
insulin content (approx. 4ng/million cells) (65).
3.1 Fatty acid-induced changes to the
transcriptome of human b-cells in vitro

Genome-wide association studies (GWAS) seek to find genetic

variants that correlate with disease. GWAS has facilitated the

identification of more than 128 common genetic risk variants for

T2D (66) with palmitate modifying more than 11 GWAS candidate

genes in human islets in vitro (57, 59, 67). RNA-sequencing analysis

of human islets exposed to palmitate for 48h compared to non-

exposed islets can promote more than 903 differentially expressed

genes (DEG) (57, 59, 67) with the proportion of DEG increasing

with prolonged exposure (67).

Functional analysis of DEG from human islets receiving an

acute dose of palmitate (≤24h) show an enrichment of cellular

pathways which may facilitate the augmentation of glucose

stimulated insulin secretion (GSIS) (Supplementary Table 2);

corresponding with a 2-fold increase in insulin secretion by islets

treated for 24h with palmitate (67). Sargsyan et al. (67) propose that

in the early stages of palmitate treatment, transcriptional changes

give rise to both protective and deleterious cellular processes. With

an acute treatment of palmitate protective cellular events outweigh

deleterious processes, but the inverse occurs when palmitate

exposure is prolonged (67).

With a chronic dose of palmitate (≥48h), DEG are associated

with ER stress, inflammation, autophagy, protein degradation,
FIGURE 3

Key sex differences in fat storage. SAT, subcutaneous adipose tissue; REE, resting energy expenditure; TAG, triglycerides; VAT, visceral adipose tissue.
Information extracted from (30).
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metabolism and apoptotic pathways (57–60). Exposing islets to a

chronic treatment of palmitate in vitro increases the expression of

genes regulating LC-FFA metabolism (e.g. CPT-1 and ACSL1), but

inhibits the expression of genes associated with the TCA cycle and

electron transport chain (57). Thus, the loss of insulin secretion

observed in islets treated with palmitate for prolonged periods (57,

68–70) may be due to impaired ATP synthesis. Cnop and colleagues

found an inhibition of antiapoptotic genes (e.g. c-FLIP and

ANXA4) and an increase in the mRNA for pro-apoptotic

proteins, such as GRAMD4 which acts to inhibit antiapoptotic

Bcl-2, and promote Bax translocation to the mitochondria in the

initial stages of apoptosis (57). Following 48h palmitate treatment,

there is also a downregulation of transcription factors (e.g. MAFA,

MAFB, PDX-1 and NEUROD1) that regulate b-cell identity (57,

60). This suggests that LC-FFA may be a potential driver of b-cell
dedifferentiation in T2D.

In summary, chronic exposure of high concentrations of LC-

FFA induce widespread transcriptional changes which are

deleterious to b-cell viability, identity, and function. However, the

studies identified here (Supplementary Table 2) treat human islets

with 0.5-1mM LC-FFA and only one FFA species. This raises the

question of whether these conditions are physiologically relevant.

LC-FFA studies regularly use a dosage of ≥0.5mM for lipotoxic

conditions but it is still unclear what dose of LC-FFA are exposed to

in vivo. Further, b-cells are exposed to varying LC-FFA in the blood.

Future studies should therefore assess changes to the transcriptome

following the application of a LC-FFA mix.
3.2 The role of lipid droplets in
human b-cell lipotoxicity

In recent years, lipid droplets (LD) have emerged as a dynamic

organelle that play a critical role in cellular lipid metabolism. LDs

are composed of a neutral lipid core surrounded by a phospholipid

monolayer. Lipids are released from the LDs for signaling,

phospholipid synthesis, fuel and can even act to sequester

harmful lipid intermediates. However, it remains unclear whether

LDs are negatively or positively associated with the demise of

human b-cells in the development of T2D.

Unlike in mouse b-cells, LDs and their associated proteins are

enriched in human b-cells exposed to an exogenous source of LC-

FFA (71, 72). In the regulation and turnover of LDs in human b-
cells, adipose triglyceride lipase (ATGL) has been found to be a key

lipase for LD mobilization, with its silencing increasing the number

and size of LDs (73). Thomas et al. (9) showed that contrary to

rodent b-cells, LC-SFA are trafficked into LDs in human EndoC-

bH1 b-cells which may offer an explanation for why, unlike rodent

b-cells, human b-cells are resistant to the toxic effects of LC-SFA.

Further, Tong et al. (74) found that LDs preserve fatty acid

homeostasis, thereby proving essential for human b-cell activity.
Collectively, this would suggest that LDs may be a previously

unrecognized organelle that protects human b-cells from the

lipotoxic effects of LC-FFA. However, Tong et al. (8) observed an

accumulation of LDs in b-cells from donors with T2D whereas
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visibly fewer LDs were present in healthy donors and that LD

number increases with age. Whether LDs may be a protective or

deleterious organelle during the development of T2D requires

further investigation. Crucially, b-cell LDs are poorly

characterized and elucidating their role in b-cell dysfunction and

viability should be the subject of future work.
3.3 Fatty acid-induced endoplasmic
reticulum stress in human b-cells

For pancreatic b-cells, the endoplasmic reticulum (ER) is an

essential organelle. More than 50% of protein production is insulin

and the need for b-cells to raise by several folds their insulin

biosynthesis in response to rising glucose concentrations poses a

major challenge for the ER (75). Disruption to the homeostasis of

the ER by pharmacological and physiological stressors can trigger

ER stress. This process causes unfolded or misfolded proteins to

gather at the ER, activating stress sensors that induce the unfolded

protein response (UPR). The UPR is mostly initiated for the

restoration of ER function, although it can perform the role of a

binary switch between cell death and survival. Acute ER stress

(Figure 4A) activates a regulated UPR, promoting cell survival,

whereas prolonged ER stress (Figure 4B) causes UPR

hyperactivation leading to apoptosis (80).

Immunostaining for ER stress markers provides evidence that

this network is active in ex vivo human islets of T2D donors (81).

While there is a wealth of evidence linking lipotoxicity to ER stress

in rodent b-cells [e.g. (27, 82–84)], fewer studies support FFA-

induced ER stress in human b-cells (28, 85). In rodent b-cells,
palmitate can activate the expression of 9 ER stress markers within

the PERK, IRE1 and ATF6 pathways, impair ER Ca2+ stores and

trigger ER-stress-induced apoptosis (Figure 4A, B). Those studies

that have investigated LC-SFA induced ER stress in human islets

have found palmitate to activate 4 ER stress markers across the 3

arms of the chronic ER stress pathway (Figure 4A, B). Exposing

human islets to 500mM palmitate for 24h significantly increased the

expression of BIP, CHOP, and PERK compared to control-treated

islets, and caused ultrastructural changes to the ER, increasing

volume density (85). Exposing palmitate to human islets for 48h

also increased the expression of ATF3, CHOP, XBP1s and BIP (28).

Similar to findings in rodent models, LC-MUFA oleate did not

induce ER stress signaling in human islets (28). It is believed that

under certain conditions, lipotoxicity can be exacerbated by

elevated glucose concentrations (glucolipotoxicity). The ER stress

markers ATF3 and CHOP were upregulated in human islets in a

glucose-independent manner and glucose failed to elicit a response

independently (28).

In b-cells derived from human embryonic stem cells (SC-b-
cells), palmitate treatment increased the expression of ER-stress

markers IRE1a, XBP1 and sXBP1 (86). Strikingly, ZnT8 loss of

function attenuated palmitate-induced ER stress in SC-b-cells via
modulation of zinc levels (86). Conversely, palmitate alone and

palmitate in combination with high concentrations of glucose did

not induce ER-stress in EndoC-bH1 cells (9, 63). This may be a
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feature of the EndoC-bH1 cell line. Oleson et al. (87) failed to elicit

ER-stress when treating EndoC-bH1 cells with the Ca2+ ATPase

(SERCA) inhibitor, thapsigargin. This was attributed to the basal

expression of heat shock protein 70 (HSP70) protecting EndoC-

bH1 cells against ER stress activators (87). Other labs have however

reported thapsigargin to induce ER stress in EndoC-bH1 cells, with

Cunha et al. reporting thapsigargin to trigger EndoC-bH1 cell death

(9, 87, 88). To summarize, there is evidence to support LC-FFA

induced ER stress in human b-cells although this pathway has

mainly been characterized in rodents. Future studies should

characterize the ER stress pathway in human b-cells upon

lipotoxic insult.
3.4 Fatty acid-induced impaired autophagy
in human b-cells

Macroautophagy (autophagy hereafter) is the main intracellular

degradation pathway. Autophagosomes sequester cytoplasmic

material (e.g., lipids) prior to fusing with lysosomes where their

content is degraded. The degraded material is then released back

into the cell, thereby providing new building blocks or a source of

energy. Autophagy contributes towards maintaining cellular

homeostasis but under stress conditions, it can mediate cell death

or survival. Emerging evidence suggests that autophagy is impaired

in b-cells of T2D donors (87). Rodent b-cells incubated with LC-

SFA show alterations to autophagy (89–91). However, in the rodent
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data, a consensus is lacking on whether b-cell autophagy is

protective or deleterious upon lipotoxic insult, and if LC-SFA

increases or impairs autophagic flux.

Autophagy can be stimulated in human islets through LC-FFA

exposure (91, 92). Although, few studies have explored whether

autophagy contributes towards human b-cell lipotoxicity. Despite
this paucity of investigations, overloaded autophagosomes coupled

with a reduction in the expression of the lysosomal proteases

cathepsin B and D, and lysosome-associated membrane protein 2

(LAMP2), have been reported in b-cells from subjects with T2D

(93). Cathepsin B and D and LAMP2 are involved with lysosomal

fusion and protein degradation, respectively. Exposing human islets

for 24h to 1mM LC-FFA (oleate/palmitate 2:1) triggers b-cell death,
vacuole accumulation and a decrease in LAMP2 expression (93).

This implies that in T2D, there may be a reduction in b-cell
autophagic flux and if lipotoxicity is the cause, potentially

through an obstruction in lysosomal fusion. There is also

evidence to support that autophagy plays a protective role against

ER stress in human b-cells (85). Under conditions of palmitate-

induced ER stress, rapamycin, a known inducer of autophagy,

prevents the expression of ER stress markers and apoptosis in

human islets (85). The autophagy inhibitor, 3-MA, also enhances

palmitate-induced human b-cell apoptosis (85). Collectively, these
preliminary studies support the contribution of autophagy to

human b-cell lipotoxicity; however it remains to be determined

whether autophagy is deleterious or protective and this should be

the subject of future studies.
A B

FIGURE 4

The ER stress network and members activated in rodent and human b-cells exposed to LC-FFA. (A) Within the ER lumen, misfolded and unfolded
proteins accumulate, sequestering and binding to BIP, which triggers the activation of PERK, IRE1, and ATF6. ER stress sensors are then activated,
initiating the UPR pathway which, downstream results in the upregulation of genes that alleviate ER stress. (B) With prolonged ER stress, ER stress
sensor activation initiates predominantly the PERK- and IRE1-dependent ER stress pathways to induce an apoptotic response. Activating transcription
factor 4 (ATF4); Ccl-2 homologous antagonist/killer (BAK); Bcl-2-associated X protein (BAX); BH3 interacting-domain death agonist (BID);
Immunoglobulin heavy-chain binding protein (BIP); Cytochrome c (C); CCAAT-enhancer-binding protein homologous protein (CHOP); eukaryotic
translation initiation factor 2a (eIF2a); inositol 1,4,5-triphosphate (IP3R); inositol requiring ER-to-nucleus signal kinase 1 (IRE1); c-Jun N-terminal
kinase (JNK1); Nuclear factor ĸB (NFĸB); PKR-like ER kinase (PERK); IRE1 dependent decay (RIDD); SH3 homology-associated BTK binding protein
(Sab); sarco/endoplasmic reticulum Ca2+-ATPase (SERCA); site-1 protease (S1P); TNF receptor-associated factor 2 (TRAF2); X-box binding 1 (XBP1).
Information of potential mechanisms extracted with reference to (76–79).
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3.5 Fatty acid-induced mitochondrial
dysregulation in human b-cells

It is likely that mitochondrial aberrations contribute towards

b-cell lipotoxicity, as this organelle plays a prominent role in both

insulin secretion and apoptotic pathways. Mitochondria are

complex organelles that constantly undergo a process of fission

and fusion to form intracellular networks for the distribution of

metabolites, proteins and lipids to facilitate metabolic efficiency.

Perturbations to mitochondrial morphology and dynamics can

have profound effects on insulin secretion and can instigate

apoptosis in rodent b-cells (94, 95); a process that can be

stimulated through LC-SFA exposure (95). Located in the inner

mitochondrial membrane is the non-specific, Ca2+-dependent,

mitochondrial permeability transition (MPT) pore. It is widely

understood that palmitate promotes the opening of the MPT,

causing mitochondrial swelling and protein release which can

lead to apoptosis (96). Also located at the inner mitochondrial

membrane is the apoptogenic factor, cytochrome c, anchored by the

phospholipid, cardiolipin. Cardiolipin remodeling through the

incorporation of saturated fatty acid species can stimulate the

dissociation of cytochrome c, triggering the apoptotic pathway

(97). However, LC-FFA-induced mitochondrial remodeling,

swelling and disruption to networks has, to the best of our

knowledge, been shown almost exclusively in rodent b-cells.
In b-cells from T2D donors, there is a similar number of

mitochondria relative to control subjects, however, the

mitochondrial volume density is significantly higher with an

increased protein expression of UCP-2, complex I and V of the

electron transport chain (85, 98). Islets from individuals with T2D

have an increased mitochondrial density with lower cytoplasmic

ATP levels, a lower ATP/ADP ratio and an impaired

yperpolarization of the mitochondrial membrane which impacts

the insulin secretory response to glucose (98). Collectively, these

observations support that mitochondrial dysfunction (particularly

the MPT theory) is present in human b-cells although further

investigations are required to establish if lipotoxicity is the cause.
3.6 Fatty-acid induced oxidative stress in
human b-cells

An excessive accumulation of reactive oxygen species (ROS)

coupled with an insufficient antioxidant response can result in

oxidative stress. Pancreatic b-cells lack a comprehensive

antioxidant system and thus are susceptible to oxidative stress,

potentially due to ROS acting as a metabolic signaling molecule for

GSIS in this cell type (99). However, a sustained level of ROS can

cause lipid peroxidation, DNA damage, and the oxidation of

proteins, which can cause b-cell death. The principal ROS

identified in b-cells includes hydrogen peroxide, superoxide and

hydroxyl radicals, which are mostly derived from the oxidation of

LC-FFA (100). Peroxisomes produce ROS as a bi-product of FFA b-
oxidation and mitochondrial FFA oxidation produces ROS through

complexes I and III of the electron transport chain (101). Thus, the
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theory of b-cell lipotoxicity involves enhanced ROS formation by

peroxisomal and mitochondrial FFA oxidation, coupled with a poor

antioxidant system thereby contributing towards b-cell death.
In rodent b-cells, topics of debate include whether

mitochondrial or peroxisomal-derived ROS has the greater

contribution towards b-cell lipotoxicity (101). Although it has

previously been shown that mitochondrial-derived ROS can cause

rodent b-cell death (through mitochondrial DNA damage) (102),

uncoupling protein-2 (UCP-2) may act as a protective mechanism.

UCP-2 acts to uncouple the electron transport chain when there is a

surplus of LC-FFA, thereby decreasing ATP production via the

lowering of the mitochondrial membrane potential. The activation

of UCP-2 is believed to stop ROS production and enable the export

of harmful peroxides from the mitochondrion (103). However, the

UCP-2 theory is debated (104) and a reduction in ATP production

due to LC-FFA-induced UCP2 activity may still have a negative

impact on insulin secretion.

Oxidative stress markers (such as 8-OH-deoxyguanine) have

been observed in pancreatic biopsies from individuals with T2D

(105, 106). In islets of T2D subjects there is also an increased

expression of UCP-2 at the protein level, and higher levels of

nitrotyrosine compared to non-diabetic controls (98, 107).

Human islets exposed to LC-FFA for a 24h period have an

accumulation of the nitrogen-free radical biomarker,

nitrotyrosine, which was reduced with the application of the

antioxidant, IAC (107). Oxidative stress markers are coupled with

a change in the gene expression of enzymes involved in ROS

scavenging, including a reduction in SOD1 and an increase of

HO-1, glutathione peroxidase and catalase (107, 108). Collectively,

this supports that LC-FFA have the ability to alter the antioxidant

system of human b-cells but more research is needed to clarify this

effect and should be the topic of future work.
4 Conclusion

Due to the complexity of the problem, and the lack of conclusive

evidence, it is unclear whether b-cell lipotoxicity occurs in human

pathology in vivo. As we have shown in this review, this is

complicated by the lack of consensus regarding how changes in

blood FFA composition and concentration are reported, and which

key factors were accounted for when creating matched controls.

While science should not aim to be too prescriptive, it may be that

the development of consensus guidance, akin to a ‘core outcome set’

often seen in clinical trials, could be beneficial. Such a document

would aid in the standardization of reporting of data for

determining the effects of FFA on b-cell function in vivo, thereby

allowing for greater insight when aggregating results.

It is clear from our review of the evidence that further in vivo

studies are required to establish the role that LC-FFA play in the

demise of b-cells during the development of human T2D. However,

there is a wealth of evidence to support that chronic exposure of LC-

FFA to human b-cells in vitro is deleterious (see Table 1). It is

pivotal, however, that the exact concentration of LC-FFA that the b-
cells are exposed to is determined as without this knowledge it
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cannot be inferred whether lipotoxicity is relevant to the human

condition. Similarly, as LC-FFA can exert different physiological

effects on human b-cells future studies should use a range of LC-

FFA species within their investigations.
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TABLE 1 Key differences in b-cell lipotoxicity between humans
and rodents.

Theory of
b-
cell
lipotoxicity

Human (b-cells) Rodent (b-cells)

Lipid
homeostasis

LC-SFA trafficked to
lipid droplets (8, 9, 73).

LC-SFA not trafficked to lipid
droplets (9).

ER stress LC-SFA activate the
expression of 4 ER
stress markers (27, 84).

LC-SFA activate the expression
of 9 ER stress markers (26,
81–83).

Impaired
autophagy

Markers of impaired
autophagy in pancreatic
sections from T2D
donors (85, 91).

Rodent b-cells treated with LC-
SFA have alterations in
autophagy (87–89) but unclear
whether LC-SFA increases or
impairs autophagic flux.

Human islets treated
with LC-SFA have
overloaded
autophagosomes with a
potential reduction in
lysosomal fusion (91).

Mitochondrial
dysregulation

In b-cells from
individuals with T2D:
Increased
mitochondrial density
(96).
Increased UCP-2
expression (96).
Impaired
hyperpolarisation of the
mitochondrial
membrane (96).
Uncertain whether
lipotoxicity is the cause.

LC-SFA induce mitochondrial
permeability transition pore
activation leading to rodent b-
cell apoptosis (94).

LC-SFA induce cardiolipin
remodelling leading to rodent b-
cell apoptosis (95).

Oxidative stress Markers of oxidative
damage found in
pancreatic biopsies
from T2D individuals
(103, 104).

Unclear whether ROS (produced
as a bi-product of LC-SFA
breakdown) from the
mitochondria or peroxisomes
play a greater role in rodent b-
cell lipotoxicity (99).

Treating b-cells with
LC-SFA causes nitrogen
free radicals to
accumulate and a
change in the
expression of ROS
scavenger proteins
(105, 106).

UCP-2 may act as a protective
mechanism against
mitochondrial derived
ROS (101).

Inflammation Islets from individuals
with T2D display pro-
inflammatory mediators
(79, 109).

LC-FFA induces pro-
inflammatory factors in rodent
b-cells (109).

LC-SFA increase the
expression of pro-
inflammatory markers
in
non-diabetic b-cells
(79, 109).

LC-SFA activates the STING-IRF3
(stimulator of interferon gene
stimulator and interferon
regulatory factor 3) signalling
pathway which initiates
inflammatory and apoptotic
pathways in rodent b-cells
(110, 111).Proinflammatory

cytokines can trigger
human b-cell
death (10).
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