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We review the modulation stability of parallel-propagating/field-aligned whistler-mode
chorus (WMC) waves propagating in a warm plasma from a formal perspective with a
focus on wave–particle interactions via ponderomotive forces. The modulation instability
criteria are characterised by the group velocity dispersion, dcg/dk, for whistler-mode
waves and a condition on the ratio between the group velocity cg and the electron sound
speed cs,e. We also demonstrate that in order to investigate the spatiotemporal evolution of
the envelope and the formation of packets (according to this mechanism), one necessarily
needs to account for the motion of ions within the system, leading to an ionic influence on
the modulation instability threshold determined by the ion fraction of the plasma. Finally,
we demonstrate that chirping may be captured when higher-order effects are included
within the spatiotemporal evolution of the amplitude. This yields not only an explicit
expression for the sweep rate but also identifies a possible origin for the power band gap
that occurs at half the electron gyrofrequency. Numerical validation demonstrates that the
interaction between wave packets is a source for the emergence of tones observed within
mission data, and such interactions may be a major source of the electron energisation
which WMC are responsible for.

Keywords: plasma nonlinear phenomena, plasma waves, space plasma physics

1. Introduction

Whistler-mode chorus (WMC) waves play a significant role in determining energetic
electron dynamics within terrestrial and magnetospheric plasmas (Horne et al. 2005;
Thorne et al. 2010; Artemyev et al. 2016; Woodfield et al. 2019). The WMC are one
particular manifestation of the so-called ‘whistler-mode’ electromagnetic/plasma wave
(Stix 1992), and are particularly noteworthy for their role in rapid electron energisation and
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2 D.J. Ratliff and O. Allanson

pitch-angle scattering (Bortnik, Thorne & Inan 2008; Omura, Katoh & Summers 2008;
Albert 2010; Artemyev et al. 2018; Zhang et al. 2022). Discussions of the role of WMC as
one driver among many (within the general context of energetic charged particle dynamics
in the inner magnetosphere) can be found in, for example, Green & Kivelson (2004),
Thorne (2010), Bortnik et al. (2016), Li & Hudson (2019) and Lejosne et al. (2022). In
perhaps overly simplistic terms, one can consider two main and contrasting challenges to
achieving a full understanding of the role of WMC in magnetospheric plasma dynamics.
While they are somewhat contrasting, both of these challenges are fundamentally united
by the critical role that is played by wave–particle interactions (Brice 1964; Kennel &
Petschek 1966; Tsurutani & Lakhina 1997; Summers, Thorne & Xiao 1998).

One challenge, the ‘test-particle’ case, is to determine the direct impact of WMC
on electrons that would otherwise evolve adiabatically as a geomagnetically trapped
particle (Shklyar & Matsumoto 2009; Albert et al. 2022b). One of the most impressive
manifestations of this approach (‘wave effects on particles only’) is the application of
the resonant diffusion limit of the quasilinear theory (e.g. Kennel & Engelmann 1966;
Summers 2005; Allanson et al. 2022) to global-scale numerical modelling of the terrestrial
and planetary radiation belt populations using Fokker–Planck radiation-belt models (e.g.
Li et al. 2014; Glauert, Horne & Meredith 2018; Wang et al. 2020; Allison et al. 2021).
One of the numerous outstanding problems in this area is to understand and incorporate
the role of so-called ‘nonlinear wave–particle interactions’ (Artemyev et al. 2021, 2022),
with WMC playing a very important role.

Another challenge, the ‘self-consistent case’, is to instead try to solve for one or more
of the generation, interaction and subsequent evolution of the WMC wave modes, as a
function of, for example, a given initial plasma condition, and perhaps with some external
driving or particle sources/injections. Studies of this nature try to understand the evolution
of both the wave amplitude (i.e. amplitude amplification and modulation) and the structure
in frequency space (i.e. either rising or falling tones, or even more exotic forms such as
‘hooks’). We should point out that the most general definition of WMC includes a variety
of spectral forms, including comparatively structureless emissions (sometimes known as
‘hiss-like chorus’; e.g. see Tsurutani & Smith (1974), Li et al. (2012), Tsurutani, Lakhina
& Verkhoglyadova (2013), Gao et al. (2014) and Shumko et al. (2018)), as well as the more
well known and coherent/structured/‘chirping’ rising and falling tones (Burtis & Helliwell
1976; Koons & Roeder 1990; Li et al. 2011, 2012; Santolík et al. 2014; Taubenschuss
et al. 2014; Teng, Tao & Li 2019). Approaches of this kind usually necessitate some
form of ‘self-consistent approach’, in which one ultimately solves some variation of the
Vlasov–Maxwell system (Schindler 2007) given a number of constraints. Therefore, one
is likely solving first for the influence of unstable particle distributions on waves (Gary
1993), and possibly also for subsequent resulting turbulence induced by wave–particle
interactions and/or wave–wave interactions (Kadomtsev 1965; Sagdeev & Galeev 1969).

A number of important open questions remain regarding both of these challenges, and
of course the separation into these two contrasting approaches (which for the purposes of
this discussion have been crudely polarised as ‘wave effect on particle only’ and ‘wave
evolution only’) is an approximation to the complex, dynamic and networked energy
pathways of the inner magnetospheric plasma (Jaynes et al. 2015; Li & Hudson 2019;
Ripoll et al. 2020; Koskinen & Kilpua 2022). Many works that consider the ‘test-particle’
and ‘self-consistent’ problems consider the fundamental role played by cyclotron resonant
interactions (e.g. see Albert, Tao & Bortnik (2012) and Omura-2021, respectively). In
terms of the ‘test-particle’ approach, it is well known that high-amplitude chorus (and
indeed other mode) waves can interact with electrons via cyclotron resonance and instigate
particle transport that can be described either via quasilinear diffusion coefficients if
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The nonlinear evolution of whistler mode waves 3

the background field inhomogeneity is sufficiently large (Albert 2010), or else via more
complicated descriptions (e.g. see Artemyev et al. 2021; Albert et al. 2022b, 2022a;
Artemyev et al. 2022; Bortnik et al. 2022). In this work we specifically consider the role of
the ponderomotive force, and, furthermore, consider influences of both waves on particles,
and particles on waves, i.e. a version of the ‘self-consistent’ approach.

There have been a number of thorough recent reviews and discussions of WMC
generation and evolution (Gołkowski, Harid & Hosseini 2019; Tao et al. 2020; Omura
2021; Tao, Zonca & Chen 2021; Zonca, Tao & Chen 2021) and so we do not do a complete
literature review, instead directing the reader to those references and therein. It suffices to
say that the inhomogeneity of the background magnetic field is frequently invoked to play
a key role in the chirping mechanism for WMC (Helliwell 1967; Sudan & Ott 1971; Nunn
1974; Vomvoridis, Crystal & Denavit 1982; Trakhtengerts 1995; Omura et al. 2008; Tao
et al. 2021), facilitating resonant particle trapping, bunching and the formation of ‘resonant
currents.’ However there are some proposed mechanisms that do not rely upon the
inhomogeneous background to drive the chirping behaviour (Zonca et al. 2021; Zonca, Tao
& Chen 2022), and in particular, we note recent particle-in-cell numerical experiments that
demonstrate chirping behaviour within the context of a uniform background magnetic field
(Wu et al. (2020)). The most significant contribution of this work is to demonstrate the key
role that the ponderomotive force, identified in previous theoretical studies of nonlinear
WMC evolution (Ganguli et al. 2010; Crabtree et al. 2012; Krafft & Volokitin 2018), plays
in driving chirping behaviour in WMC within the context of a homogeneous background
field. This phenomenon could now be considered in addition to other aforementioned
mechanisms.

In this paper we simultaneously consider the role of wave–particle interactions both on
the evolution of WMC and on the particle populations themselves due to ponderomotive
forces. We will do so via the theory of modulations and weakly nonlinear theories, through
which the evolution of the wave amplitude is coupled to the variations of number density,
to observe how the interplay between the two manifests at the onset of nonlinear effects.
Ultimately this will build upon the ideas introduced in previous theoretical treatments, and
crucially those introduced by Omura et al. (2008) and Omura (2021), which investigated
the evolution of WMC given a background particle population, now accounting for the
simultaneous evolution of these species alongside the wave motion. However, we reiterate
that the derivations presented in this work are limited to the case in which the background
magnetic field is infinite and uniform. Therefore, in the context of, for example, the Earth’s
radiation belts, this implies that the analysis applies close to the geomagnetic equator.

The approach that we take is facilitated by several observations. The first is that coherent
WMC waves are known to be narrow banded, with the bandwidth being approximately
10 % of the local gyrofrequency (Santolík et al. 2003; Santolik et al. 2008), meaning that
one may restrict the study of the dynamics to a single wave mode. Further, the asymptotic
picture is simplified further by the observation that the majority of nonlinear generation
processes and amplification events occur near-equatorially in the magnetosphere and
are confined to very limited latitudes (LeDocq, Gurnett & Hospodarsky 1998; Lauben
et al. 2002; Meredith et al. 2020), meaning it is not unreasonable to restrict ourselves
to a fluid system in Cartesian coordinates without latitude considerations and that we
are within the remit of weak curvilinear magnetic field effects. Finally, by considering
the field-aligned case so that the wavevector k is parallel to the background field, i.e.
k ‖ B0) the reduction procedure is much more straightforward owing to the fact that the
Lorentz force due to the wave vanishes. This is because the field-aligned case leads to the
wave and the velocity field also being parallel to one another and so for the wave (i.e.
perturbed) portion of the motion one has v × B = 0. As a result, the Lorentz force does
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4 D.J. Ratliff and O. Allanson

not generate anything beyond linear terms in an asymptotic theory. A consequence of this
is that higher harmonics, that is non-zero integer frequency multiples of the carrier wave
(e.g. ±2ω,±3ω, . . .), do not contribute to the wave motion. Instead, the wave evolution
consists of simply the carrier wave interacting with the particle populations, and it is solely
the wave–particle interaction via the ponderomotive forces that drives the nonlinearity
observed in the wave’s evolution.

With these simplifying factors considered, we are able to explore the emergence of
wave packets in WMC using two main nonlinear approaches. The first of these is via
classical modulation theory (Whitham 2011), which postulates that the parameters of the
wave such as the amplitude, frequency and wavenumber all evolve slowly over the course
of many wave periods in a similar fashion to classical Wentzel–Kramers–Brillouin (WKB)
theory. Such approaches have been successfully used within space plasmas (Mjølhus
1976; Gribben & Parkes 1977; Mjølhus & Wyller 1986; Eliasson & Shukla 2005; Omura
et al. 2008; Tracy et al. 2014; Omura 2021), with the closest related work to this paper
considering WMC to deduce the modulation stability of these waves (Tam 1969), but
with wave–particle interactions not fully accounted for and by use of a simplified version
of the dispersion relation. When a similar approach is also utilised for the electron
velocity and number density with ponderomotive effects accounted for, we obtain our
first insight into the ponderomotive-driven wave–particle interactions influencing WMC
modulation. It is these interactions that are influencing the emergence of wave packets
through electron-acoustic effects. Ultimately this builds upon the ideas introduced in
theoretical treatments of the second approach, crucially those introduced by Omura et al.
(2008) and Omura (2021) which investigated the evolution of WMC given a background
particle population, and now account for the simultaneous evolution of these species
alongside the wave motion.

The second approach is to undertake a formal multiple-scales analysis to derive a
direct evolution equation for the spatiotemporal evolution of WMC amplitude, taking
the form of the nonlinear Schrödinger (NLS) equation. This equation has emerged from
heuristic arguments in prior works (Karpman & Washimi 1977; Stenflo, Yu & Shukla
1986), with the key work of Krafft & Volokitin (2018) highlighting its emergence within
a wave–particle interaction framework. However, one of the results of this paper is to
demonstrate that a formal asymptotic procedure reveals that one should be cautious using
such approaches due to an inconsistency that emerges in the induction equation, which
is overlooked in previous approaches. As a consequence it highlights that the motion of
ions, and not just a population that ensures neutrality, must necessarily be considered to
resolve this inconsistency, and in doing so we find that these wave–particle interactions
are augmented. Our paper demonstrates that although some of the qualitative conclusions
of Krafft & Volokitin (2018) are the same, namely that the group velocity dispersion
(by which we mean dcg/dk) plays a role in the formation of solitons, the ion number
fraction plays a critical role in whether WMC elements are to be observed. Therefore, one
of the main conclusions of this work is the statement that ion motion cannot be neglected
in such problems.

With the understanding that arises from the above theoretical approaches, we are then
able to augment these ideas within this paper by capturing WMC chirp, the mechanism
behind rising and falling tones and one of the most intriguing features of WMC. This
phenomenon presents itself as a significant repetitive sweep of the dominant frequency
peak of the wave. It is known that the NLS equation does not admit such behaviours
and requires higher-order effects to be introduced to account for this behaviour. This is
precisely what we obtain as part of this work, extending the multiple-scales analysis we
demonstrate from a formal perspective that this process arises from the wave–particle
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interactions. A surprising consequence of this is that the extended model may provide an
explanation for the observed band gap in WMC waves at half the gyrofrequency (Li et al.
2011; Fu et al. 2014; Gao et al. 2019; Chen et al. 2022) as the terms responsible for
frequency variations vanish at precisely this frequency. As such, the theory suggests that
sweep rates decrease for waves that approach the band gap before arresting completely.
Overall, this analysis provides expressions for the sweep rate of a single WMC element,
which demonstrates that within isolation a WMC element/wave packet cannot produce a
net change in the frequency of the wave. Instead, it suggests that the chirping behaviour
observed originates from the interaction of several WMC elements, which we corroborate
with numerical experiments. These produce repetitive WMC tones, and the space–time
series demonstrates that their interaction also generates pulsations in the wave envelope
which manifest in the particle dynamics as amplifications in the energy density. This, we
speculate, may shed light on which stage of their propagation WMC might be energising
the electron populations they trap during transit.

The outline of this paper is as follows. We begin with a review of the modulation
instability of parallel propagating WMC in § 2, a process entirely driven by the
ponderomotive wave–particle interactions, outlining where such waves become unstable
and form subpacket structures. Subsequently, we derive evolution equations for the wave
envelope of WMC in § 3, leading to a NLS equation and revealing that ions play a crucial
role in the envelope dynamics and alter the expected modulational stability transition.
Owing to a lack of chirping behaviour, we add correction terms to the NLS that capture
such effects in § 4, leading to explicit expressions for chirping within a single element.
Finally, we use numerical simulations of this model in § 5 to demonstrate how the
interactions between wave packets is the main driver of the chirping seen within the
mission data. Concluding remarks are given in § 6.

2. Review: modulation instability of whistler mode waves in electron-only plasmas

To understand the formation of WMC wave packets, we must first analyse the
necessary conditions that permit their formation. This is done from the viewpoint of
modulation instability, the process under which uniform wave trains destabilise and
undergo amplitude modulations, ultimately to form several wave elements as wave energy
clusters within packets (Ablowitz & Segur 1981; Chen et al. 1984; Billingham & King
2000; Treumann & Baumjohann 2001; Whitham 2011). The approach to identify this
instability is to derive quasilinear modulation equations governing the slow evolution of
waves, typically amplitude and wavenumber, and determine when this system possesses
complex eigenvalues. Quasilinear modulation equations have been derived previously for
the wave without particle interaction effects, with notable works relevant to our approach
including Tam (1969), Omura et al. (2008) and Omura (2021), but a key extension of this
work will be to introduce modulation equations governing the electron number density
and parallel velocity. Such effects make a significant difference to the stability transition
of the wave and thus it is pertinent to include such evolution simultaneously with the
electromagnetic wave.

Throughout this paper, we will be considering collisonless, warm, isothermal plasmas
from a fluid description. In the first instance, we will be considering a non-relativistic
plasma purely comprising of electrons, neglecting any ion influences for the moment but
we note these will be accounted for in later sections. The non-relativistic assumption
applies to the fluid velocities v � c (with v the magnitude of the velocity of a given
fluid bulk motion), as is standard practice in such domains (Omura 2021). Furthermore,
the mathematics that follows in this paper that does consider individual particle/kinetic
quantities (e.g. the gyrofrequency Ω = |q|B0/m) does assume non-relativistic particle
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6 D.J. Ratliff and O. Allanson

velocities. This is valid for the non-relativistic particle energies that we consider, for
example, electron energies ≤511 keV. Thus, we will be concerned with the following
equations of motion:

∇ × E = −∂B
∂t

, (2.1)

∇ × B = μ0qnV e + 1
c2

∂E
∂t

, (2.2)

∂V e

∂t
+ (V e · ∇)V e + c2

s

n
∇n = q

m
(E + V e × B) + F P, (2.3)

∂n
∂t

+ ∇ · (nV e) = 0. (2.4)

In the above, B and E represent the magnetic field and electric field, respectively.
The electron velocity field and electron number density, V e and n, respectively, are
fluid quantities generated from the first two moments of a given distribution function
(Chen et al. 1984; Baumjohann & Treumann 2012),

n =
∫

f (v) dv, nV e =
∫

vf (v) dv. (2.5a,b)

The parameters q = −e and m represent the charge and mass of an electron, μ0 is the
magnetic permittivity constant, c is the speed of light and c2

s = kBT/m is the speed of
sound for the purely electron plasma. The presence of this sound speed, and by virtue the
∇n term in the momentum equation, are the result of the warm plasma and isothermal
assumptions where T is finite (Chen et al. 1984). Such terms would be neglected within
the cold plasma regime where T → 0, whereas hot plasmas would be more accurately
treated via a kinetic (Vlasov) approach rather than the fluid description of this paper (Chen
et al. 1984; Baumjohann & Treumann 2012). The ponderomotive force F P acting on each
electron is given by (see, e.g. Lamb & Morales 1983; Nicholson 1983; Chen et al. 1984)

F P = − ω2
pe

2μc2ω2
∇ (〈|E|2〉) , (2.6)

where ωpe is the electron plasma frequency and ω is the frequency of the
electromagnetic wave. In essence, this force determines the mean drift of electrons
over rapid gyrofrequency oscillations due to amplitude modulations emerging within
the monochromatic wave train. There are a number of choices one can make for this
force depending on the plasma environment (Treumann & Baumjohann 1997; Krafft
& Volokitin 2018), but in this body of work we consider the simplest such force
corresponding to the lowest-order ponderomotive effect. This is to illustrate that the
presence of such a force, even in its most rudimentary form, is crucial for wave–particle
interactions and as a consequence the formation of chorus wave packets and elements.

The framework in which this will be achieved is through the use of WKB theory, or
equivalently Whitham modulation theory. The starting point for this will be to consider
the following Stokes wave ansatz for a wave–particle solution, representing a parallel
propagating right polarised wave in the presence of a uniform magnetic field with
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strength B0:
B = B0ẑ + (x̂ − iŷ)BWeiθ ,

E = α1(x̂ − iŷ)BWeiθ ,

V e = v‖ẑ + α2(x̂ − iŷ)BWeiθ + c.c. + V ẑ

n = n0 + N, θ = ωt − kz,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.7)

where z is in the direction of ẑ. The parameters v‖ and n0 represent the constant
parallel velocity and reference electron number density, respectively.1 The constants α1, α2
characterising the wave modes of the electric and electron velocity, respectively, can be
found as part of the linear theory and are explicitly given by

α1 = − iω
k

, α2 = − q
mk

ω − v‖k
ω − v‖k − Ωe

, (2.8a,b)

as detailed in the Appendix (A), where Ωe = eB0/m is the electron charge with e being
the elementary electron charge. The wave amplitude BW , mean velocity perturbation V
and number density perturbation N are initially assumed to be constant but small, so that
|BW |/B0 � 1. Typically one is able to characterise this smallness by comparing linear and
leading-order nonlinear terms, which for WMC is achieved by comparing the convective
term with the Lorentz force in the momentum equation,∣∣∣∣BW

B0

∣∣∣∣ sin φ �
∣∣∣∣ω − v‖k

Ω

∣∣∣∣ , (2.9)

where φ is the wave normal angle, that is the angle between the wave and background
magnetic field. It follows that this ordering of magnitude is trivially satisfied for any
choice of the system parameters for parallel propagating WMC. Thus, there is considerable
freedom regarding the magnitude of waves this theory can consider, but must still be
small enough to separate linear and nonlinear scales. The expansion procedure requires
that N, V = O(|BW |2), owing to the fact that these oscillation-free terms must balance the
oscillation-free terms generated by the ponderomotive force.

The approach is to substitute this ansatz into the governing equations (2.1) and consider
terms up to O(|BW |3). The details of this calculation can be found within the Appendix (A),
but we summarise the key elements of the approach here. The carrier wave terms, when
substituted into the governing equations, generate the dispersion relation

D(ω, k, v‖) = 1
c2

[
(ω − v‖k − Ωe)(c2k2 − ω2) + ω2

pe(ω − v‖k)
]
, (2.10)

which vanishes whenever the frequency ω = ω0(k, v‖) satisfies the typical whistler-mode
dispersion curve

c2k2 = ω2
0 − ω2

pe(ω0 − v‖k)

ω0 − v‖k − Ωe
. (2.11)

1It is worth remembering that this velocity represents the average particle velocity and not one prescribed to all
particles. There are a number of distributions that generate the reference values used within this paper, and to list the
two simplest which will generate the reference values, we have f1 = n0δ(‖v − v‖ ẑ‖) and f2 = n0/(π

1
2 σ)3 exp(−‖v −

v‖ ẑ‖2/σ 2). Further, we are not requiring a specific value of v‖ within this paper (in fact, we only impose that this velocity
is not the gyroresonant one), although we for simplicity will set it to zero when evaluating coefficients within our analyses.
Thus, this work does not require that all particles possess the same velocity v‖ ẑ and proceeds with a suitable choice of
distribution that admits two constant moments, avoiding the limitations of a specifically chosen prescribed velocity for
all particles outlined by Nunn (1975).
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8 D.J. Ratliff and O. Allanson

The presence of the electron velocity within this dispersion relation is a natural
consequence of the ansatz, rather than a particular assumption within our fluid approach,
and acts like a Doppler shift on the plasma response portion of the dispersion curve.
Typically this velocity is ignored within cold non-relativistic plasma fluid theory, which is
permissible as |v‖| � c, as it adds no new physics to the linear wave motion. It is known
to have consequences on the nonlinear portion of the motion due to bulk effects (Krafft
& Volokitin 2018), as we shall see within our analyses. We will make use of the fact we
can neglect the particular value of v‖ when evaluating later coefficients within the theory
of this paper, as the choice of velocity does not meaningfully impact the results of this
paper. The theory here may proceed so long as one avoids the choice that leads to the first
cyclotron resonance,

v‖ = ω0 − Ωe

k
, (2.12)

where alternative treatments are required (Omura et al. 2008; Omura 2021). By continuing
the analysis to higher powers of the amplitude to include amplitude-dependent weakly
nonlinear effects, one finds the result

DBW + ω2
pe

c2n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
NBW = 0,

c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2 = γ − v2

‖
2

− c2
s ln n0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.13)

which can be used to extract the nonlinear dispersion relations

ω = ω0(k, v‖) + ω2
pe

(
(ω − v‖k)2 − Ωeω

)
ω2

peΩe + 2ω(ω − v‖k − Ωe)2

N
n0

,

γ = v2
‖

2
+ c2

s ln n0 + c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.14)

These are denoted as nonlinear dispersion relations due to the presence of the wave
amplitude, mean velocity and number density variation as corrections to the linear
dispersion. To complete our analysis here, we demonstrate the above system can be cast
in variational form, to make the subsequent analysis closer to classical wave modulation
theory (Whitham 2011). This is done by introducing

B = k2

n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
|BW |2, (2.15)

with the factor non-vanishing for whistler waves, allowing the system can be written as

D + ω2
pe

c2n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
N ≡ D + QN = 0,

c2
s − v2

‖
n0

N + QB = γ − v2
‖

2
− c2

s ln n0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.16)
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The above system of equations is generated by the B and N variations of Lagrangian
density

L = DB + QBN + c2
s N ln n0 +

(
v2

‖
2

− γ

)
(N + n0) + 1

2

c2
s − v2

‖
n0

N2,

with Q = ω2
pe

c2n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.17)

This Lagrangian can be thought of as that which is averaged over one period of the
whistler mode wave. It is from this Lagrangian density that we will derive the conditions
for the whistler wave to undergo a modulational instability, associated with wave packet
generation. Ultimately this will signpost this criterion in the electron case, which we will
develop within the more applicable but involved ion–electron plasma case.

2.1. Modulation instability
We may now study the Lagrangian (2.17) to determine when the parallel whistler wave is
expected to be stable and remain close to monochromatic. If it is not, it is expected to form
packets (also known as elements) and as a result generate larger amplitude events. We do
so by appealing to Whitham modulation theory (Whitham 1970, 2011) which has in the
past been utilised in plasma contexts for the same purpose (see Mjølhus (1976), Gribben
& Parkes (1977) and Mjølhus & Wyller (1986) for some key examples). Notably we will
be augmenting the existing literature on plasma modulations to account for wave–particle
interaction effects, requiring the consideration of an additional phase for the background
velocity. The crux of the approach is to introduce the ‘rapid’ wave phase and velocity
potential,

θ = ε−1Θ(Z, T), φ = ε−1Φ(Z, T), Z = εz, T = εt, ε � 1. (2.18)

This allows the wave parameters k, ω, v‖ and γ to vary slowly in space and time,

k = −ΘZ, ω = ΘT, v‖ = φZ, γ = −φT, (2.19)

where subscripts denote partial derivatives with respect to the subscripted variable. This
admits the phase consistency conditions

kT + ωZ = 0, (v‖)T + γZ = 0. (2.20)

We can replace ω and γ using (2.14) to obtain the first two modulation equations

kT +
(

ω0(k, v‖) + ω2
pe

(
(ω − v‖k)2 − Ωeω

)
ω2

peΩe + 2ω(ω − v‖k − Ωe)2

N
n0

)
Z

= 0,

(v‖)T +
(

v2
‖

2
+ c2

s ln n0 + c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2

)
Z

= 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.21)

The first of these equations is referred to as the conservation of waves, whereas the second
is the classical conservation of momentum for the plasma in the presence of the wave.
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10 D.J. Ratliff and O. Allanson

The subsequent two equations, which close the system, come from taking the Θ and Φ
variations of L , which when simplified give

BT +
(

cgB − Qk

Dω

BN
)

Z

= 0,

NT +
(

v‖(N + n0) − v‖
n0

N2 + Qv‖NB

)
Z

= 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.22)

These equations represent the conservation of wave action and the conservation of mass,
respectively. Thus, the complete modulation system is given by

kT +
(

ω0(k, v‖) + ω2
pe

(
(ω − v‖k)2 − Ωeω

)
ω2

peΩe + 2ω(ω − v‖k − Ωe)2

N
n0

)
Z

= 0, (2.23a)

BT +
(

cgB − Qk

Dω

BN
)

Z

= 0, (2.23b)

(v‖)T +
(

v2
‖

2
+ c2

s ln n0 + c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2

)
Z

= 0, (2.23c)

NT +
(

v‖(N + n0) − v‖
n0

N2 + Qv‖NB

)
Z

= 0. (2.23d)

Before proceeding, it is worth noting the connection between the system derived here
and that of the system considered (Omura et al. 2008; Omura 2021). When the electron
fluid responses are neglected (so that N, γ, v‖ = 0) the system (2.23) reduces to a form
that is identical to that of Omura when hot electron and magnetic curvature effects are
neglected, consistent with the warm plasma and uniform field assumptions of this paper.
Thus, the theory here could be used to extend parts of Omura’s quasilinear wave analysis
to account for higher-order nonlinear effects and the inherent wave–particle interactions
due to ponderomotive effects, essentially taking the form of perturbations to the cold
plasma distribution function. However, the aforementioned assumptions of this paper do
not permit the formation of the phase space holes necessary to support the formation
of rising tones within Omura’s work. Instead, the formulation of this paper is a more
local, fluid driven analysis focussing on a constant average electron velocity instead of
a hot electron distribution. As a consequence, the mechanism which generates rising
tones within this paper is of a different nature than that of Omura, but still rooted within
wave–particle interactions, and is the subject of later sections within this paper.

The four equations in (2.23) can then be written in quasilinear form (Whitham 2011),

UT + A(U)UZ = 0,

with U =

⎛⎜⎜⎝
k
B
v‖
N

⎞⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cg −
(

Q
Dω

)
k

N 0
∂ω0

∂v‖
−
(

Q
Dω

)
v‖

N − Q
Dω

ω′′
0B cg − Qk

Dω

N (cg)v‖ − Qk

Dω

B

QkB Q 0
c2

s

n0

0 Qv‖N n0 + N − N2

n0
Qv‖B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.24)
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The nonlinear evolution of whistler mode waves 11

This quasilinear system of equations encapsulates the wave–particle interactions for a
single wave – the second equation determines how the wave amplitude is modified
by the presence of variations to the number density, whilst simultaneously the fourth
equation describes how the local number density is altered due to the wave. The remaining
equations, the first and third, dictate how the local frequencies and velocity field responds
to the wave–particle interaction, respectively, and thus alter the properties of the wave
propagation.

These modulation equations for the wave parameters can now be analysed for their
stability, which is achieved by investigating small perturbations to some fixed state. We
take this constant state to be U0 = (k0,B0, 0, N0), noting that the choice of velocity does
not meaningfully impact the results that follow. By considering perturbations of the form
U = U0 + δÛei(Z−CT), then the leading-order perturbation is governed by the eigenvalue
problem

(A − CI)Û = 0. (2.25)

The resulting eigenvalues C ultimately determine the stability of this system – if they are
all real the constant state U0 is stable and the monochromatic wave perseveres; however,
when any of these eigenvalues is complex (occurring in complex conjugate pairs) there is
an exponentially growing mode that causes the perturbation to rapidly diverge from the
monochromatic wave state (Whitham 2011). The emergence of these complex eigenvalues
is more commonly referred to as a modulational instability. The characteristic polynomial
for this problem admits four roots in general, which can be categorised by their values as
B0 N0 → 0:

C = ±cs, C = ∂ω0

∂k
≡ cg (multiplicity 2). (2.26)

We focus on the latter set of roots, as it transpires that the eigenvalues associated with
the sound speed can be shown to be real but those associated with the group velocity can
become complex. This is typical of problems involving waves coupled to a mean field,
where it is the wave mode driving the instability(Bridges & Ratliff 2022; Tam 1970), and
so is not unexpected here either. For this problem, these latter roots can be expanded in
powers of B0 and N0, again assumed small, to give

C = cg ±
√

ω′′
0ω2B0 + O(B0, N), (2.27)

where the effective nonlinear frequency correction ω2 is given by

ω2 = ω4
peω

2(Ωe − ω)(Ωeω
2
pe + 2Ωeω

2 − 2ω3)

c2(c2
g − c2

s )(2Ω2
e ω + Ωeω2

pe − 4Ωeω2 + 2ω3)2)
. (2.28)

It is clear that these eigenvalues are complex whenever ω′′
0ω2 < 0. To determine when this

occurs more readily, we introduce the non-dimensionalscalings

ω = ΩeW, k = Ωe

c
K, cg = cV, ωpe = αΩe, cs = cν, (2.29a–e)

giving

ω′′
0 = 2c2α2(W − 1)2(4W4 − 4W3 − 4Wα2 + α2)

Ωe(2W3 − 4W2 + α2 + 2W)3
,

ω2 = α4Ω4
e W2(W − 1)(2W3 − 2W2 − α2)

c4(V2 − ν2)(2W3 − 4W2 + α2 + 2W)2
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.30)
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12 D.J. Ratliff and O. Allanson

(a) (b)

FIGURE 1. Signs of the right-hand side term in blue and instability in red for parallel
propagating whistler waves for subsonic (a) and supersonic (b) waves. The dashed line marks
the asymptote ω = Ωe/4.

The only sign changes that happen within the whistler wave interval 0 < W < 1 are the
roots of ω′′

0 ,

W3(W − 1)

W − 1
4

= α2, (2.31)

which for large α typical in the earth’s radiation belts approaches W = 1
4 , a quarter of the

gyrofrequency. The other sign change is due to the factor V2 − ν2 passing through zero,
which occurs when the whistler wave’s group velocity goes from subsonic (cg < cs) to
supersonic (cg > cs). Thus, we have the following criterion for the modulation stability of
whistler waves:

modulational instability when

{
W3(W − 1) < α2

(
W − 1

4

)
, |V| > ν (supersonic),

W3(W − 1) > α2
(
W − 1

4

)
, |V| < ν (subsonic).

(2.32)

This information is summarised in figure 1. It should be noted there are cases where |V| ∼
ν where the story is partially more complex and introduces a further stability boundary,
but this is not generic and will not be discussed in detail here. As the speed of sound scales
linearly with temperature within the setting considered, we can infer that the supersonic
case is more prevalent in cold plasmas, with the subsonic case being expected in warmer
plasmas. However, some caution should be noted here as the isothermal approximation is
known to be poorer for warmer plasmas (Li et al. 2010; Chen et al. 2012; Gao et al. 2014),
so a more technical theory to confidently conclude anything regarding this limit.

In summary, we have used classical modulation theory to explore the stability of
monochromatic WMC waves with the additional consideration of the particle effects.
A criterion for modulation instability, associated with the formation of wave packets, is
deduced by exploring the nature of the eigenvalues of the 4 × 4 quasilinear system (2.24),
revealing both the group velocity dispersion ω′′

0 and the difference between the squares
of the group and sound speed c2

g − c2
s . This identifies where one should look for the

subelement structures typical of WMC waves, and the analysis of their evolution forms
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the remainder of this paper. To do so we will rely on the classical perturbative approach
for the evolution of the wave envelope which we derive in the next section.

3. Ion effects and packet generation

The classical Whitham modulation approach of the previous section grants us insight
into the criteria necessary for WMC waves to develop into packets. It is the case, however,
that to formally derive an equation for the spatiotemporal evolution of these packets
one must also include the effects of ions within the analysis. It is not a priori obvious
that this is necessary, especially as their role is greatly overshadowed by effects due
to electron motion, but this analysis will highlight those ionic features, particularly the
number fraction of ions present in the plasma, which have a crucial role in the modulation
stability of WMC.

With ion motions included, we will consider the two-fluid plasma description
(Baumjohann & Treumann 2012) with the assumption of isothermality for each particle
species. This gives the system of equations

∇ × E = −∂B
∂t

, (3.1)

∇ × B = μ0(qeneV e + qiniV i) + 1
c2

∂E
∂t

, (3.2)

∂V e

∂t
+ (V e · ∇)V e + c2

s,e

ne
∇ne = qe

me
(E + V e × B) + F P,e, (3.3)

∂V i

∂t
+ (V i · ∇)V i +

c2
s,i

ni
∇ni = qi

mi
(E + V i × B) + F P,i, (3.4)

∂ne

∂t
+ ∇ · (neV e) = 0, (3.5)

∂ni

∂t
+ ∇ · (niV i) = 0, (3.6)

∇ · E = qene + qini, (3.7)

where the subscripts i, e denote fields and quantities which describe the ion and electron
populations, respectively. The ponderomotive forces for each species will be taken as

F P,j = − ω2
pj

2μmjnjc2ω2
∇〈|E|2〉), j = e, i. (3.8)

The ponderomotive force for the ion equation is of the same form as the electron, which
can be obtained by following the derivation in Chen et al. (1984). As in the purely electron
case, alternate forms of this force may be supplied instead but this primary form of
the ponderomotive force captures the essence of the wave–particle interaction. For the
spatiotemporal analysis, we will undertake a formal weakly nonlinear analysis in the small
parameter ε � 1. This parameter is a characterisation of the wave amplitude, which in
turn determines the strength of the nonlinear effects. Following typical amplitude equation

https://doi.org/10.1017/S0022377823001265 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001265


14 D.J. Ratliff and O. Allanson

approaches, we postulate the following expansions:

B = B0ẑ + ε(x̂ + iŷ) (BW(Z, T) + εβ1(BW)Z) eiθ ,

E = ε(x̂ + iŷ) (α1BW(Z, T) + εβ2(BW)Z) eiθ ,

V e = v‖ẑ + ε(x̂ + iŷ) (α2BW(Z, T) + εβ3(BW)Z) eiθ + ε2Ve(Z, T)ẑ,

V i = u‖ẑ + ε(x̂ + iŷ) (α3BW(Z, T) + εβ4(BW)Z) eiθ + ε2Vi(Z, T)ẑ,

ne = ne,0 + ε2Ne(Z, T), ni = ni,0 + ε2Ni(Z, T), θ = kz − ωt,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

where the slow variables Z and T , encoding two time scales, are defined as

Z = ε(z − cgt), T = ε2t, (3.10)

whose scalings are chosen so that the terms of the derived evolution equation are all of
the same order in ε. The smallness of the parameter ε is once again determined by the
separation between linear and nonlinear scales, and following a similar calculation as that
in § 2, one finds that ε must satisfy the ordering

ε

∣∣∣∣BW

B0

∣∣∣∣ sin φ �
∣∣∣∣ω − v‖k

Ω

∣∣∣∣ (3.11)

which for field-aligned WMC with a velocity parallel to the magnetic field is automatic,
as sin φ = 0. Such scalings are typical within weakly nonlinear theories describing
spatiotemporal amplitude evolution and ultimately indicate that the evolution equation
for the amplitude is of NLS type. Indeed, substitution of the above expansions into the
governing equations and solving the resulting problems at each order of ε confirm this, as
we will outline below.

At leading order, O(ε), we find that ω, k satisfy the relation

D = 1
c2

[
(c2k2 − ω2)(ω − v‖k − Ωe)(ω − u‖k + Ωi)

+ω2
pe(ω − v‖k)(ω − u‖k + Ωi) + ω2

pi(ω − u‖k)(ω − v‖k − Ωe)
] = 0 (3.12)

which has a root corresponding to the whistler dispersion relation

c2k2 − ω2 + ω2
pe(ω − v‖k)

ω − v‖k − Ωe
+ ω2

pi(ω − u‖k)

ω − u‖k + Ωi
= 0. (3.13)

Waves along this dispersion branch require that

(α1, α2, α3) =
(

iω
k

,− qe

mek
ω − v‖k

ω − v‖k − Ωe
,− qi

mik
ω − u‖k

ω − u‖k + Ωi

)
. (3.14)

The next order of the analysis generates both first-harmonic and zero-harmonic terms. The
former of these may be solved to show that β1 = 0 and

(β2, β3, β4)

=
(

cgk − ω

k
,− iqe((ω − v‖k)2 − Ωe(ω − cgk))

mek2(ω − v‖k − Ωe)2 ,− iqi((ω − u‖k)2 + Ωi(ω − cgk))
mik2(ω − u‖k + Ωi)2

)
. (3.15)

https://doi.org/10.1017/S0022377823001265 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001265


The nonlinear evolution of whistler mode waves 15

The first of the zero-harmonic (i.e. oscillation-free) problems arises from (3.2) and is
simply

qe(ne,0Ve + Nev‖) + qi(ni,0Vi + Niu‖) = 0. (3.16)

This is to say that the parallel propagating wave does not induce an additional current at
this order of the analysis. The second arises from (3.7) and gives that

qeNe + qiNi = 0, (3.17)

which is equivalent to quasineutrality holding in the presence of slow deviations. This
allows one to write the electron number density variations according to

Ne = − qi

qe
Ni = ZcNi, (3.18)

where Zc is the ion charge number. Both of the conditions (3.16) and (3.17) highlight
the importance of ionic effects, as without the ionic contribution this equation would
necessarily yield that Ne, Ve must vanish and lead to no nonlinear effects emerging from
the weakly nonlinear analysis. Thus,this order makes it clear that ionic effects must be
included in the study of the multiple scale WMC evolution and should not be neglected.

The problem at O(ε3) is where the analysis terminates, and only the first harmonic and
zero-harmonic terms need to be considered to develop the evolution equation that results
here. The zero-harmonic terms are more involved at this order, and these read

(v‖ − cg)N ′
e + ne,0V ′

e = 0,

(u‖ − cg)N ′
i + ni,0V ′

i = 0,

(v‖ − cg)V ′
e + c2

s,e

ne,0
N ′

e = − ω2
pe

μmene,0c2k2
(|BW |2)′,

(u‖ − cg)V ′
i + c2

s,i

ni,0
N ′

i = − ω2
pi

μmini,0c2k2
(|BW |2)′,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.19)

where primes denote derivatives with respect to Z. We may use equation (3.16) to show
that, if we add qe times the first equation of (3.19) to qi times the second of (3.19), we
necessarily have that

cg(qeNe + qiNi)
′ = 0, =⇒ qeNe + qiNi = constant. (3.20)

From (3.17) we can see that it follows that this constant is zero. We will recast the system
(3.19) by taking the third equation of (3.19) and subtracting qi/qe = −Zc times the fourth.
Overall, this gives that

Zc(v‖ − cg)N′
i + ne,0V ′

e = 0,

(u‖ − cg)N′
i + ni,0V ′

i = 0,

(v‖ − cg)V ′
e + Z(u‖ − cg)V ′

i + Zc

(
c2

s,e

ne,0
+ c2

s,i

ni,0

)
N′

i = −
Zω2

pimene,0 + ω2
pemini,0

μmemini,0ne,0c2k2 (|BW |2)′.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.21)
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16 D.J. Ratliff and O. Allanson

This system of equations can be inverted to show that the modulation of the mean particle
quantities are related to the carrier wave by⎛⎝Ni

Ve
Vi

⎞⎠ = Zcω
2
pimene,0 + ω2

pemini,0

Zcμmemine,0ni,0c2k2Δ
(|BW |2)

⎛⎝ ne,0ni,0
Zc(cg − v‖)ni,0
(cg − u‖)ne,0

⎞⎠ ,

with Δ = ((cg − u‖)2 − c2
s,i

)
ne,0 + ((cg − v‖)2 − c2

s,e

)
ni,0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.22)

The arbitrary functions resulting from the integration have been ignored here, as these
simply correspond to a shift in the frequency of the carrier wave which evolves much
more slowly than the envelope.

At O(ε3), we require that all terms proportional to the first harmonic vanish, else the
analysis will generate secular terms. It can be shown that in order to do so, the amplitude
BW must satisfy the following NLS equation:

iBT + ω′′
0

2
BZZ − Γ |B|2B = 0, (3.23)

where the nonlinear frequency correction Γ is given by

Γ = Zcω
2
pimene,0 + ω2

pemini,0

Zcμc4memine,0ni,0k2�Dω

(ω − v‖k − Ωe)(ω − u‖k + Ωi)

×
(

Zcω
2
peni,0

(ω − v‖k − Ωe)2

(
(ω − v‖k)2 − Ωe(ω − cgk)

)
+ ω2

pine,0

(ω − u‖k + Ωi)2

(
(ω − u‖k)2 + Ωi(ω − cgk)

))
. (3.24)

We conclude our formal derivation with a few marks about the validity and limitations of
the above model. Primarily we expect the NLS equation above to be a good representation
whenever the variations in the wave amplitude occur over scales much larger than the
wave period, which is to say that the model is representative whenever the typical packet
contains many waves. Observation from the Van Allen Probes and THEMIS mission
support this being typical of WMC (Zhang et al. 2019; Artemyev et al. 2022). It is also
known that such envelope models are valid for evolution times up to O(ε−2), so one can
expect much longer predictions for lower amplitude packets. However, nonlinear events
in WMC typically happen on scales of less than a second (Santolik et al. 2008), with
the most repetitive emissions taking place within windows of several seconds (Gao et al.
2022), suggesting that these events lie within the time span of model validity. Finally
a consequence of the scalings of the moving coordinate we have a narrow spectrum
requirement of |k − δk|, |ω − δω| ∼ O(ε), where δk, δω represent the wavenumber and
frequency associated with the amplitude BW , a constraint that mission data suggests WMC
satisfies (Santolík et al. 2003; Santolik et al. 2008).

3.1. Influence of ions on modulation stability
In order to analyse the modulation instability of whistler mode waves, we will again
non-dimensionalise the wave quantities according to (2.29a–e), and introduce the further
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non-dimensionalisations
r = me

mi
, cs,e = cν. (3.25)

Additionally, to simplify the analysis in the first instance, we will choose that v‖ = u‖ = 0.
We note that the parameter r is typically small, with its largest value occurring for
hydrogen ions where it takes the value r = 1

1836 . Thus, we treat r � 1. This simplifies
the coefficients of the NLS (3.23) to

ω′′
0 = 2α2c2

Ω

(W − 1)2(4W4 − 4W3 − 4Wα2 + α2)

(2W3 − 4W2 + α2 + 2W)3
+ O(r),

Γ = α4ni,0Ω

μmene,0Δ

(W − 1)2(2W3 − 2W2 − α2)

(2W3 − 4W2 + α2 + 2W)2(W2 − α2 − W)
+ O(r),

with Δ = c2(ne,0 + ni,0)

[
V2 − ni,0

ne,0 + ni,0
ν2

]
+ O(r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.26)

In addition, our perturbations to the electron number Ni and their velocity characterised
by α4, Vi become, in this limit,

Ni = α2ni,0

Zcμmec2k2Δ
(|BW |2) + O(r),

Vi = α2V
Zcμmene,0ck2Δ

(|BW |2) + O(r),

α4 = O(r).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.27)

It becomes clear that although the vast majority of effects due to ions characterised by r
vanish, save for the zero harmonic/bulk variations, more or less recovering the modulation
instability criterion of the electron-only plasma presented in § 2.1. There is, however, a
non-negligible ion effect that is crucial in the expression for Δ associated with the subsonic
to supersonic wave transition. The remaining expression involving the ion number density
now controls one of the stability boundaries for the whistler waves, as was demonstrated
in § 2. This expression indicates that the proportion of ions present in the plasma directly
alter this boundary, and so the supersonic and subsonic regimes are altered to transition at
ratios that can be much lower than unity; this is since

0 ≤ ni,0

ne,0 + ni,0
≡ ηi ≤ 1. (3.28)

Further, in the limit as ηi → 0 where the electron fluid (i.e. static electrons) description
is expected to be employed, one finds that the sound speed term is eliminated and only
the supersonic case is operational, suggesting that parallel WMC would only rise in tone
and parallel falling tones are expected to be non-existent in this regime. This is in strong
agreement with the mission data on parallel WMC waves, where rising tones are closely
aligned with the magnetic field whereas falling tones are to be expected nearly orthogonal
to it (Taubenschuss et al. 2014; Teng et al. 2019). We make this inference primarily based
on the location of the region within which the wave is stable; however, dynamically
speaking we do not have a term which dictates the movement of the main spectral peak
in frequency space. The NLS will need to be extended in order to accommodate such
terms and test part of this hypothesis, which is precisely the aim of the next section of our
analysis.
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4. Spectral asymmetry and the emergence of chirp

It is known that NLS models do not admit chirping behaviour for monochromatic waves
or wave packets (see, for example, the standard textbooks Ablowitz & Segur (1981),
Agrawal (2000) and Billingham & King (2000) on the subject). This owes to the fact
that the growth of sidebands due to modulation instability are symmetric and thus it has
no preferred spectral shift. This limits the effect of the NLS solutions on the original
carrier wave to simply a constant, time-independent frequency shift. To break this spectral
symmetry, it is necessary to appeal to higher-order effects within the weakly nonlinear
theory that induce self-frequency shifting as has been explored in optics (Palacios et al.
1999; Goyal et al. 2011; Triki et al. 2016, 2022).

We return our discussion to the approach outlined in § 3. To obtain these higher-order
effects, it is necessary to analyse the contributions from the first-harmonic terms at O(ε).
The terms these generate are then included into the NLS equation (3.23) and treated as
correction terms (as these are, strictly speaking, of a lower order than the original terms).
The result of doing this for parallel propagating whistlers is the modified NLS equation

iBT + ω′′
0

2
BZZ − Γ |B|2B − iεQ|B|2BZ = 0, (4.1)

where the additional nonlinear correction has coefficient

Q = Zcω
2
pimene,0 + ω2

pemini,0

Zcμmemine,0ni,0c4k3�Dω

(ω − v‖k − Ωe)(ω − u‖k + Ωi)

×
[

Zcω
2
peni,0

(ω − v‖k − Ωe)2

(
(ω − v‖k)2 − Ωe(ω − cgk)

) (
1 + (cg − v‖)k

ω − v‖k − Ωe

)

+ ω2
pine,0

(ω − u‖k + Ωi)2

(
(ω − u‖k)2 + Ωi(ω − cgk)

) (
1 + (cg − u‖)k

ω + Ωi

)]
. (4.2)

We now demonstrate how this additional term alters the growth of sidebands due to a
modulation instability. This may be investigated by perturbing the Stokes wave solution,
an exact monochromatic wave train solution to this amplitude equation, by

B = A(1 + P) exp(i[δkZ − (ω′′
0δk2/2) + A2(Γ − εQδk)T]), (4.3)

for Stokes wave amplitude A, sideband wavenumber δk and P is a perturbation assumed
small enough that quadratic terms in it are negligible. Upon substitution, it can be shown
that the perturbation P admits the linear spectrum

(
σ − εκQA2)2 = κ2

[
ω′′

0(Γ − εQδk) + ω′′2
0

4
κ2

]
(4.4)

and thus there is a band of spectral wavenumbers κ which generates perturbations that
grow in time whenever

ω′′
0Γ

(
1 − εQδk

Γ

)
< 0. (4.5)

We can see that the modulation criterion ω′′
0Γ < 0 may persist if the bracketed expression

is positive. This is ensured even if δk > 0 as for parameter ranges operational in the
magnetosphere one has εQ/Γ � 1, and so δk must be significantly large in order to
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do so which would violate the assumptions used to derive (4.1). Thus, the modulational
instability has exactly the same thresholds as the NLS equation. The asymmetry in the
wavenumber spectrum can then be determined by studying the maximum growth rate for
the perturbed Stokes wave. This can be calculated as

G = max(Im(σ )) = |Γ + εQδk|, at κ = ±
√

−2(Γ − εQδk)
ω′′

0
. (4.6)

It is apparent now that the sideband wavenumber δk introduces bias to one side of the
spectrum via this higher-order term characterised by Q. This is determined by the sign
of Q, which like Γ is determined by the factor Δ. Thus, terms with a lower sideband
wavenumber will grow at a faster rate than their upper sideband counterpart. What happens
subsequently cannot be inferred by this linear stability analysis, and requires further
nonlinear approaches that we will not consider here.

This observation is the first hint that this higher-order term will be the driver of the
chirping behaviour that we seek to understand. We will continue to explore this extended
NLS equation from the perspective of nonlinear wave packets, the structures observed
within WMC waves that ultimately generate the rising and falling tones we are interested in
understanding. These structures will be derived and explored analytically and numerically
in later parts of this section to explore how these may encourage a similar spectral
asymmetry in WMC waves.

4.1. Emergence of the band gap
Of significant note within this weakly nonlinear theory, when accounting for the
higher-order terms, is that the classical band gap at half the gyrofrequency is a natural
consequence. We can identify this by using the non-dimensionalisations (2.29a–e) and
(3.25), where r � 1, to simplify the coefficient of the term responsible for chirping to

Q = α4cni,0

μmene,0�K
(W − 1)2(2W − 1)(2W2 − α2 − 2W)(2W3 − 2W2 − α2)

(W2 − α2 − W)(2W3 − 4W2 + α2 + 2W)3
. (4.7)

In this limit there is clearly a root of Q at W = 1
2 , namely ω = Ωe/2, which is at the

typical band-gap for WMC waves. The only other sign change of Q is determined by Δ

(which ultimately leads to a breakdown of the weakly nonlinear theory as a whole) as
the remaining factors result in a positive definite quantity in the lower band WMC range
0 < W ≤ 1

2 .
This observation of this root of Q at W = 1

2 is an important one. It demonstrates that at
half the gyrofrequency the amplitude evolution equations once again reduce to the NLS
equation, so the wave mode neither biases a rise or fall in the frequency. Thus, there is no
emergent sweep rate for waves at this frequency, and it is clear that waves with frequencies
close to this band gap will have very weak sweep rates too. Overall, this observation
suggests that a WMC element that rises or falls in frequency will have its sweep rate
continuously reduced as its spectral peak approaches this band gap until the wave becomes
incoherent or its energy is exchanged with another wave of a different frequency.

Unfortunately, the narrow-band picture of the nonlinear theory is insufficient to fully
test this hypothesis. For energy exchanges between different frequencies and how the
wave responds, a multimode interaction system is required in the spirit of either a coupled
NLS/Manakov system (Manakov 1974; Kourakis, Shukla & Morfill 2005b,a; Baronio et al.
2012) or a Zakharov/wave turbulence model (Galtier et al. 2000; Newell & Rumpf 2011;
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David & Galtier 2022), both much more complex dynamical models. Therefore, a full
validation of this continual sweep rate reduction postulation is reserved for later study.
We, however, note that the former of these extensions is essentially a coupled system of
NLS-like equations and will retain many of the coefficients derived in this paper, and
thus the argument regarding an arrested sweep rate in the proximity of the band gap we
hypothesise to hold true.

4.2. Wave packets with chirp
Now that we have a modification to the NLS, as well as some insight into how chirp
might come about for sidebands, let us formally derive a solution for a chorus element that
undergoes chirping. To do so, we follow Dias & Iooss (1993) and consider a solution of
(4.1) of the form

B = R(ξ)ei(νZ−σT)eiφ(ξ), ξ = Z − VT, (4.8)

which is formed of three parts – the amplitude function R, the sideband wave component
represented by the second term and a phase function φ, which will ultimately be the source
of chirp. This is because the local frequency of this solution can be defined as the negative
of time derivative of the total phase function,

ω̃ = ∂

∂t
(σT − νZ − φ) = ε(cgν + εσ) + ε(cg + εV)φ′. (4.9)

From this one may identify a sweep rate, defined as the rate of change of the frequency in
time,

S = ∂ω̃

∂t
= −ε2(cg + εV)2φ′′. (4.10)

Our aim is to relate this sweep rate with properties of the wave packet solution to determine
the resulting frequency change, which is achieved though substitution of this ansatz into
(4.1) and solve the resulting ordinary differential equations (ODEs).

Starting with our guess at a solution, and splitting the resultant system into real and
imaginary parts, we have the equations

σR + Vφ′R + ω′′
0

2
(R′′ − (ν + φ′)2R) − Γ R3 + εQ(ν + φ′)R3 = 0, (4.11)

−VR′ + ω′′
0

2
(2R′φ′ + Rφ′′ + 2νR′) − εQR2R′ = 0. (4.12)

We start by taking the second equation, (4.12), and multiplying by R, which makes it an
exact derivative. Integrating gives

− V
2

R2 + ω′′
0

2
(R2φ′ − νR2) − εQ

4
R4 = I (4.13)

for some constant I. It will be convenient herein to introduce U = R2 > 0, and note that
for solitary wave packets one must have that U, U′ and U′′ tend to zero as ξ → ±∞. This
yields that I = 0 and allows one to manipulate (4.13) to show that the sweep rate S is

S = −ε3(cg + εV)2Q
2ω′′

0
U′. (4.14)

In modulationally unstable regions, this prefactor is negative, meaning that a positive
sweep rate occurs when U′ > 0, i.e. at points where the envelope of an element is
increasing.
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We conclude the discussion here with an exact solution describing the envelope of a
single whistler packet/element. To do so, we note that we can set ν = 0 to simplify the
analysis, and it can be reintroduced under suitable mappings. In this case, we get a quartic
potential,

(U′)2 + B2U2 + B3U3 + B4U4 ≡ (U′)2 − V (U) = 0 (4.15)

with

B2 = 4V2

ω′′2
0

+ 8σ

ω′′
0
, B3 = 4

ω′′
0

(
εVQ
ω′′

0
− Γ

)
, B4 =

(
εQ
ω′′

0

)2

. (4.16a–c)

A homoclinic connection (that is a trajectory that begins and terminates at the same fixed
point) within this system, corresponding to a solitary wave solution is only possible so
long as there is an interval for which V (U) > 0. As B4 > 0, we need B2 < 0 and so

4V2

ω′′2
0

+ 8σ

ω′′
0

< 0. (4.17)

Since σ is a free real-valued parameter, this is always possible to satisfy. Following
Kamchatnov et al. (2012) let us factorise this ODE as follows:

U′ =
∣∣∣∣εQ
ω′′

0

∣∣∣∣√U2(U − U−)(U+ − U), (4.18)

where the roots are given by

U± = 2ω′′
0

ε2Q2

[
Γ − εVQ

ω′′
0

±
√

Γ 2 − 2εQ
ω′′

0
(VΓ + εQσ)

]
. (4.19)

The negative subscript denotes the negative root, and plus the positive root, so that U− <
0 < U+. Thus, the expression in (4.18) under the square root is positive in the interval
U− < U < U+, but as U = R2 > 0 the only interval of interest to us will be 0 ≤ U < U+.
The solution to this ODE is of the form of a Gardner/extended Korteweg–de Vries soliton
(Grimshaw et al. 2010; Kamchatnov et al. 2012),

U = A
(1 + B) cosh2 Θ − 1

(4.20)

with

A = −U−>0, B = −U−
U+

> 0, Θ =
√

−2σω′′
0 + V2

ω′′2
0

(Z − VT), (4.21a–c)

and so the amplitude of this wave packet is A/B = U+.
In summary, by considering higher-order terms in the amplitude model we find that

these terms are the source of chirping behaviour in both monochromatic wave trains and
within wave packets. In the case of the latter, however, we can observe that there is no net
shift in the frequency due to the symmetry of the packet. Chirping due to WMC elements
would appear to arise, therefore, upon packet interaction as this leads to asymmetry within
the wave envelope and thus generates a net frequency shift. This is now explored using
numerical means, where we will generate multiple packets, observe their interactions and
extract their frequency spectrum to deduce the overall chirp produced by their interplay.
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5. Numerical simulation of interacting whistler mode elements

It is clear from the available spacecraft mission data that whistler and chorus wave
packets are rarely isolated and propagate in groups of multiple packets. As a result, these
packets interact and cause changes to their frequency and amplitude that the above insight
of a solitary packet cannot provide. To investigate these interactions, we resort solving
(4.1) using a time stepping procedure. For computational ease and to better identify the
effects of system parameters on the sweep rate, we rescale (4.1), highlighting two cases
dependant on the sign of ω′′

0 . We employ the scalings

X = sign(ω′′
0)Z, τ = sign(ω′′

0)
ω′′

0

2
T, B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
|ω′′

0 |
2|Γ |A∗ ω′′

0 < 0,√
|ω′′

0 |
2|Γ |A ω′′

0 > 0,

(5.1a–c)

to transform (4.1) into

iAτ + AXX − σ

(
|A|2A + iεQ

Γ
|A|2AX

)
= 0, with σ = sign(ω′′

0Γ ). (5.2)

This reduces the problem to a single tuneable parameter, which we can see from the
non-dimensionalisations earlier that

εQ
Γ

= εc
ΩK

(2W − 1)(2W2 − 2W − α2)

2W3 − 4W2 + 2W + α2
, (5.3)

thus reducing the tuneable parameters to just ε, W,Ω (or equivalently, B0) and α which
are determined by the plasma environment. For the majority of our simulations we will be
using parameter choices representative of those found at L-shell L ∼ 6. This corresponds
to

α = 7.2, B0 = 1.4 × 10−7, ne = 1 × 107, ε = O(10−5). (5.4a–d)

In addition to this, we focus on wave frequencies lying in the lower frequency band range
of 0.1Ω–0.5Ω .

We advance (5.2) in time using an exponential time differencing method with
fourth-order Runge–Kutta time stepping (ETDRK4) (Cox & Matthews 2002; Kassam
& Trefethen 2005), using periodic boundary conditions to take advantage of the speed
and spectral accuracy of Fourier-based schemes. To initialise a multielement solution and
remain close to the analytic solution found, we initialise the simulations with the wave
packet

A(X, 0) =
√√√√√ 1

A0 cosh
(

X
Λ

)2

− 1

eipX, (5.5)

which has amplitude 1/(A0 − 1), width Λ and sideband wavenumber p. The width of
these has to be suitably large (of the order 10) in order to generate multiple packets, with
smaller Λ recovering a single wave packet with small amplitude wave radiation and larger
widths generating many packets that partially fission before interaction. In our simulations,
we allow this initial profile to evolve and we then observe the dynamics of this fissioned
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(a)

(b)

FIGURE 2. Examples of the power spectrum |BW |2/δω generated by the parameter choices
(ε, ne, α, Ω) = (4 × 10−5, 1 × 107, 7.2, 2.49 × 104) and (a) W = 0.2, kBT = 8.02 KeV,
(b) W = 0.35, kBT = 7.37 KeV.

structure in time to determine how the emergent wave packets interact with each other and
the resulting Fourier spectrum.

The result of simulating (5.2) yields wave packets that generate frequency sweeps, with
examples appearing in figure 2. These emerge after the initial packet begins to split and
interact with the new subelements, and develop further as the packets separate. This
separation drives an envelope asymmetry, which from our observations in (4.14) would
appear to be the source for the frequency sweeps that emerge numerically. The sweep rate
decreases over each simulation, as the subelements grow farther apart, further reinforcing
that it is the packet interactions that are the source of rising tones. We find over the course
of our numerical investigations that higher magnitude of the ratio in (5.3) enhance the
onset of frequency sweeping, which further points to the role that the modified term in the
NLS plays in generating frequency shifts in the WMC waves.

It is worth commenting on the contrast between the simulations here and the more
conventional studies using particle-in-cell simulations. These have demonstrated chorus
wave frequency chirping in a one-dimensional uniform field, but using reflective boundary
conditions for particles and open boundary conditions for electromagnetic waves (Wu et al.
2020). In that work, the open boundary conditions for the waves facilitate the chirping
behaviour in the sense that they allow electromagnetic perturbations to leave the domain
and so not to return and interfere with the spatially localised wave–particle interaction that
is creating the chirp. The mathematical analysis that is presented in this work is based on
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(a) (b) (c)

FIGURE 3. Snapshots of the time series of (a) the magnetic wave (b) number density and
(c) kinetic energy density at several spatial points, demonstrating the breather-like evolution of
the wave envelope as the WMC wave travels.

the assumption of an infinite uniform plasma in a uniform background magnetic field, and
we employ periodic boundary conditions for all quantities in our numerical experiments.
However, our experiments still permit the chirping mechanism to be fully local/isolated
in the same way as the work by Wu et al. (2020), since the spatial dimensions of the
domain [0 ≤ x < L] are sufficiently large that the relevant phase and group velocities do
not traverse a full box-length L over the time scale of chirping events and indeed the whole
numerical experiment. This is to say that vg � LT−1, Lω−1 dω/dt. Furthermore, the paper
by Wu et al. (2020) demonstrates that in their regime, it is the background non-uniformity
that establishes a symmetry breaking in order to preferentially permit either rising or
falling tones, based on the curvature of the background magnetic field. It is therefore
interesting that our results demonstrate a preferential chirping direction (rising tone) in
the case of a uniform field. Once again, we state again that our standalone mechanism is
of a different origin and nature, and it will be important in future studies to investigate the
relationship between this, and others.

The structure of the envelope generated by the interaction of subelements is also
noteworthy. In our simulations we find that the packets exhibit an almost time-periodic
breathing behaviour, depicted in figure 3(a) akin to the Kuznetsov–Ma soliton found in the
NLS (Ma 1979; Akhmediev, Eleonskii & Kulagin 1985), albeit with a zero background.
The structure of maximum amplification for widths that generate two to three main packets
also bears some semblance to higher-order rogue wave solutions (Chabchoub et al. 2012;
Slunyaev et al. 2013), a fact that is not unsurprising given that such solutions are the
infinite-period limit of breathers. This seems to suggest, therefore, that isolated rising tone
WMC waves may fall into the category of rogue waves themselves, and the repetitive
WMC emission events are breather events. This connection between hydrodynamic rogue
waves and WMC has not yet been made in the literature and it may be useful to explore
this connection further in the future, given also that the occurrence rate of large-amplitude
WMC is significant in the magnetosphere.

We may also use (3.22) to explore the effect on both the number density and the parallel
electron velocity. From the latter, we may also extract the following energy density, a
combination of kinetic and thermal energy of the electrons induced by the wave:

EKE = me

2
ne‖V e − v‖ẑ‖2 + kBT

2
(ne − ne,0), (5.6)
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(a) (b)
(i) (i)

(ii)

(ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

FIGURE 4. (a) Snapshots of the magnetic field wave versus the power spectra for the time series
snapshot for the parameter choice (ε, ne, α, Ω, W, kBT) = (4 × 10−5, 1 × 107, 7.2, 2.49 ×
104, 0.35, 7.373 KeV). (b) Comparison between the wave envelope (with maxima shifted to the
same point in slow time ts) over the time frame of one pulsation (the fast time tf ) and its short
time Fourier transform. The white dashed line denotes the time at which the envelope achieves
its maximum.

which allows us to determine which stage of the WMC evolution energises the electrons.
We visualise these quantities in figure 3(c), demonstrating that the maximum amplification
of the wave is the stage which imparts the most energy to the particles, increasing the
energy by several electronvolts. We may also correlate this moment with the frequency
activity of the wave, as we do in figure 4. In it, we can observe that the amplification of
the wave develops as one rising tone begins to terminate and another, lower in frequency,
rising tone begins to initiates. The kinetic energy density peaks at exactly the point in time
where the power of the higher frequency rising tone and the lower frequency rising tone
are equal, and beyond this point the lower rising tone takes over as the most powerful part
of the signal. This observation would therefore suggest that repetitive rising tone events,
that are typical of chorus wave activity (Tsurutani & Smith 1974; Li et al. 2012; Gao et al.
2014), are accelerating electrons most when the tones overlap and there is an exchange
in wave power between these elements. It is difficult to conclusively identify this as the
amplification mechanism, however, as it could simply be that if the rising tone of higher
frequency have been left to climb the amplification may have been much greater. Further
study beyond that of this paper will be required to fully explore this interaction and its
consequences.

We conclude this section with some final commentary on what aspects of WMC we
cannot recreate with our current level of modelling, but could be captured with suitable
alterations. Primarily, the modified NLS equation (4.1) appears to be unable to produce a
single isolated rising tone event that has been successfully created via other theoretical
modelling (e.g. Nunn et al. 1997; Omura et al. 2008; Tao 2014). We attribute this to
the fact that we have no source term corresponding to a hot electron population which
ultimately drives the WMC waves in these existing theories. We anticipate that once such
effects are accounted for properly, the simulations here should be able to reproduce these
results. Further, another aspect of our simulations we are not able to reproduce is the
non-sequential gap between events, as all WMC events in our simulations happen one
after another. One can see from the mission data (cf. Agapitov et al. 2011; Gao et al. 2022)
that this need not be the case, and there can be considerable separation between WMC
occurrences. We hypothesise that once hot electron growth effects are accounted for, these
too may be emergent from simulations of our amplitude model.
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6. Concluding remarks

This paper has provided an overview of the formation and dynamics of parallel
propagating WMC waves with rising tone. We have outlined that the mechanism for
packet formation is an instability of modulational type, whose transition is marked by a
critical point in the group velocity as well as the sign of c2

g − c2
s . Further investigations

demonstrated that the role of ions within the system is to reduce the latter instability
threshold and suggests that their effects, although contributing little elsewhere, are
non-negligible and must be accounted for in any analysis of WMC.

We here emphasise that the mechanisms proposed in this paper (namely chirping and
potential contributions to the power-gap phenomenon as a result of the ponderomotive
force and non-zero ion motion) are not proposed to be replacing other proposed
mechanisms, such as those that may even include fixed ions in, for example, Katoh &
Omura (2007) and Tao et al. (2021). Future work should investigate to what extent different
viable mechanisms such as these and others interact and compete in different regimes.

Furthermore, we note that the power-gap phenomenon is not always observed in
spacecraft measurements, for example, see Teng et al. (2019). It is interesting to note
that the occurrence rate of ‘no-gap’ whistler waves has been observed to peak off the
equator (|MLAT| ≈ 8–10◦), i.e. in regimes where magnetic curvature cannot be ignored.
It will be interesting in future work to see if we can obtain similar results. We emphasise
once more, the mechanism that we propose is shown to be viable within the context of
a uniform plasma with uniform background magnetic field, and it is not yet known how
this mechanism will change in different geometry and regimes, and/or compete with other
viable mechanisms.

We have observed here that rising tones emerge from the NLS with higher-order effects,
and the degree at which the spectral peak changes can be attributed to either the strength of
the background magnetic field and/or the frequency of the original carrier wave. We have
also numerically investigated the evolution of multiple WMC wave packets, confirming
that the interaction between WMC elements seems to be the mechanism for the emergence
of their frequency sweeping. The envelope asymmetry appears to be the reason for this as
this interplay overcomes the symmetry of the theoretical solitary WMC element solution
which it seemingly does not allow for. This suggested mechanism is supported by the data
from the THEMIS and Van Allen missions, where the wave profile for rising tone elements
contains both multiple elements and asymmetric wave envelopes.

The assumption of narrow-banded waves implicit in the derivation of the envelope
equations captures the phenomenology of WMC. We do, however, note that formally the
range of frequencies that the packets can sweep is limited by ε and should not cover a broad
range of frequencies simultaneously. This means that the complete picture of a rising tone
WMC will involve more complex models which couple multiple frequency bands together
and transfer wave energy between one another. This has been seen in other systems, the
simplest being coupled NLS models with the limit of such couplings being the Zakharov
equation. For parallel propagating WMC, the theoretical analysis should remain tractable
due to the lack of second-harmonic terms in the perturbation analysis and yield further
insight into the stability and evolution of nonlinear chorus waves.

An important extension of the approach outlined here is to consider the more general
case of WMC propagating obliquely to the magnetic field. This is more reflective of what
is observed, where WMC is seen to most commonly propagate at angles of 10◦ (close to
parallel) or 70◦ to the magnetic field. The work here remains reflective of the former of
these cases by virtue of the obliqueness remaining small, but the latter case would require
a revised version of the perturbative approach and result in a different modified NLS.
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The mission data would also suggest that this version of the dynamics would instead lead
to wave dynamics which admit falling tone WMC, a feature which may be linked to a
negative version of the ratio (5.3). In either case, a quantification of the effect of oblique
propagation should be determined and explored in a similar fashion to the field-aligned
waves considered in this paper.
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Appendix A. Details of the WKB analysis of the electron plasma

First-order terms proportional to eiθ are given by the linear matrix problem⎛⎜⎜⎜⎝
iω k 0

−k
iω
c2

μ0qn0

− iqv‖
m

− q
m

i(ω − v‖k − Ωe)

⎞⎟⎟⎟⎠
⎛⎝ 1

α1
α2

⎞⎠ ≡ D(ω, k; v‖)

⎛⎝ 1
α1
α2

⎞⎠ = 0. (A1)

The determinant of this matrix needs to be zero for non-trivial solutions and thus

DW(ω, k; v‖) = |D| = 1
c2

[
(ω − v‖k − Ωe)(c2k2 − ω2) + ω2

pe(ω − v‖k)
] = 0. (A2)

Useful for later are the following derivative results along the branch of solutions:

(DW)ω = − 1
c2

[
ω2

peΩe

ω − v‖k − Ωe
+ 2ω(ω − v‖k − Ωe)

]
,

(DW)k = 1
c2

[
2c2k(ω − v‖k − Ωe) + v‖ω2

peΩ2

ω − v‖k − Ωe

]
,

(DW)v‖ = 1
c2

ω2
peΩek

ω − v‖k − Ωe
,

(DW)n0 = ω2
pe(ω − v‖k)

n0c2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

For whistler waves, one has that

α1 = − iω
k

, α2 = − q
mk

ω − v‖k
ω − v‖k − Ωe

. (A4a,b)
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The left eigenvector of this matrix is also required in order to determine criterion for when

DA1 = A2 (A5)

can be solved for A1, namely that the Fredholme alternative is to hold and the right-hand
side vanishes when projected in the direction of the left eigenvector. This is given by

l =
(

ω(ω − v‖k − Ωe) − ω2
pe

c2k
, i(ω − v‖k − Ωe),−μ0qn0

)
. (A6)

One is then able to show that

lD

⎛⎝ 1
α1
α2

⎞⎠ = − iD
k

. (A7)

The next order of the analysis only requires consideration of zero-harmonic modes,
associated with wave–particle interactions. This involves terms which can be written in
terms of gradients, and so by considering the expressions under the gradients we have the
system

qμ(v‖N + n0V) = 0,

∇
(

v‖V + c2
s

n0
N + ω2

pe

μc2ω2
|α1|2|BW |2

)
= ∇

(
v‖V + c2

s

n0
N + ω2

pe

μc2k2
|BW |2

)
= 0.

⎫⎪⎪⎬⎪⎪⎭ (A8)

Combining these gives

c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2 = constant. (A9)

This constant can be deduced by noticing that the wave-free flow is potential, as there is
no indication that such waves have vorticity due to the constant underlying background
magnetic field, so that

V e = ∇φ = ∇(v‖z − γ t). (A10)

This would mean that the overall version of this bulk equation would be

c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2 = γ − v2

‖
2

− c2
s ln n0. (A11)

At the final order we consider, we must now examine the terms proportional to eiθ , given
by

0 =

⎛⎜⎝ 0
−qμα2NBW

iq
m

BWV + ikVα2BW

⎞⎟⎠ . (A12)

Now, we project the right-hand side using l gives

i
c2k

[
ω2

peΩek

ω − v‖k − Ωe
V + ω2

pe(ω − v‖k)

n0
N

]
BW = iω2

pe

c2kn0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
NBW . (A13)

Now, we could impose that this is zero, but the analysis would be determined to be trivial.
Instead, we assume that there is a correction to the frequency, δω, that has amplitude
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effects within it. Assuming ω = ω0 + δω, the matrix system (A1) has the amplitude
dependent part

δω

⎛⎜⎝ i 0 0

0
i

c2
0

0 0 i

⎞⎟⎠
⎛⎝ 1

α1
α2

⎞⎠BW = iδωBW

⎛⎜⎜⎝
1
α1

c2

α2

⎞⎟⎟⎠ (A14)

which would instead give the (A12) as

iδωBW

⎛⎜⎜⎝
1
α1

c2

α2

⎞⎟⎟⎠ =

⎛⎜⎝ 0
−qμα2NBW

iq
m

BWV + ikVα2BW

⎞⎟⎠ . (A15)

Projecting this down to assess whether this is solvable gives

− iδω
(DW)ω

k
= iω2

pe

c2kn0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
N (A16)

and so

δω = − iω2
pe

(DW)ωc2n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
N. (A17)

Thus, the two equations that emerge from the WKB theory are

DBW + ω2
pe

c2n0

(ω − v‖k)2 − Ωeω

ω − v‖k − Ωe
NBW = 0,

c2
s − v2

‖
n0

N + ω2
pe

μc2k2
|BW |2 = γ − v2

‖
2

− c2
s ln n0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A18)
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